Step | Hyp | Ref
| Expression |
1 | | isopolem 7154 |
. . 3
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑆 Po 𝐵 → 𝑅 Po 𝐴)) |
2 | | isof1o 7132 |
. . . . . . . 8
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴–1-1-onto→𝐵) |
3 | | f1of 6661 |
. . . . . . . 8
⊢ (𝐻:𝐴–1-1-onto→𝐵 → 𝐻:𝐴⟶𝐵) |
4 | | ffvelrn 6902 |
. . . . . . . . . 10
⊢ ((𝐻:𝐴⟶𝐵 ∧ 𝑐 ∈ 𝐴) → (𝐻‘𝑐) ∈ 𝐵) |
5 | 4 | ex 416 |
. . . . . . . . 9
⊢ (𝐻:𝐴⟶𝐵 → (𝑐 ∈ 𝐴 → (𝐻‘𝑐) ∈ 𝐵)) |
6 | | ffvelrn 6902 |
. . . . . . . . . 10
⊢ ((𝐻:𝐴⟶𝐵 ∧ 𝑑 ∈ 𝐴) → (𝐻‘𝑑) ∈ 𝐵) |
7 | 6 | ex 416 |
. . . . . . . . 9
⊢ (𝐻:𝐴⟶𝐵 → (𝑑 ∈ 𝐴 → (𝐻‘𝑑) ∈ 𝐵)) |
8 | 5, 7 | anim12d 612 |
. . . . . . . 8
⊢ (𝐻:𝐴⟶𝐵 → ((𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) → ((𝐻‘𝑐) ∈ 𝐵 ∧ (𝐻‘𝑑) ∈ 𝐵))) |
9 | 2, 3, 8 | 3syl 18 |
. . . . . . 7
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → ((𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) → ((𝐻‘𝑐) ∈ 𝐵 ∧ (𝐻‘𝑑) ∈ 𝐵))) |
10 | 9 | imp 410 |
. . . . . 6
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴)) → ((𝐻‘𝑐) ∈ 𝐵 ∧ (𝐻‘𝑑) ∈ 𝐵)) |
11 | | breq1 5056 |
. . . . . . . 8
⊢ (𝑎 = (𝐻‘𝑐) → (𝑎𝑆𝑏 ↔ (𝐻‘𝑐)𝑆𝑏)) |
12 | | eqeq1 2741 |
. . . . . . . 8
⊢ (𝑎 = (𝐻‘𝑐) → (𝑎 = 𝑏 ↔ (𝐻‘𝑐) = 𝑏)) |
13 | | breq2 5057 |
. . . . . . . 8
⊢ (𝑎 = (𝐻‘𝑐) → (𝑏𝑆𝑎 ↔ 𝑏𝑆(𝐻‘𝑐))) |
14 | 11, 12, 13 | 3orbi123d 1437 |
. . . . . . 7
⊢ (𝑎 = (𝐻‘𝑐) → ((𝑎𝑆𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑏𝑆𝑎) ↔ ((𝐻‘𝑐)𝑆𝑏 ∨ (𝐻‘𝑐) = 𝑏 ∨ 𝑏𝑆(𝐻‘𝑐)))) |
15 | | breq2 5057 |
. . . . . . . 8
⊢ (𝑏 = (𝐻‘𝑑) → ((𝐻‘𝑐)𝑆𝑏 ↔ (𝐻‘𝑐)𝑆(𝐻‘𝑑))) |
16 | | eqeq2 2749 |
. . . . . . . 8
⊢ (𝑏 = (𝐻‘𝑑) → ((𝐻‘𝑐) = 𝑏 ↔ (𝐻‘𝑐) = (𝐻‘𝑑))) |
17 | | breq1 5056 |
. . . . . . . 8
⊢ (𝑏 = (𝐻‘𝑑) → (𝑏𝑆(𝐻‘𝑐) ↔ (𝐻‘𝑑)𝑆(𝐻‘𝑐))) |
18 | 15, 16, 17 | 3orbi123d 1437 |
. . . . . . 7
⊢ (𝑏 = (𝐻‘𝑑) → (((𝐻‘𝑐)𝑆𝑏 ∨ (𝐻‘𝑐) = 𝑏 ∨ 𝑏𝑆(𝐻‘𝑐)) ↔ ((𝐻‘𝑐)𝑆(𝐻‘𝑑) ∨ (𝐻‘𝑐) = (𝐻‘𝑑) ∨ (𝐻‘𝑑)𝑆(𝐻‘𝑐)))) |
19 | 14, 18 | rspc2v 3547 |
. . . . . 6
⊢ (((𝐻‘𝑐) ∈ 𝐵 ∧ (𝐻‘𝑑) ∈ 𝐵) → (∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (𝑎𝑆𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑏𝑆𝑎) → ((𝐻‘𝑐)𝑆(𝐻‘𝑑) ∨ (𝐻‘𝑐) = (𝐻‘𝑑) ∨ (𝐻‘𝑑)𝑆(𝐻‘𝑐)))) |
20 | 10, 19 | syl 17 |
. . . . 5
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴)) → (∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (𝑎𝑆𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑏𝑆𝑎) → ((𝐻‘𝑐)𝑆(𝐻‘𝑑) ∨ (𝐻‘𝑐) = (𝐻‘𝑑) ∨ (𝐻‘𝑑)𝑆(𝐻‘𝑐)))) |
21 | | isorel 7135 |
. . . . . 6
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴)) → (𝑐𝑅𝑑 ↔ (𝐻‘𝑐)𝑆(𝐻‘𝑑))) |
22 | | f1of1 6660 |
. . . . . . . . 9
⊢ (𝐻:𝐴–1-1-onto→𝐵 → 𝐻:𝐴–1-1→𝐵) |
23 | 2, 22 | syl 17 |
. . . . . . . 8
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴–1-1→𝐵) |
24 | | f1fveq 7074 |
. . . . . . . 8
⊢ ((𝐻:𝐴–1-1→𝐵 ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴)) → ((𝐻‘𝑐) = (𝐻‘𝑑) ↔ 𝑐 = 𝑑)) |
25 | 23, 24 | sylan 583 |
. . . . . . 7
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴)) → ((𝐻‘𝑐) = (𝐻‘𝑑) ↔ 𝑐 = 𝑑)) |
26 | 25 | bicomd 226 |
. . . . . 6
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴)) → (𝑐 = 𝑑 ↔ (𝐻‘𝑐) = (𝐻‘𝑑))) |
27 | | isorel 7135 |
. . . . . . 7
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑑 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴)) → (𝑑𝑅𝑐 ↔ (𝐻‘𝑑)𝑆(𝐻‘𝑐))) |
28 | 27 | ancom2s 650 |
. . . . . 6
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴)) → (𝑑𝑅𝑐 ↔ (𝐻‘𝑑)𝑆(𝐻‘𝑐))) |
29 | 21, 26, 28 | 3orbi123d 1437 |
. . . . 5
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴)) → ((𝑐𝑅𝑑 ∨ 𝑐 = 𝑑 ∨ 𝑑𝑅𝑐) ↔ ((𝐻‘𝑐)𝑆(𝐻‘𝑑) ∨ (𝐻‘𝑐) = (𝐻‘𝑑) ∨ (𝐻‘𝑑)𝑆(𝐻‘𝑐)))) |
30 | 20, 29 | sylibrd 262 |
. . . 4
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴)) → (∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (𝑎𝑆𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑏𝑆𝑎) → (𝑐𝑅𝑑 ∨ 𝑐 = 𝑑 ∨ 𝑑𝑅𝑐))) |
31 | 30 | ralrimdvva 3115 |
. . 3
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (𝑎𝑆𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑏𝑆𝑎) → ∀𝑐 ∈ 𝐴 ∀𝑑 ∈ 𝐴 (𝑐𝑅𝑑 ∨ 𝑐 = 𝑑 ∨ 𝑑𝑅𝑐))) |
32 | 1, 31 | anim12d 612 |
. 2
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → ((𝑆 Po 𝐵 ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (𝑎𝑆𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑏𝑆𝑎)) → (𝑅 Po 𝐴 ∧ ∀𝑐 ∈ 𝐴 ∀𝑑 ∈ 𝐴 (𝑐𝑅𝑑 ∨ 𝑐 = 𝑑 ∨ 𝑑𝑅𝑐)))) |
33 | | df-so 5469 |
. 2
⊢ (𝑆 Or 𝐵 ↔ (𝑆 Po 𝐵 ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (𝑎𝑆𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑏𝑆𝑎))) |
34 | | df-so 5469 |
. 2
⊢ (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑐 ∈ 𝐴 ∀𝑑 ∈ 𝐴 (𝑐𝑅𝑑 ∨ 𝑐 = 𝑑 ∨ 𝑑𝑅𝑐))) |
35 | 32, 33, 34 | 3imtr4g 299 |
1
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑆 Or 𝐵 → 𝑅 Or 𝐴)) |