| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ltso | Structured version Visualization version GIF version | ||
| Description: 'Less than' is a strict ordering. (Contributed by NM, 19-Jan-1997.) |
| Ref | Expression |
|---|---|
| ltso | ⊢ < Or ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axlttri 11187 | . 2 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 < 𝑦 ↔ ¬ (𝑥 = 𝑦 ∨ 𝑦 < 𝑥))) | |
| 2 | lttr 11192 | . 2 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝑥 < 𝑦 ∧ 𝑦 < 𝑧) → 𝑥 < 𝑧)) | |
| 3 | 1, 2 | isso2i 5564 | 1 ⊢ < Or ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: Or wor 5526 ℝcr 11008 < clt 11149 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-resscn 11066 ax-pre-lttri 11083 ax-pre-lttrn 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-po 5527 df-so 5528 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-ltxr 11154 |
| This theorem is referenced by: gtso 11197 lttri2 11198 lttri3 11199 lttri4 11200 ltnr 11211 ltnsym2 11215 fimaxre 12069 fiminre 12072 lbinf 12078 suprcl 12085 suprub 12086 suprlub 12089 infrecl 12107 infregelb 12109 infrelb 12110 supfirege 12112 suprfinzcl 12590 uzinfi 12829 suprzcl2 12839 suprzub 12840 2resupmax 13090 infmrp1 13247 fseqsupcl 13884 ssnn0fi 13892 fsuppmapnn0fiublem 13897 isercolllem1 15572 isercolllem2 15573 summolem2 15623 zsum 15625 fsumcvg3 15636 mertenslem2 15792 prodmolem2 15842 zprod 15844 cnso 16156 gcdval 16407 dfgcd2 16457 lcmval 16503 lcmgcdlem 16517 odzval 16703 pczpre 16759 prmreclem1 16828 ramz 16937 odval 19413 odf 19416 gexval 19457 gsumval3 19786 retos 21525 mbfsup 25563 mbfinf 25564 itg2monolem1 25649 itg2mono 25652 dvgt0lem2 25906 dvgt0 25907 plyeq0lem 26113 dgrval 26131 dgrcl 26136 dgrub 26137 dgrlb 26139 elqaalem1 26225 elqaalem3 26227 aalioulem2 26239 logccv 26570 ex-po 30379 ssnnssfz 32730 lmdvg 33920 oddpwdc 34322 ballotlemi 34469 ballotlemiex 34470 ballotlemsup 34473 ballotlemimin 34474 ballotlemfrcn0 34498 ballotlemirc 34500 erdszelem3 35166 erdszelem4 35167 erdszelem5 35168 erdszelem6 35169 erdszelem8 35171 erdszelem9 35172 erdszelem11 35174 erdsze2lem1 35176 erdsze2lem2 35177 supfz 35702 inffz 35703 gtinf 36293 ptrecube 37600 poimirlem31 37631 poimirlem32 37632 heicant 37635 mblfinlem3 37639 mblfinlem4 37640 ismblfin 37641 incsequz2 37729 totbndbnd 37769 prdsbnd 37773 aks4d1p4 42052 aks4d1p7 42056 sticksstones1 42119 sticksstones3 42121 sn-suprcld 42466 sn-suprubd 42467 pellfundval 42853 dgraaval 43117 dgraaf 43120 fzisoeu 45282 uzublem 45409 infrglb 45571 limsupubuzlem 45693 fourierdlem25 46113 fourierdlem31 46119 fourierdlem36 46124 fourierdlem37 46125 fourierdlem42 46130 fourierdlem79 46166 ioorrnopnlem 46285 hoicvr 46529 hoidmvlelem2 46577 iunhoiioolem 46656 vonioolem1 46661 fsupdm2 46824 finfdm2 46828 prmdvdsfmtnof1lem1 47568 prmdvdsfmtnof 47570 prmdvdsfmtnof1 47571 ssnn0ssfz 48333 rrx2plordso 48709 |
| Copyright terms: Public domain | W3C validator |