| Step | Hyp | Ref
| Expression |
| 1 | | isopolem 7343 |
. . 3
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑆 Po 𝐵 → 𝑅 Po 𝐴)) |
| 2 | | isof1o 7321 |
. . . . . . . 8
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴–1-1-onto→𝐵) |
| 3 | | f1of 6823 |
. . . . . . . 8
⊢ (𝐻:𝐴–1-1-onto→𝐵 → 𝐻:𝐴⟶𝐵) |
| 4 | | ffvelcdm 7076 |
. . . . . . . . . 10
⊢ ((𝐻:𝐴⟶𝐵 ∧ 𝑐 ∈ 𝐴) → (𝐻‘𝑐) ∈ 𝐵) |
| 5 | 4 | ex 412 |
. . . . . . . . 9
⊢ (𝐻:𝐴⟶𝐵 → (𝑐 ∈ 𝐴 → (𝐻‘𝑐) ∈ 𝐵)) |
| 6 | | ffvelcdm 7076 |
. . . . . . . . . 10
⊢ ((𝐻:𝐴⟶𝐵 ∧ 𝑑 ∈ 𝐴) → (𝐻‘𝑑) ∈ 𝐵) |
| 7 | 6 | ex 412 |
. . . . . . . . 9
⊢ (𝐻:𝐴⟶𝐵 → (𝑑 ∈ 𝐴 → (𝐻‘𝑑) ∈ 𝐵)) |
| 8 | 5, 7 | anim12d 609 |
. . . . . . . 8
⊢ (𝐻:𝐴⟶𝐵 → ((𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) → ((𝐻‘𝑐) ∈ 𝐵 ∧ (𝐻‘𝑑) ∈ 𝐵))) |
| 9 | 2, 3, 8 | 3syl 18 |
. . . . . . 7
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → ((𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) → ((𝐻‘𝑐) ∈ 𝐵 ∧ (𝐻‘𝑑) ∈ 𝐵))) |
| 10 | 9 | imp 406 |
. . . . . 6
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴)) → ((𝐻‘𝑐) ∈ 𝐵 ∧ (𝐻‘𝑑) ∈ 𝐵)) |
| 11 | | breq1 5127 |
. . . . . . . 8
⊢ (𝑎 = (𝐻‘𝑐) → (𝑎𝑆𝑏 ↔ (𝐻‘𝑐)𝑆𝑏)) |
| 12 | | eqeq1 2740 |
. . . . . . . 8
⊢ (𝑎 = (𝐻‘𝑐) → (𝑎 = 𝑏 ↔ (𝐻‘𝑐) = 𝑏)) |
| 13 | | breq2 5128 |
. . . . . . . 8
⊢ (𝑎 = (𝐻‘𝑐) → (𝑏𝑆𝑎 ↔ 𝑏𝑆(𝐻‘𝑐))) |
| 14 | 11, 12, 13 | 3orbi123d 1437 |
. . . . . . 7
⊢ (𝑎 = (𝐻‘𝑐) → ((𝑎𝑆𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑏𝑆𝑎) ↔ ((𝐻‘𝑐)𝑆𝑏 ∨ (𝐻‘𝑐) = 𝑏 ∨ 𝑏𝑆(𝐻‘𝑐)))) |
| 15 | | breq2 5128 |
. . . . . . . 8
⊢ (𝑏 = (𝐻‘𝑑) → ((𝐻‘𝑐)𝑆𝑏 ↔ (𝐻‘𝑐)𝑆(𝐻‘𝑑))) |
| 16 | | eqeq2 2748 |
. . . . . . . 8
⊢ (𝑏 = (𝐻‘𝑑) → ((𝐻‘𝑐) = 𝑏 ↔ (𝐻‘𝑐) = (𝐻‘𝑑))) |
| 17 | | breq1 5127 |
. . . . . . . 8
⊢ (𝑏 = (𝐻‘𝑑) → (𝑏𝑆(𝐻‘𝑐) ↔ (𝐻‘𝑑)𝑆(𝐻‘𝑐))) |
| 18 | 15, 16, 17 | 3orbi123d 1437 |
. . . . . . 7
⊢ (𝑏 = (𝐻‘𝑑) → (((𝐻‘𝑐)𝑆𝑏 ∨ (𝐻‘𝑐) = 𝑏 ∨ 𝑏𝑆(𝐻‘𝑐)) ↔ ((𝐻‘𝑐)𝑆(𝐻‘𝑑) ∨ (𝐻‘𝑐) = (𝐻‘𝑑) ∨ (𝐻‘𝑑)𝑆(𝐻‘𝑐)))) |
| 19 | 14, 18 | rspc2v 3617 |
. . . . . 6
⊢ (((𝐻‘𝑐) ∈ 𝐵 ∧ (𝐻‘𝑑) ∈ 𝐵) → (∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (𝑎𝑆𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑏𝑆𝑎) → ((𝐻‘𝑐)𝑆(𝐻‘𝑑) ∨ (𝐻‘𝑐) = (𝐻‘𝑑) ∨ (𝐻‘𝑑)𝑆(𝐻‘𝑐)))) |
| 20 | 10, 19 | syl 17 |
. . . . 5
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴)) → (∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (𝑎𝑆𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑏𝑆𝑎) → ((𝐻‘𝑐)𝑆(𝐻‘𝑑) ∨ (𝐻‘𝑐) = (𝐻‘𝑑) ∨ (𝐻‘𝑑)𝑆(𝐻‘𝑐)))) |
| 21 | | isorel 7324 |
. . . . . 6
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴)) → (𝑐𝑅𝑑 ↔ (𝐻‘𝑐)𝑆(𝐻‘𝑑))) |
| 22 | | f1of1 6822 |
. . . . . . . . 9
⊢ (𝐻:𝐴–1-1-onto→𝐵 → 𝐻:𝐴–1-1→𝐵) |
| 23 | 2, 22 | syl 17 |
. . . . . . . 8
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴–1-1→𝐵) |
| 24 | | f1fveq 7260 |
. . . . . . . 8
⊢ ((𝐻:𝐴–1-1→𝐵 ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴)) → ((𝐻‘𝑐) = (𝐻‘𝑑) ↔ 𝑐 = 𝑑)) |
| 25 | 23, 24 | sylan 580 |
. . . . . . 7
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴)) → ((𝐻‘𝑐) = (𝐻‘𝑑) ↔ 𝑐 = 𝑑)) |
| 26 | 25 | bicomd 223 |
. . . . . 6
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴)) → (𝑐 = 𝑑 ↔ (𝐻‘𝑐) = (𝐻‘𝑑))) |
| 27 | | isorel 7324 |
. . . . . . 7
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑑 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴)) → (𝑑𝑅𝑐 ↔ (𝐻‘𝑑)𝑆(𝐻‘𝑐))) |
| 28 | 27 | ancom2s 650 |
. . . . . 6
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴)) → (𝑑𝑅𝑐 ↔ (𝐻‘𝑑)𝑆(𝐻‘𝑐))) |
| 29 | 21, 26, 28 | 3orbi123d 1437 |
. . . . 5
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴)) → ((𝑐𝑅𝑑 ∨ 𝑐 = 𝑑 ∨ 𝑑𝑅𝑐) ↔ ((𝐻‘𝑐)𝑆(𝐻‘𝑑) ∨ (𝐻‘𝑐) = (𝐻‘𝑑) ∨ (𝐻‘𝑑)𝑆(𝐻‘𝑐)))) |
| 30 | 20, 29 | sylibrd 259 |
. . . 4
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴)) → (∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (𝑎𝑆𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑏𝑆𝑎) → (𝑐𝑅𝑑 ∨ 𝑐 = 𝑑 ∨ 𝑑𝑅𝑐))) |
| 31 | 30 | ralrimdvva 3200 |
. . 3
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (𝑎𝑆𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑏𝑆𝑎) → ∀𝑐 ∈ 𝐴 ∀𝑑 ∈ 𝐴 (𝑐𝑅𝑑 ∨ 𝑐 = 𝑑 ∨ 𝑑𝑅𝑐))) |
| 32 | 1, 31 | anim12d 609 |
. 2
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → ((𝑆 Po 𝐵 ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (𝑎𝑆𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑏𝑆𝑎)) → (𝑅 Po 𝐴 ∧ ∀𝑐 ∈ 𝐴 ∀𝑑 ∈ 𝐴 (𝑐𝑅𝑑 ∨ 𝑐 = 𝑑 ∨ 𝑑𝑅𝑐)))) |
| 33 | | df-so 5567 |
. 2
⊢ (𝑆 Or 𝐵 ↔ (𝑆 Po 𝐵 ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (𝑎𝑆𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑏𝑆𝑎))) |
| 34 | | df-so 5567 |
. 2
⊢ (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑐 ∈ 𝐴 ∀𝑑 ∈ 𝐴 (𝑐𝑅𝑑 ∨ 𝑐 = 𝑑 ∨ 𝑑𝑅𝑐))) |
| 35 | 32, 33, 34 | 3imtr4g 296 |
1
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑆 Or 𝐵 → 𝑅 Or 𝐴)) |