| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ltso | Structured version Visualization version GIF version | ||
| Description: 'Less than' is a strict ordering. (Contributed by NM, 19-Jan-1997.) |
| Ref | Expression |
|---|---|
| ltso | ⊢ < Or ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axlttri 11245 | . 2 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 < 𝑦 ↔ ¬ (𝑥 = 𝑦 ∨ 𝑦 < 𝑥))) | |
| 2 | lttr 11250 | . 2 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝑥 < 𝑦 ∧ 𝑦 < 𝑧) → 𝑥 < 𝑧)) | |
| 3 | 1, 2 | isso2i 5583 | 1 ⊢ < Or ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: Or wor 5545 ℝcr 11067 < clt 11208 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-pre-lttri 11142 ax-pre-lttrn 11143 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-ltxr 11213 |
| This theorem is referenced by: gtso 11255 lttri2 11256 lttri3 11257 lttri4 11258 ltnr 11269 ltnsym2 11273 fimaxre 12127 fiminre 12130 lbinf 12136 suprcl 12143 suprub 12144 suprlub 12147 infrecl 12165 infregelb 12167 infrelb 12168 supfirege 12170 suprfinzcl 12648 uzinfi 12887 suprzcl2 12897 suprzub 12898 2resupmax 13148 infmrp1 13305 fseqsupcl 13942 ssnn0fi 13950 fsuppmapnn0fiublem 13955 isercolllem1 15631 isercolllem2 15632 summolem2 15682 zsum 15684 fsumcvg3 15695 mertenslem2 15851 prodmolem2 15901 zprod 15903 cnso 16215 gcdval 16466 dfgcd2 16516 lcmval 16562 lcmgcdlem 16576 odzval 16762 pczpre 16818 prmreclem1 16887 ramz 16996 odval 19464 odf 19467 gexval 19508 gsumval3 19837 retos 21527 mbfsup 25565 mbfinf 25566 itg2monolem1 25651 itg2mono 25654 dvgt0lem2 25908 dvgt0 25909 plyeq0lem 26115 dgrval 26133 dgrcl 26138 dgrub 26139 dgrlb 26141 elqaalem1 26227 elqaalem3 26229 aalioulem2 26241 logccv 26572 ex-po 30364 ssnnssfz 32710 lmdvg 33943 oddpwdc 34345 ballotlemi 34492 ballotlemiex 34493 ballotlemsup 34496 ballotlemimin 34497 ballotlemfrcn0 34521 ballotlemirc 34523 erdszelem3 35180 erdszelem4 35181 erdszelem5 35182 erdszelem6 35183 erdszelem8 35185 erdszelem9 35186 erdszelem11 35188 erdsze2lem1 35190 erdsze2lem2 35191 supfz 35716 inffz 35717 gtinf 36307 ptrecube 37614 poimirlem31 37645 poimirlem32 37646 heicant 37649 mblfinlem3 37653 mblfinlem4 37654 ismblfin 37655 incsequz2 37743 totbndbnd 37783 prdsbnd 37787 aks4d1p4 42067 aks4d1p7 42071 sticksstones1 42134 sticksstones3 42136 sn-suprcld 42481 sn-suprubd 42482 pellfundval 42868 dgraaval 43133 dgraaf 43136 fzisoeu 45298 uzublem 45426 infrglb 45588 limsupubuzlem 45710 fourierdlem25 46130 fourierdlem31 46136 fourierdlem36 46141 fourierdlem37 46142 fourierdlem42 46147 fourierdlem79 46183 ioorrnopnlem 46302 hoicvr 46546 hoidmvlelem2 46594 iunhoiioolem 46673 vonioolem1 46678 fsupdm2 46841 finfdm2 46845 prmdvdsfmtnof1lem1 47585 prmdvdsfmtnof 47587 prmdvdsfmtnof1 47588 ssnn0ssfz 48337 rrx2plordso 48713 |
| Copyright terms: Public domain | W3C validator |