MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isosolem Structured version   Visualization version   GIF version

Theorem isosolem 7284
Description: Lemma for isoso 7285. (Contributed by Stefan O'Rear, 16-Nov-2014.)
Assertion
Ref Expression
isosolem (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑆 Or 𝐵𝑅 Or 𝐴))

Proof of Theorem isosolem
Dummy variables 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isopolem 7282 . . 3 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑆 Po 𝐵𝑅 Po 𝐴))
2 isof1o 7260 . . . . . . . 8 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴1-1-onto𝐵)
3 f1of 6764 . . . . . . . 8 (𝐻:𝐴1-1-onto𝐵𝐻:𝐴𝐵)
4 ffvelcdm 7015 . . . . . . . . . 10 ((𝐻:𝐴𝐵𝑐𝐴) → (𝐻𝑐) ∈ 𝐵)
54ex 412 . . . . . . . . 9 (𝐻:𝐴𝐵 → (𝑐𝐴 → (𝐻𝑐) ∈ 𝐵))
6 ffvelcdm 7015 . . . . . . . . . 10 ((𝐻:𝐴𝐵𝑑𝐴) → (𝐻𝑑) ∈ 𝐵)
76ex 412 . . . . . . . . 9 (𝐻:𝐴𝐵 → (𝑑𝐴 → (𝐻𝑑) ∈ 𝐵))
85, 7anim12d 609 . . . . . . . 8 (𝐻:𝐴𝐵 → ((𝑐𝐴𝑑𝐴) → ((𝐻𝑐) ∈ 𝐵 ∧ (𝐻𝑑) ∈ 𝐵)))
92, 3, 83syl 18 . . . . . . 7 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → ((𝑐𝐴𝑑𝐴) → ((𝐻𝑐) ∈ 𝐵 ∧ (𝐻𝑑) ∈ 𝐵)))
109imp 406 . . . . . 6 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑐𝐴𝑑𝐴)) → ((𝐻𝑐) ∈ 𝐵 ∧ (𝐻𝑑) ∈ 𝐵))
11 breq1 5095 . . . . . . . 8 (𝑎 = (𝐻𝑐) → (𝑎𝑆𝑏 ↔ (𝐻𝑐)𝑆𝑏))
12 eqeq1 2733 . . . . . . . 8 (𝑎 = (𝐻𝑐) → (𝑎 = 𝑏 ↔ (𝐻𝑐) = 𝑏))
13 breq2 5096 . . . . . . . 8 (𝑎 = (𝐻𝑐) → (𝑏𝑆𝑎𝑏𝑆(𝐻𝑐)))
1411, 12, 133orbi123d 1437 . . . . . . 7 (𝑎 = (𝐻𝑐) → ((𝑎𝑆𝑏𝑎 = 𝑏𝑏𝑆𝑎) ↔ ((𝐻𝑐)𝑆𝑏 ∨ (𝐻𝑐) = 𝑏𝑏𝑆(𝐻𝑐))))
15 breq2 5096 . . . . . . . 8 (𝑏 = (𝐻𝑑) → ((𝐻𝑐)𝑆𝑏 ↔ (𝐻𝑐)𝑆(𝐻𝑑)))
16 eqeq2 2741 . . . . . . . 8 (𝑏 = (𝐻𝑑) → ((𝐻𝑐) = 𝑏 ↔ (𝐻𝑐) = (𝐻𝑑)))
17 breq1 5095 . . . . . . . 8 (𝑏 = (𝐻𝑑) → (𝑏𝑆(𝐻𝑐) ↔ (𝐻𝑑)𝑆(𝐻𝑐)))
1815, 16, 173orbi123d 1437 . . . . . . 7 (𝑏 = (𝐻𝑑) → (((𝐻𝑐)𝑆𝑏 ∨ (𝐻𝑐) = 𝑏𝑏𝑆(𝐻𝑐)) ↔ ((𝐻𝑐)𝑆(𝐻𝑑) ∨ (𝐻𝑐) = (𝐻𝑑) ∨ (𝐻𝑑)𝑆(𝐻𝑐))))
1914, 18rspc2v 3588 . . . . . 6 (((𝐻𝑐) ∈ 𝐵 ∧ (𝐻𝑑) ∈ 𝐵) → (∀𝑎𝐵𝑏𝐵 (𝑎𝑆𝑏𝑎 = 𝑏𝑏𝑆𝑎) → ((𝐻𝑐)𝑆(𝐻𝑑) ∨ (𝐻𝑐) = (𝐻𝑑) ∨ (𝐻𝑑)𝑆(𝐻𝑐))))
2010, 19syl 17 . . . . 5 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑐𝐴𝑑𝐴)) → (∀𝑎𝐵𝑏𝐵 (𝑎𝑆𝑏𝑎 = 𝑏𝑏𝑆𝑎) → ((𝐻𝑐)𝑆(𝐻𝑑) ∨ (𝐻𝑐) = (𝐻𝑑) ∨ (𝐻𝑑)𝑆(𝐻𝑐))))
21 isorel 7263 . . . . . 6 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑐𝐴𝑑𝐴)) → (𝑐𝑅𝑑 ↔ (𝐻𝑐)𝑆(𝐻𝑑)))
22 f1of1 6763 . . . . . . . . 9 (𝐻:𝐴1-1-onto𝐵𝐻:𝐴1-1𝐵)
232, 22syl 17 . . . . . . . 8 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴1-1𝐵)
24 f1fveq 7199 . . . . . . . 8 ((𝐻:𝐴1-1𝐵 ∧ (𝑐𝐴𝑑𝐴)) → ((𝐻𝑐) = (𝐻𝑑) ↔ 𝑐 = 𝑑))
2523, 24sylan 580 . . . . . . 7 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑐𝐴𝑑𝐴)) → ((𝐻𝑐) = (𝐻𝑑) ↔ 𝑐 = 𝑑))
2625bicomd 223 . . . . . 6 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑐𝐴𝑑𝐴)) → (𝑐 = 𝑑 ↔ (𝐻𝑐) = (𝐻𝑑)))
27 isorel 7263 . . . . . . 7 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑑𝐴𝑐𝐴)) → (𝑑𝑅𝑐 ↔ (𝐻𝑑)𝑆(𝐻𝑐)))
2827ancom2s 650 . . . . . 6 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑐𝐴𝑑𝐴)) → (𝑑𝑅𝑐 ↔ (𝐻𝑑)𝑆(𝐻𝑐)))
2921, 26, 283orbi123d 1437 . . . . 5 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑐𝐴𝑑𝐴)) → ((𝑐𝑅𝑑𝑐 = 𝑑𝑑𝑅𝑐) ↔ ((𝐻𝑐)𝑆(𝐻𝑑) ∨ (𝐻𝑐) = (𝐻𝑑) ∨ (𝐻𝑑)𝑆(𝐻𝑐))))
3020, 29sylibrd 259 . . . 4 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑐𝐴𝑑𝐴)) → (∀𝑎𝐵𝑏𝐵 (𝑎𝑆𝑏𝑎 = 𝑏𝑏𝑆𝑎) → (𝑐𝑅𝑑𝑐 = 𝑑𝑑𝑅𝑐)))
3130ralrimdvva 3184 . . 3 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (∀𝑎𝐵𝑏𝐵 (𝑎𝑆𝑏𝑎 = 𝑏𝑏𝑆𝑎) → ∀𝑐𝐴𝑑𝐴 (𝑐𝑅𝑑𝑐 = 𝑑𝑑𝑅𝑐)))
321, 31anim12d 609 . 2 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → ((𝑆 Po 𝐵 ∧ ∀𝑎𝐵𝑏𝐵 (𝑎𝑆𝑏𝑎 = 𝑏𝑏𝑆𝑎)) → (𝑅 Po 𝐴 ∧ ∀𝑐𝐴𝑑𝐴 (𝑐𝑅𝑑𝑐 = 𝑑𝑑𝑅𝑐))))
33 df-so 5528 . 2 (𝑆 Or 𝐵 ↔ (𝑆 Po 𝐵 ∧ ∀𝑎𝐵𝑏𝐵 (𝑎𝑆𝑏𝑎 = 𝑏𝑏𝑆𝑎)))
34 df-so 5528 . 2 (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑐𝐴𝑑𝐴 (𝑐𝑅𝑑𝑐 = 𝑑𝑑𝑅𝑐)))
3532, 33, 343imtr4g 296 1 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑆 Or 𝐵𝑅 Or 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3o 1085   = wceq 1540  wcel 2109  wral 3044   class class class wbr 5092   Po wpo 5525   Or wor 5526  wf 6478  1-1wf1 6479  1-1-ontowf1o 6481  cfv 6482   Isom wiso 6483
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-id 5514  df-po 5527  df-so 5528  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-f1o 6489  df-fv 6490  df-isom 6491
This theorem is referenced by:  isoso  7285  isowe2  7287
  Copyright terms: Public domain W3C validator