| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ltso | Structured version Visualization version GIF version | ||
| Description: 'Less than' is a strict ordering. (Contributed by NM, 19-Jan-1997.) |
| Ref | Expression |
|---|---|
| ltso | ⊢ < Or ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axlttri 11184 | . 2 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 < 𝑦 ↔ ¬ (𝑥 = 𝑦 ∨ 𝑦 < 𝑥))) | |
| 2 | lttr 11189 | . 2 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝑥 < 𝑦 ∧ 𝑦 < 𝑧) → 𝑥 < 𝑧)) | |
| 3 | 1, 2 | isso2i 5559 | 1 ⊢ < Or ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: Or wor 5521 ℝcr 11005 < clt 11146 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-resscn 11063 ax-pre-lttri 11080 ax-pre-lttrn 11081 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-po 5522 df-so 5523 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-ltxr 11151 |
| This theorem is referenced by: gtso 11194 lttri2 11195 lttri3 11196 lttri4 11197 ltnr 11208 ltnsym2 11212 fimaxre 12066 fiminre 12069 lbinf 12075 suprcl 12082 suprub 12083 suprlub 12086 infrecl 12104 infregelb 12106 infrelb 12107 supfirege 12109 suprfinzcl 12587 uzinfi 12826 suprzcl2 12836 suprzub 12837 2resupmax 13087 infmrp1 13244 fseqsupcl 13884 ssnn0fi 13892 fsuppmapnn0fiublem 13897 isercolllem1 15572 isercolllem2 15573 summolem2 15623 zsum 15625 fsumcvg3 15636 mertenslem2 15792 prodmolem2 15842 zprod 15844 cnso 16156 gcdval 16407 dfgcd2 16457 lcmval 16503 lcmgcdlem 16517 odzval 16703 pczpre 16759 prmreclem1 16828 ramz 16937 odval 19446 odf 19449 gexval 19490 gsumval3 19819 retos 21555 mbfsup 25592 mbfinf 25593 itg2monolem1 25678 itg2mono 25681 dvgt0lem2 25935 dvgt0 25936 plyeq0lem 26142 dgrval 26160 dgrcl 26165 dgrub 26166 dgrlb 26168 elqaalem1 26254 elqaalem3 26256 aalioulem2 26268 logccv 26599 ex-po 30415 ssnnssfz 32770 lmdvg 33966 oddpwdc 34367 ballotlemi 34514 ballotlemiex 34515 ballotlemsup 34518 ballotlemimin 34519 ballotlemfrcn0 34543 ballotlemirc 34545 erdszelem3 35237 erdszelem4 35238 erdszelem5 35239 erdszelem6 35240 erdszelem8 35242 erdszelem9 35243 erdszelem11 35245 erdsze2lem1 35247 erdsze2lem2 35248 supfz 35773 inffz 35774 gtinf 36361 ptrecube 37668 poimirlem31 37699 poimirlem32 37700 heicant 37703 mblfinlem3 37707 mblfinlem4 37708 ismblfin 37709 incsequz2 37797 totbndbnd 37837 prdsbnd 37841 aks4d1p4 42120 aks4d1p7 42124 sticksstones1 42187 sticksstones3 42189 sn-suprcld 42534 sn-suprubd 42535 pellfundval 42921 dgraaval 43185 dgraaf 43188 fzisoeu 45349 uzublem 45476 infrglb 45638 limsupubuzlem 45758 fourierdlem25 46178 fourierdlem31 46184 fourierdlem36 46189 fourierdlem37 46190 fourierdlem42 46195 fourierdlem79 46231 ioorrnopnlem 46350 hoicvr 46594 hoidmvlelem2 46642 iunhoiioolem 46721 vonioolem1 46726 fsupdm2 46889 finfdm2 46893 prmdvdsfmtnof1lem1 47623 prmdvdsfmtnof 47625 prmdvdsfmtnof1 47626 ssnn0ssfz 48388 rrx2plordso 48764 |
| Copyright terms: Public domain | W3C validator |