![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ltso | Structured version Visualization version GIF version |
Description: 'Less than' is a strict ordering. (Contributed by NM, 19-Jan-1997.) |
Ref | Expression |
---|---|
ltso | ⊢ < Or ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axlttri 11361 | . 2 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 < 𝑦 ↔ ¬ (𝑥 = 𝑦 ∨ 𝑦 < 𝑥))) | |
2 | lttr 11366 | . 2 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝑥 < 𝑦 ∧ 𝑦 < 𝑧) → 𝑥 < 𝑧)) | |
3 | 1, 2 | isso2i 5644 | 1 ⊢ < Or ℝ |
Colors of variables: wff setvar class |
Syntax hints: Or wor 5606 ℝcr 11183 < clt 11324 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 ax-pre-lttri 11258 ax-pre-lttrn 11259 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-ltxr 11329 |
This theorem is referenced by: gtso 11371 lttri2 11372 lttri3 11373 lttri4 11374 ltnr 11385 ltnsym2 11389 fimaxre 12239 fiminre 12242 lbinf 12248 suprcl 12255 suprub 12256 suprlub 12259 infrecl 12277 infregelb 12279 infrelb 12280 supfirege 12282 suprfinzcl 12757 uzinfi 12993 suprzcl2 13003 suprzub 13004 2resupmax 13250 infmrp1 13406 fseqsupcl 14028 ssnn0fi 14036 fsuppmapnn0fiublem 14041 isercolllem1 15713 isercolllem2 15714 summolem2 15764 zsum 15766 fsumcvg3 15777 mertenslem2 15933 prodmolem2 15983 zprod 15985 cnso 16295 gcdval 16542 dfgcd2 16593 lcmval 16639 lcmgcdlem 16653 odzval 16838 pczpre 16894 prmreclem1 16963 ramz 17072 odval 19576 odf 19579 gexval 19620 gsumval3 19949 retos 21659 mbfsup 25718 mbfinf 25719 itg2monolem1 25805 itg2mono 25808 dvgt0lem2 26062 dvgt0 26063 plyeq0lem 26269 dgrval 26287 dgrcl 26292 dgrub 26293 dgrlb 26295 elqaalem1 26379 elqaalem3 26381 aalioulem2 26393 logccv 26723 ex-po 30467 ssnnssfz 32792 lmdvg 33899 oddpwdc 34319 ballotlemi 34465 ballotlemiex 34466 ballotlemsup 34469 ballotlemimin 34470 ballotlemfrcn0 34494 ballotlemirc 34496 erdszelem3 35161 erdszelem4 35162 erdszelem5 35163 erdszelem6 35164 erdszelem8 35166 erdszelem9 35167 erdszelem11 35169 erdsze2lem1 35171 erdsze2lem2 35172 supfz 35691 inffz 35692 gtinf 36285 ptrecube 37580 poimirlem31 37611 poimirlem32 37612 heicant 37615 mblfinlem3 37619 mblfinlem4 37620 ismblfin 37621 incsequz2 37709 totbndbnd 37749 prdsbnd 37753 aks4d1p4 42036 aks4d1p7 42040 sticksstones1 42103 sticksstones3 42105 sn-suprcld 42449 sn-suprubd 42450 pellfundval 42836 dgraaval 43101 dgraaf 43104 fzisoeu 45215 uzublem 45345 infrglb 45511 limsupubuzlem 45633 fourierdlem25 46053 fourierdlem31 46059 fourierdlem36 46064 fourierdlem37 46065 fourierdlem42 46070 fourierdlem79 46106 ioorrnopnlem 46225 hoicvr 46469 hoidmvlelem2 46517 iunhoiioolem 46596 vonioolem1 46601 fsupdm2 46764 finfdm2 46768 prmdvdsfmtnof1lem1 47458 prmdvdsfmtnof 47460 prmdvdsfmtnof1 47461 ssnn0ssfz 48074 rrx2plordso 48458 |
Copyright terms: Public domain | W3C validator |