Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ltso | Structured version Visualization version GIF version |
Description: 'Less than' is a strict ordering. (Contributed by NM, 19-Jan-1997.) |
Ref | Expression |
---|---|
ltso | ⊢ < Or ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axlttri 11055 | . 2 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 < 𝑦 ↔ ¬ (𝑥 = 𝑦 ∨ 𝑦 < 𝑥))) | |
2 | lttr 11060 | . 2 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝑥 < 𝑦 ∧ 𝑦 < 𝑧) → 𝑥 < 𝑧)) | |
3 | 1, 2 | isso2i 5539 | 1 ⊢ < Or ℝ |
Colors of variables: wff setvar class |
Syntax hints: Or wor 5503 ℝcr 10879 < clt 11018 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-sep 5224 ax-nul 5231 ax-pow 5289 ax-pr 5353 ax-un 7597 ax-resscn 10937 ax-pre-lttri 10954 ax-pre-lttrn 10955 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-nel 3051 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3435 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-br 5076 df-opab 5138 df-mpt 5159 df-id 5490 df-po 5504 df-so 5505 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6395 df-fun 6439 df-fn 6440 df-f 6441 df-f1 6442 df-fo 6443 df-f1o 6444 df-fv 6445 df-er 8507 df-en 8743 df-dom 8744 df-sdom 8745 df-pnf 11020 df-mnf 11021 df-ltxr 11023 |
This theorem is referenced by: gtso 11065 lttri2 11066 lttri3 11067 lttri4 11068 ltnr 11079 ltnsym2 11083 fimaxre 11928 fiminre 11931 lbinf 11937 suprcl 11944 suprub 11945 suprlub 11948 infrecl 11966 infregelb 11968 infrelb 11969 supfirege 11971 suprfinzcl 12445 uzinfi 12677 suprzcl2 12687 suprzub 12688 2resupmax 12931 infmrp1 13087 fseqsupcl 13706 ssnn0fi 13714 fsuppmapnn0fiublem 13719 isercolllem1 15385 isercolllem2 15386 summolem2 15437 zsum 15439 fsumcvg3 15450 mertenslem2 15606 prodmolem2 15654 zprod 15656 cnso 15965 gcdval 16212 dfgcd2 16263 lcmval 16306 lcmgcdlem 16320 odzval 16501 pczpre 16557 prmreclem1 16626 ramz 16735 odval 19151 odf 19154 gexval 19192 gsumval3 19517 retos 20832 mbfsup 24837 mbfinf 24838 itg2monolem1 24924 itg2mono 24927 dvgt0lem2 25176 dvgt0 25177 plyeq0lem 25380 dgrval 25398 dgrcl 25403 dgrub 25404 dgrlb 25406 elqaalem1 25488 elqaalem3 25490 aalioulem2 25502 logccv 25827 ex-po 28808 ssnnssfz 31117 lmdvg 31912 oddpwdc 32330 ballotlemi 32476 ballotlemiex 32477 ballotlemsup 32480 ballotlemimin 32481 ballotlemfrcn0 32505 ballotlemirc 32507 erdszelem3 33164 erdszelem4 33165 erdszelem5 33166 erdszelem6 33167 erdszelem8 33169 erdszelem9 33170 erdszelem11 33172 erdsze2lem1 33174 erdsze2lem2 33175 supfz 33703 inffz 33704 gtinf 34517 ptrecube 35786 poimirlem31 35817 poimirlem32 35818 heicant 35821 mblfinlem3 35825 mblfinlem4 35826 ismblfin 35827 incsequz2 35916 totbndbnd 35956 prdsbnd 35960 aks4d1p4 40094 aks4d1p7 40098 sticksstones1 40109 sticksstones3 40111 pellfundval 40709 dgraaval 40976 dgraaf 40979 fzisoeu 42846 uzublem 42977 infrglb 43138 limsupubuzlem 43260 fourierdlem25 43680 fourierdlem31 43686 fourierdlem36 43691 fourierdlem37 43692 fourierdlem42 43697 fourierdlem79 43733 ioorrnopnlem 43852 hoicvr 44093 hoidmvlelem2 44141 iunhoiioolem 44220 vonioolem1 44225 prmdvdsfmtnof1lem1 45047 prmdvdsfmtnof 45049 prmdvdsfmtnof1 45050 ssnn0ssfz 45696 rrx2plordso 46081 |
Copyright terms: Public domain | W3C validator |