| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ltso | Structured version Visualization version GIF version | ||
| Description: 'Less than' is a strict ordering. (Contributed by NM, 19-Jan-1997.) |
| Ref | Expression |
|---|---|
| ltso | ⊢ < Or ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axlttri 11252 | . 2 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 < 𝑦 ↔ ¬ (𝑥 = 𝑦 ∨ 𝑦 < 𝑥))) | |
| 2 | lttr 11257 | . 2 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝑥 < 𝑦 ∧ 𝑦 < 𝑧) → 𝑥 < 𝑧)) | |
| 3 | 1, 2 | isso2i 5586 | 1 ⊢ < Or ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: Or wor 5548 ℝcr 11074 < clt 11215 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-resscn 11132 ax-pre-lttri 11149 ax-pre-lttrn 11150 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-po 5549 df-so 5550 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-ltxr 11220 |
| This theorem is referenced by: gtso 11262 lttri2 11263 lttri3 11264 lttri4 11265 ltnr 11276 ltnsym2 11280 fimaxre 12134 fiminre 12137 lbinf 12143 suprcl 12150 suprub 12151 suprlub 12154 infrecl 12172 infregelb 12174 infrelb 12175 supfirege 12177 suprfinzcl 12655 uzinfi 12894 suprzcl2 12904 suprzub 12905 2resupmax 13155 infmrp1 13312 fseqsupcl 13949 ssnn0fi 13957 fsuppmapnn0fiublem 13962 isercolllem1 15638 isercolllem2 15639 summolem2 15689 zsum 15691 fsumcvg3 15702 mertenslem2 15858 prodmolem2 15908 zprod 15910 cnso 16222 gcdval 16473 dfgcd2 16523 lcmval 16569 lcmgcdlem 16583 odzval 16769 pczpre 16825 prmreclem1 16894 ramz 17003 odval 19471 odf 19474 gexval 19515 gsumval3 19844 retos 21534 mbfsup 25572 mbfinf 25573 itg2monolem1 25658 itg2mono 25661 dvgt0lem2 25915 dvgt0 25916 plyeq0lem 26122 dgrval 26140 dgrcl 26145 dgrub 26146 dgrlb 26148 elqaalem1 26234 elqaalem3 26236 aalioulem2 26248 logccv 26579 ex-po 30371 ssnnssfz 32717 lmdvg 33950 oddpwdc 34352 ballotlemi 34499 ballotlemiex 34500 ballotlemsup 34503 ballotlemimin 34504 ballotlemfrcn0 34528 ballotlemirc 34530 erdszelem3 35187 erdszelem4 35188 erdszelem5 35189 erdszelem6 35190 erdszelem8 35192 erdszelem9 35193 erdszelem11 35195 erdsze2lem1 35197 erdsze2lem2 35198 supfz 35723 inffz 35724 gtinf 36314 ptrecube 37621 poimirlem31 37652 poimirlem32 37653 heicant 37656 mblfinlem3 37660 mblfinlem4 37661 ismblfin 37662 incsequz2 37750 totbndbnd 37790 prdsbnd 37794 aks4d1p4 42074 aks4d1p7 42078 sticksstones1 42141 sticksstones3 42143 sn-suprcld 42488 sn-suprubd 42489 pellfundval 42875 dgraaval 43140 dgraaf 43143 fzisoeu 45305 uzublem 45433 infrglb 45595 limsupubuzlem 45717 fourierdlem25 46137 fourierdlem31 46143 fourierdlem36 46148 fourierdlem37 46149 fourierdlem42 46154 fourierdlem79 46190 ioorrnopnlem 46309 hoicvr 46553 hoidmvlelem2 46601 iunhoiioolem 46680 vonioolem1 46685 fsupdm2 46848 finfdm2 46852 prmdvdsfmtnof1lem1 47589 prmdvdsfmtnof 47591 prmdvdsfmtnof1 47592 ssnn0ssfz 48341 rrx2plordso 48717 |
| Copyright terms: Public domain | W3C validator |