Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ltso | Structured version Visualization version GIF version |
Description: 'Less than' is a strict ordering. (Contributed by NM, 19-Jan-1997.) |
Ref | Expression |
---|---|
ltso | ⊢ < Or ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axlttri 10977 | . 2 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 < 𝑦 ↔ ¬ (𝑥 = 𝑦 ∨ 𝑦 < 𝑥))) | |
2 | lttr 10982 | . 2 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝑥 < 𝑦 ∧ 𝑦 < 𝑧) → 𝑥 < 𝑧)) | |
3 | 1, 2 | isso2i 5529 | 1 ⊢ < Or ℝ |
Colors of variables: wff setvar class |
Syntax hints: Or wor 5493 ℝcr 10801 < clt 10940 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-pre-lttri 10876 ax-pre-lttrn 10877 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-ltxr 10945 |
This theorem is referenced by: gtso 10987 lttri2 10988 lttri3 10989 lttri4 10990 ltnr 11000 ltnsym2 11004 fimaxre 11849 fiminre 11852 lbinf 11858 suprcl 11865 suprub 11866 suprlub 11869 infrecl 11887 infregelb 11889 infrelb 11890 supfirege 11892 suprfinzcl 12365 uzinfi 12597 suprzcl2 12607 suprzub 12608 2resupmax 12851 infmrp1 13007 fseqsupcl 13625 ssnn0fi 13633 fsuppmapnn0fiublem 13638 isercolllem1 15304 isercolllem2 15305 summolem2 15356 zsum 15358 fsumcvg3 15369 mertenslem2 15525 prodmolem2 15573 zprod 15575 cnso 15884 gcdval 16131 dfgcd2 16182 lcmval 16225 lcmgcdlem 16239 odzval 16420 pczpre 16476 prmreclem1 16545 ramz 16654 odval 19057 odf 19060 gexval 19098 gsumval3 19423 retos 20735 mbfsup 24733 mbfinf 24734 itg2monolem1 24820 itg2mono 24823 dvgt0lem2 25072 dvgt0 25073 plyeq0lem 25276 dgrval 25294 dgrcl 25299 dgrub 25300 dgrlb 25302 elqaalem1 25384 elqaalem3 25386 aalioulem2 25398 logccv 25723 ex-po 28700 ssnnssfz 31010 lmdvg 31805 oddpwdc 32221 ballotlemi 32367 ballotlemiex 32368 ballotlemsup 32371 ballotlemimin 32372 ballotlemfrcn0 32396 ballotlemirc 32398 erdszelem3 33055 erdszelem4 33056 erdszelem5 33057 erdszelem6 33058 erdszelem8 33060 erdszelem9 33061 erdszelem11 33063 erdsze2lem1 33065 erdsze2lem2 33066 supfz 33600 inffz 33601 gtinf 34435 ptrecube 35704 poimirlem31 35735 poimirlem32 35736 heicant 35739 mblfinlem3 35743 mblfinlem4 35744 ismblfin 35745 incsequz2 35834 totbndbnd 35874 prdsbnd 35878 aks4d1p4 40015 aks4d1p7 40019 sticksstones1 40030 sticksstones3 40032 pellfundval 40618 dgraaval 40885 dgraaf 40888 fzisoeu 42729 uzublem 42860 infrglb 43021 limsupubuzlem 43143 fourierdlem25 43563 fourierdlem31 43569 fourierdlem36 43574 fourierdlem37 43575 fourierdlem42 43580 fourierdlem79 43616 ioorrnopnlem 43735 hoicvr 43976 hoidmvlelem2 44024 iunhoiioolem 44103 vonioolem1 44108 prmdvdsfmtnof1lem1 44924 prmdvdsfmtnof 44926 prmdvdsfmtnof1 44927 ssnn0ssfz 45573 rrx2plordso 45958 |
Copyright terms: Public domain | W3C validator |