MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isosolem Structured version   Visualization version   GIF version

Theorem isosolem 7383
Description: Lemma for isoso 7384. (Contributed by Stefan O'Rear, 16-Nov-2014.)
Assertion
Ref Expression
isosolem (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑆 Or 𝐵𝑅 Or 𝐴))

Proof of Theorem isosolem
Dummy variables 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isopolem 7381 . . 3 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑆 Po 𝐵𝑅 Po 𝐴))
2 isof1o 7359 . . . . . . . 8 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴1-1-onto𝐵)
3 f1of 6862 . . . . . . . 8 (𝐻:𝐴1-1-onto𝐵𝐻:𝐴𝐵)
4 ffvelcdm 7115 . . . . . . . . . 10 ((𝐻:𝐴𝐵𝑐𝐴) → (𝐻𝑐) ∈ 𝐵)
54ex 412 . . . . . . . . 9 (𝐻:𝐴𝐵 → (𝑐𝐴 → (𝐻𝑐) ∈ 𝐵))
6 ffvelcdm 7115 . . . . . . . . . 10 ((𝐻:𝐴𝐵𝑑𝐴) → (𝐻𝑑) ∈ 𝐵)
76ex 412 . . . . . . . . 9 (𝐻:𝐴𝐵 → (𝑑𝐴 → (𝐻𝑑) ∈ 𝐵))
85, 7anim12d 608 . . . . . . . 8 (𝐻:𝐴𝐵 → ((𝑐𝐴𝑑𝐴) → ((𝐻𝑐) ∈ 𝐵 ∧ (𝐻𝑑) ∈ 𝐵)))
92, 3, 83syl 18 . . . . . . 7 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → ((𝑐𝐴𝑑𝐴) → ((𝐻𝑐) ∈ 𝐵 ∧ (𝐻𝑑) ∈ 𝐵)))
109imp 406 . . . . . 6 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑐𝐴𝑑𝐴)) → ((𝐻𝑐) ∈ 𝐵 ∧ (𝐻𝑑) ∈ 𝐵))
11 breq1 5169 . . . . . . . 8 (𝑎 = (𝐻𝑐) → (𝑎𝑆𝑏 ↔ (𝐻𝑐)𝑆𝑏))
12 eqeq1 2744 . . . . . . . 8 (𝑎 = (𝐻𝑐) → (𝑎 = 𝑏 ↔ (𝐻𝑐) = 𝑏))
13 breq2 5170 . . . . . . . 8 (𝑎 = (𝐻𝑐) → (𝑏𝑆𝑎𝑏𝑆(𝐻𝑐)))
1411, 12, 133orbi123d 1435 . . . . . . 7 (𝑎 = (𝐻𝑐) → ((𝑎𝑆𝑏𝑎 = 𝑏𝑏𝑆𝑎) ↔ ((𝐻𝑐)𝑆𝑏 ∨ (𝐻𝑐) = 𝑏𝑏𝑆(𝐻𝑐))))
15 breq2 5170 . . . . . . . 8 (𝑏 = (𝐻𝑑) → ((𝐻𝑐)𝑆𝑏 ↔ (𝐻𝑐)𝑆(𝐻𝑑)))
16 eqeq2 2752 . . . . . . . 8 (𝑏 = (𝐻𝑑) → ((𝐻𝑐) = 𝑏 ↔ (𝐻𝑐) = (𝐻𝑑)))
17 breq1 5169 . . . . . . . 8 (𝑏 = (𝐻𝑑) → (𝑏𝑆(𝐻𝑐) ↔ (𝐻𝑑)𝑆(𝐻𝑐)))
1815, 16, 173orbi123d 1435 . . . . . . 7 (𝑏 = (𝐻𝑑) → (((𝐻𝑐)𝑆𝑏 ∨ (𝐻𝑐) = 𝑏𝑏𝑆(𝐻𝑐)) ↔ ((𝐻𝑐)𝑆(𝐻𝑑) ∨ (𝐻𝑐) = (𝐻𝑑) ∨ (𝐻𝑑)𝑆(𝐻𝑐))))
1914, 18rspc2v 3646 . . . . . 6 (((𝐻𝑐) ∈ 𝐵 ∧ (𝐻𝑑) ∈ 𝐵) → (∀𝑎𝐵𝑏𝐵 (𝑎𝑆𝑏𝑎 = 𝑏𝑏𝑆𝑎) → ((𝐻𝑐)𝑆(𝐻𝑑) ∨ (𝐻𝑐) = (𝐻𝑑) ∨ (𝐻𝑑)𝑆(𝐻𝑐))))
2010, 19syl 17 . . . . 5 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑐𝐴𝑑𝐴)) → (∀𝑎𝐵𝑏𝐵 (𝑎𝑆𝑏𝑎 = 𝑏𝑏𝑆𝑎) → ((𝐻𝑐)𝑆(𝐻𝑑) ∨ (𝐻𝑐) = (𝐻𝑑) ∨ (𝐻𝑑)𝑆(𝐻𝑐))))
21 isorel 7362 . . . . . 6 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑐𝐴𝑑𝐴)) → (𝑐𝑅𝑑 ↔ (𝐻𝑐)𝑆(𝐻𝑑)))
22 f1of1 6861 . . . . . . . . 9 (𝐻:𝐴1-1-onto𝐵𝐻:𝐴1-1𝐵)
232, 22syl 17 . . . . . . . 8 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴1-1𝐵)
24 f1fveq 7299 . . . . . . . 8 ((𝐻:𝐴1-1𝐵 ∧ (𝑐𝐴𝑑𝐴)) → ((𝐻𝑐) = (𝐻𝑑) ↔ 𝑐 = 𝑑))
2523, 24sylan 579 . . . . . . 7 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑐𝐴𝑑𝐴)) → ((𝐻𝑐) = (𝐻𝑑) ↔ 𝑐 = 𝑑))
2625bicomd 223 . . . . . 6 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑐𝐴𝑑𝐴)) → (𝑐 = 𝑑 ↔ (𝐻𝑐) = (𝐻𝑑)))
27 isorel 7362 . . . . . . 7 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑑𝐴𝑐𝐴)) → (𝑑𝑅𝑐 ↔ (𝐻𝑑)𝑆(𝐻𝑐)))
2827ancom2s 649 . . . . . 6 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑐𝐴𝑑𝐴)) → (𝑑𝑅𝑐 ↔ (𝐻𝑑)𝑆(𝐻𝑐)))
2921, 26, 283orbi123d 1435 . . . . 5 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑐𝐴𝑑𝐴)) → ((𝑐𝑅𝑑𝑐 = 𝑑𝑑𝑅𝑐) ↔ ((𝐻𝑐)𝑆(𝐻𝑑) ∨ (𝐻𝑐) = (𝐻𝑑) ∨ (𝐻𝑑)𝑆(𝐻𝑐))))
3020, 29sylibrd 259 . . . 4 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑐𝐴𝑑𝐴)) → (∀𝑎𝐵𝑏𝐵 (𝑎𝑆𝑏𝑎 = 𝑏𝑏𝑆𝑎) → (𝑐𝑅𝑑𝑐 = 𝑑𝑑𝑅𝑐)))
3130ralrimdvva 3217 . . 3 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (∀𝑎𝐵𝑏𝐵 (𝑎𝑆𝑏𝑎 = 𝑏𝑏𝑆𝑎) → ∀𝑐𝐴𝑑𝐴 (𝑐𝑅𝑑𝑐 = 𝑑𝑑𝑅𝑐)))
321, 31anim12d 608 . 2 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → ((𝑆 Po 𝐵 ∧ ∀𝑎𝐵𝑏𝐵 (𝑎𝑆𝑏𝑎 = 𝑏𝑏𝑆𝑎)) → (𝑅 Po 𝐴 ∧ ∀𝑐𝐴𝑑𝐴 (𝑐𝑅𝑑𝑐 = 𝑑𝑑𝑅𝑐))))
33 df-so 5608 . 2 (𝑆 Or 𝐵 ↔ (𝑆 Po 𝐵 ∧ ∀𝑎𝐵𝑏𝐵 (𝑎𝑆𝑏𝑎 = 𝑏𝑏𝑆𝑎)))
34 df-so 5608 . 2 (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑐𝐴𝑑𝐴 (𝑐𝑅𝑑𝑐 = 𝑑𝑑𝑅𝑐)))
3532, 33, 343imtr4g 296 1 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑆 Or 𝐵𝑅 Or 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3o 1086   = wceq 1537  wcel 2108  wral 3067   class class class wbr 5166   Po wpo 5605   Or wor 5606  wf 6569  1-1wf1 6570  1-1-ontowf1o 6572  cfv 6573   Isom wiso 6574
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-f1o 6580  df-fv 6581  df-isom 6582
This theorem is referenced by:  isoso  7384  isowe2  7386
  Copyright terms: Public domain W3C validator