| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ltso | Structured version Visualization version GIF version | ||
| Description: 'Less than' is a strict ordering. (Contributed by NM, 19-Jan-1997.) |
| Ref | Expression |
|---|---|
| ltso | ⊢ < Or ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axlttri 11306 | . 2 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 < 𝑦 ↔ ¬ (𝑥 = 𝑦 ∨ 𝑦 < 𝑥))) | |
| 2 | lttr 11311 | . 2 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝑥 < 𝑦 ∧ 𝑦 < 𝑧) → 𝑥 < 𝑧)) | |
| 3 | 1, 2 | isso2i 5598 | 1 ⊢ < Or ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: Or wor 5560 ℝcr 11128 < clt 11269 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-resscn 11186 ax-pre-lttri 11203 ax-pre-lttrn 11204 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-po 5561 df-so 5562 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-ltxr 11274 |
| This theorem is referenced by: gtso 11316 lttri2 11317 lttri3 11318 lttri4 11319 ltnr 11330 ltnsym2 11334 fimaxre 12186 fiminre 12189 lbinf 12195 suprcl 12202 suprub 12203 suprlub 12206 infrecl 12224 infregelb 12226 infrelb 12227 supfirege 12229 suprfinzcl 12707 uzinfi 12944 suprzcl2 12954 suprzub 12955 2resupmax 13204 infmrp1 13361 fseqsupcl 13995 ssnn0fi 14003 fsuppmapnn0fiublem 14008 isercolllem1 15681 isercolllem2 15682 summolem2 15732 zsum 15734 fsumcvg3 15745 mertenslem2 15901 prodmolem2 15951 zprod 15953 cnso 16265 gcdval 16515 dfgcd2 16565 lcmval 16611 lcmgcdlem 16625 odzval 16811 pczpre 16867 prmreclem1 16936 ramz 17045 odval 19515 odf 19518 gexval 19559 gsumval3 19888 retos 21578 mbfsup 25617 mbfinf 25618 itg2monolem1 25703 itg2mono 25706 dvgt0lem2 25960 dvgt0 25961 plyeq0lem 26167 dgrval 26185 dgrcl 26190 dgrub 26191 dgrlb 26193 elqaalem1 26279 elqaalem3 26281 aalioulem2 26293 logccv 26624 ex-po 30416 ssnnssfz 32764 lmdvg 33984 oddpwdc 34386 ballotlemi 34533 ballotlemiex 34534 ballotlemsup 34537 ballotlemimin 34538 ballotlemfrcn0 34562 ballotlemirc 34564 erdszelem3 35215 erdszelem4 35216 erdszelem5 35217 erdszelem6 35218 erdszelem8 35220 erdszelem9 35221 erdszelem11 35223 erdsze2lem1 35225 erdsze2lem2 35226 supfz 35746 inffz 35747 gtinf 36337 ptrecube 37644 poimirlem31 37675 poimirlem32 37676 heicant 37679 mblfinlem3 37683 mblfinlem4 37684 ismblfin 37685 incsequz2 37773 totbndbnd 37813 prdsbnd 37817 aks4d1p4 42092 aks4d1p7 42096 sticksstones1 42159 sticksstones3 42161 sn-suprcld 42516 sn-suprubd 42517 pellfundval 42903 dgraaval 43168 dgraaf 43171 fzisoeu 45329 uzublem 45457 infrglb 45619 limsupubuzlem 45741 fourierdlem25 46161 fourierdlem31 46167 fourierdlem36 46172 fourierdlem37 46173 fourierdlem42 46178 fourierdlem79 46214 ioorrnopnlem 46333 hoicvr 46577 hoidmvlelem2 46625 iunhoiioolem 46704 vonioolem1 46709 fsupdm2 46872 finfdm2 46876 prmdvdsfmtnof1lem1 47598 prmdvdsfmtnof 47600 prmdvdsfmtnof1 47601 ssnn0ssfz 48324 rrx2plordso 48704 |
| Copyright terms: Public domain | W3C validator |