| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | isopolem 7366 | . . 3
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑆 Po 𝐵 → 𝑅 Po 𝐴)) | 
| 2 |  | isof1o 7344 | . . . . . . . 8
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴–1-1-onto→𝐵) | 
| 3 |  | f1of 6847 | . . . . . . . 8
⊢ (𝐻:𝐴–1-1-onto→𝐵 → 𝐻:𝐴⟶𝐵) | 
| 4 |  | ffvelcdm 7100 | . . . . . . . . . 10
⊢ ((𝐻:𝐴⟶𝐵 ∧ 𝑐 ∈ 𝐴) → (𝐻‘𝑐) ∈ 𝐵) | 
| 5 | 4 | ex 412 | . . . . . . . . 9
⊢ (𝐻:𝐴⟶𝐵 → (𝑐 ∈ 𝐴 → (𝐻‘𝑐) ∈ 𝐵)) | 
| 6 |  | ffvelcdm 7100 | . . . . . . . . . 10
⊢ ((𝐻:𝐴⟶𝐵 ∧ 𝑑 ∈ 𝐴) → (𝐻‘𝑑) ∈ 𝐵) | 
| 7 | 6 | ex 412 | . . . . . . . . 9
⊢ (𝐻:𝐴⟶𝐵 → (𝑑 ∈ 𝐴 → (𝐻‘𝑑) ∈ 𝐵)) | 
| 8 | 5, 7 | anim12d 609 | . . . . . . . 8
⊢ (𝐻:𝐴⟶𝐵 → ((𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) → ((𝐻‘𝑐) ∈ 𝐵 ∧ (𝐻‘𝑑) ∈ 𝐵))) | 
| 9 | 2, 3, 8 | 3syl 18 | . . . . . . 7
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → ((𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) → ((𝐻‘𝑐) ∈ 𝐵 ∧ (𝐻‘𝑑) ∈ 𝐵))) | 
| 10 | 9 | imp 406 | . . . . . 6
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴)) → ((𝐻‘𝑐) ∈ 𝐵 ∧ (𝐻‘𝑑) ∈ 𝐵)) | 
| 11 |  | breq1 5145 | . . . . . . . 8
⊢ (𝑎 = (𝐻‘𝑐) → (𝑎𝑆𝑏 ↔ (𝐻‘𝑐)𝑆𝑏)) | 
| 12 |  | eqeq1 2740 | . . . . . . . 8
⊢ (𝑎 = (𝐻‘𝑐) → (𝑎 = 𝑏 ↔ (𝐻‘𝑐) = 𝑏)) | 
| 13 |  | breq2 5146 | . . . . . . . 8
⊢ (𝑎 = (𝐻‘𝑐) → (𝑏𝑆𝑎 ↔ 𝑏𝑆(𝐻‘𝑐))) | 
| 14 | 11, 12, 13 | 3orbi123d 1436 | . . . . . . 7
⊢ (𝑎 = (𝐻‘𝑐) → ((𝑎𝑆𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑏𝑆𝑎) ↔ ((𝐻‘𝑐)𝑆𝑏 ∨ (𝐻‘𝑐) = 𝑏 ∨ 𝑏𝑆(𝐻‘𝑐)))) | 
| 15 |  | breq2 5146 | . . . . . . . 8
⊢ (𝑏 = (𝐻‘𝑑) → ((𝐻‘𝑐)𝑆𝑏 ↔ (𝐻‘𝑐)𝑆(𝐻‘𝑑))) | 
| 16 |  | eqeq2 2748 | . . . . . . . 8
⊢ (𝑏 = (𝐻‘𝑑) → ((𝐻‘𝑐) = 𝑏 ↔ (𝐻‘𝑐) = (𝐻‘𝑑))) | 
| 17 |  | breq1 5145 | . . . . . . . 8
⊢ (𝑏 = (𝐻‘𝑑) → (𝑏𝑆(𝐻‘𝑐) ↔ (𝐻‘𝑑)𝑆(𝐻‘𝑐))) | 
| 18 | 15, 16, 17 | 3orbi123d 1436 | . . . . . . 7
⊢ (𝑏 = (𝐻‘𝑑) → (((𝐻‘𝑐)𝑆𝑏 ∨ (𝐻‘𝑐) = 𝑏 ∨ 𝑏𝑆(𝐻‘𝑐)) ↔ ((𝐻‘𝑐)𝑆(𝐻‘𝑑) ∨ (𝐻‘𝑐) = (𝐻‘𝑑) ∨ (𝐻‘𝑑)𝑆(𝐻‘𝑐)))) | 
| 19 | 14, 18 | rspc2v 3632 | . . . . . 6
⊢ (((𝐻‘𝑐) ∈ 𝐵 ∧ (𝐻‘𝑑) ∈ 𝐵) → (∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (𝑎𝑆𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑏𝑆𝑎) → ((𝐻‘𝑐)𝑆(𝐻‘𝑑) ∨ (𝐻‘𝑐) = (𝐻‘𝑑) ∨ (𝐻‘𝑑)𝑆(𝐻‘𝑐)))) | 
| 20 | 10, 19 | syl 17 | . . . . 5
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴)) → (∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (𝑎𝑆𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑏𝑆𝑎) → ((𝐻‘𝑐)𝑆(𝐻‘𝑑) ∨ (𝐻‘𝑐) = (𝐻‘𝑑) ∨ (𝐻‘𝑑)𝑆(𝐻‘𝑐)))) | 
| 21 |  | isorel 7347 | . . . . . 6
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴)) → (𝑐𝑅𝑑 ↔ (𝐻‘𝑐)𝑆(𝐻‘𝑑))) | 
| 22 |  | f1of1 6846 | . . . . . . . . 9
⊢ (𝐻:𝐴–1-1-onto→𝐵 → 𝐻:𝐴–1-1→𝐵) | 
| 23 | 2, 22 | syl 17 | . . . . . . . 8
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴–1-1→𝐵) | 
| 24 |  | f1fveq 7283 | . . . . . . . 8
⊢ ((𝐻:𝐴–1-1→𝐵 ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴)) → ((𝐻‘𝑐) = (𝐻‘𝑑) ↔ 𝑐 = 𝑑)) | 
| 25 | 23, 24 | sylan 580 | . . . . . . 7
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴)) → ((𝐻‘𝑐) = (𝐻‘𝑑) ↔ 𝑐 = 𝑑)) | 
| 26 | 25 | bicomd 223 | . . . . . 6
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴)) → (𝑐 = 𝑑 ↔ (𝐻‘𝑐) = (𝐻‘𝑑))) | 
| 27 |  | isorel 7347 | . . . . . . 7
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑑 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴)) → (𝑑𝑅𝑐 ↔ (𝐻‘𝑑)𝑆(𝐻‘𝑐))) | 
| 28 | 27 | ancom2s 650 | . . . . . 6
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴)) → (𝑑𝑅𝑐 ↔ (𝐻‘𝑑)𝑆(𝐻‘𝑐))) | 
| 29 | 21, 26, 28 | 3orbi123d 1436 | . . . . 5
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴)) → ((𝑐𝑅𝑑 ∨ 𝑐 = 𝑑 ∨ 𝑑𝑅𝑐) ↔ ((𝐻‘𝑐)𝑆(𝐻‘𝑑) ∨ (𝐻‘𝑐) = (𝐻‘𝑑) ∨ (𝐻‘𝑑)𝑆(𝐻‘𝑐)))) | 
| 30 | 20, 29 | sylibrd 259 | . . . 4
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴)) → (∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (𝑎𝑆𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑏𝑆𝑎) → (𝑐𝑅𝑑 ∨ 𝑐 = 𝑑 ∨ 𝑑𝑅𝑐))) | 
| 31 | 30 | ralrimdvva 3210 | . . 3
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (𝑎𝑆𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑏𝑆𝑎) → ∀𝑐 ∈ 𝐴 ∀𝑑 ∈ 𝐴 (𝑐𝑅𝑑 ∨ 𝑐 = 𝑑 ∨ 𝑑𝑅𝑐))) | 
| 32 | 1, 31 | anim12d 609 | . 2
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → ((𝑆 Po 𝐵 ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (𝑎𝑆𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑏𝑆𝑎)) → (𝑅 Po 𝐴 ∧ ∀𝑐 ∈ 𝐴 ∀𝑑 ∈ 𝐴 (𝑐𝑅𝑑 ∨ 𝑐 = 𝑑 ∨ 𝑑𝑅𝑐)))) | 
| 33 |  | df-so 5592 | . 2
⊢ (𝑆 Or 𝐵 ↔ (𝑆 Po 𝐵 ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (𝑎𝑆𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑏𝑆𝑎))) | 
| 34 |  | df-so 5592 | . 2
⊢ (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑐 ∈ 𝐴 ∀𝑑 ∈ 𝐴 (𝑐𝑅𝑑 ∨ 𝑐 = 𝑑 ∨ 𝑑𝑅𝑐))) | 
| 35 | 32, 33, 34 | 3imtr4g 296 | 1
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑆 Or 𝐵 → 𝑅 Or 𝐴)) |