![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ltso | Structured version Visualization version GIF version |
Description: 'Less than' is a strict ordering. (Contributed by NM, 19-Jan-1997.) |
Ref | Expression |
---|---|
ltso | ⊢ < Or ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axlttri 11329 | . 2 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 < 𝑦 ↔ ¬ (𝑥 = 𝑦 ∨ 𝑦 < 𝑥))) | |
2 | lttr 11334 | . 2 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝑥 < 𝑦 ∧ 𝑦 < 𝑧) → 𝑥 < 𝑧)) | |
3 | 1, 2 | isso2i 5632 | 1 ⊢ < Or ℝ |
Colors of variables: wff setvar class |
Syntax hints: Or wor 5595 ℝcr 11151 < clt 11292 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-resscn 11209 ax-pre-lttri 11226 ax-pre-lttrn 11227 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-po 5596 df-so 5597 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-er 8743 df-en 8984 df-dom 8985 df-sdom 8986 df-pnf 11294 df-mnf 11295 df-ltxr 11297 |
This theorem is referenced by: gtso 11339 lttri2 11340 lttri3 11341 lttri4 11342 ltnr 11353 ltnsym2 11357 fimaxre 12209 fiminre 12212 lbinf 12218 suprcl 12225 suprub 12226 suprlub 12229 infrecl 12247 infregelb 12249 infrelb 12250 supfirege 12252 suprfinzcl 12729 uzinfi 12967 suprzcl2 12977 suprzub 12978 2resupmax 13226 infmrp1 13382 fseqsupcl 14014 ssnn0fi 14022 fsuppmapnn0fiublem 14027 isercolllem1 15697 isercolllem2 15698 summolem2 15748 zsum 15750 fsumcvg3 15761 mertenslem2 15917 prodmolem2 15967 zprod 15969 cnso 16279 gcdval 16529 dfgcd2 16579 lcmval 16625 lcmgcdlem 16639 odzval 16824 pczpre 16880 prmreclem1 16949 ramz 17058 odval 19566 odf 19569 gexval 19610 gsumval3 19939 retos 21653 mbfsup 25712 mbfinf 25713 itg2monolem1 25799 itg2mono 25802 dvgt0lem2 26056 dvgt0 26057 plyeq0lem 26263 dgrval 26281 dgrcl 26286 dgrub 26287 dgrlb 26289 elqaalem1 26375 elqaalem3 26377 aalioulem2 26389 logccv 26719 ex-po 30463 ssnnssfz 32795 lmdvg 33913 oddpwdc 34335 ballotlemi 34481 ballotlemiex 34482 ballotlemsup 34485 ballotlemimin 34486 ballotlemfrcn0 34510 ballotlemirc 34512 erdszelem3 35177 erdszelem4 35178 erdszelem5 35179 erdszelem6 35180 erdszelem8 35182 erdszelem9 35183 erdszelem11 35185 erdsze2lem1 35187 erdsze2lem2 35188 supfz 35708 inffz 35709 gtinf 36301 ptrecube 37606 poimirlem31 37637 poimirlem32 37638 heicant 37641 mblfinlem3 37645 mblfinlem4 37646 ismblfin 37647 incsequz2 37735 totbndbnd 37775 prdsbnd 37779 aks4d1p4 42060 aks4d1p7 42064 sticksstones1 42127 sticksstones3 42129 sn-suprcld 42479 sn-suprubd 42480 pellfundval 42867 dgraaval 43132 dgraaf 43135 fzisoeu 45250 uzublem 45379 infrglb 45545 limsupubuzlem 45667 fourierdlem25 46087 fourierdlem31 46093 fourierdlem36 46098 fourierdlem37 46099 fourierdlem42 46104 fourierdlem79 46140 ioorrnopnlem 46259 hoicvr 46503 hoidmvlelem2 46551 iunhoiioolem 46630 vonioolem1 46635 fsupdm2 46798 finfdm2 46802 prmdvdsfmtnof1lem1 47508 prmdvdsfmtnof 47510 prmdvdsfmtnof1 47511 ssnn0ssfz 48193 rrx2plordso 48573 |
Copyright terms: Public domain | W3C validator |