Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfso2 Structured version   Visualization version   GIF version

Theorem dfso2 32089
Description: Quantifier free definition of a strict order. (Contributed by Scott Fenton, 22-Feb-2013.)
Assertion
Ref Expression
dfso2 (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ (𝐴 × 𝐴) ⊆ (𝑅 ∪ ( I ∪ 𝑅))))

Proof of Theorem dfso2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-so 5199 . 2 (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)))
2 opelxp 5313 . . . . . 6 (⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐴) ↔ (𝑥𝐴𝑦𝐴))
3 brun 4860 . . . . . . . . . 10 (𝑥( I ∪ 𝑅)𝑦 ↔ (𝑥 I 𝑦𝑥𝑅𝑦))
4 vex 3353 . . . . . . . . . . . 12 𝑦 ∈ V
54ideq 5443 . . . . . . . . . . 11 (𝑥 I 𝑦𝑥 = 𝑦)
6 vex 3353 . . . . . . . . . . . 12 𝑥 ∈ V
76, 4brcnv 5473 . . . . . . . . . . 11 (𝑥𝑅𝑦𝑦𝑅𝑥)
85, 7orbi12i 938 . . . . . . . . . 10 ((𝑥 I 𝑦𝑥𝑅𝑦) ↔ (𝑥 = 𝑦𝑦𝑅𝑥))
93, 8bitr2i 267 . . . . . . . . 9 ((𝑥 = 𝑦𝑦𝑅𝑥) ↔ 𝑥( I ∪ 𝑅)𝑦)
109orbi2i 936 . . . . . . . 8 ((𝑥𝑅𝑦 ∨ (𝑥 = 𝑦𝑦𝑅𝑥)) ↔ (𝑥𝑅𝑦𝑥( I ∪ 𝑅)𝑦))
11 3orass 1110 . . . . . . . 8 ((𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥) ↔ (𝑥𝑅𝑦 ∨ (𝑥 = 𝑦𝑦𝑅𝑥)))
12 brun 4860 . . . . . . . 8 (𝑥(𝑅 ∪ ( I ∪ 𝑅))𝑦 ↔ (𝑥𝑅𝑦𝑥( I ∪ 𝑅)𝑦))
1310, 11, 123bitr4i 294 . . . . . . 7 ((𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥) ↔ 𝑥(𝑅 ∪ ( I ∪ 𝑅))𝑦)
14 df-br 4810 . . . . . . 7 (𝑥(𝑅 ∪ ( I ∪ 𝑅))𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ (𝑅 ∪ ( I ∪ 𝑅)))
1513, 14bitr2i 267 . . . . . 6 (⟨𝑥, 𝑦⟩ ∈ (𝑅 ∪ ( I ∪ 𝑅)) ↔ (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥))
162, 15imbi12i 341 . . . . 5 ((⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐴) → ⟨𝑥, 𝑦⟩ ∈ (𝑅 ∪ ( I ∪ 𝑅))) ↔ ((𝑥𝐴𝑦𝐴) → (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)))
17162albii 1915 . . . 4 (∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐴) → ⟨𝑥, 𝑦⟩ ∈ (𝑅 ∪ ( I ∪ 𝑅))) ↔ ∀𝑥𝑦((𝑥𝐴𝑦𝐴) → (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)))
18 relxp 5295 . . . . 5 Rel (𝐴 × 𝐴)
19 ssrel 5377 . . . . 5 (Rel (𝐴 × 𝐴) → ((𝐴 × 𝐴) ⊆ (𝑅 ∪ ( I ∪ 𝑅)) ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐴) → ⟨𝑥, 𝑦⟩ ∈ (𝑅 ∪ ( I ∪ 𝑅)))))
2018, 19ax-mp 5 . . . 4 ((𝐴 × 𝐴) ⊆ (𝑅 ∪ ( I ∪ 𝑅)) ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐴) → ⟨𝑥, 𝑦⟩ ∈ (𝑅 ∪ ( I ∪ 𝑅))))
21 r2al 3086 . . . 4 (∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥) ↔ ∀𝑥𝑦((𝑥𝐴𝑦𝐴) → (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)))
2217, 20, 213bitr4i 294 . . 3 ((𝐴 × 𝐴) ⊆ (𝑅 ∪ ( I ∪ 𝑅)) ↔ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥))
2322anbi2i 616 . 2 ((𝑅 Po 𝐴 ∧ (𝐴 × 𝐴) ⊆ (𝑅 ∪ ( I ∪ 𝑅))) ↔ (𝑅 Po 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)))
241, 23bitr4i 269 1 (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ (𝐴 × 𝐴) ⊆ (𝑅 ∪ ( I ∪ 𝑅))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  wo 873  w3o 1106  wal 1650  wcel 2155  wral 3055  cun 3730  wss 3732  cop 4340   class class class wbr 4809   I cid 5184   Po wpo 5196   Or wor 5197   × cxp 5275  ccnv 5276  Rel wrel 5282
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4941  ax-nul 4949  ax-pr 5062
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ral 3060  df-rex 3061  df-rab 3064  df-v 3352  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-nul 4080  df-if 4244  df-sn 4335  df-pr 4337  df-op 4341  df-br 4810  df-opab 4872  df-id 5185  df-so 5199  df-xp 5283  df-rel 5284  df-cnv 5285
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator