Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfso2 Structured version   Visualization version   GIF version

Theorem dfso2 33708
Description: Quantifier-free definition of a strict order. (Contributed by Scott Fenton, 22-Feb-2013.)
Assertion
Ref Expression
dfso2 (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ (𝐴 × 𝐴) ⊆ (𝑅 ∪ ( I ∪ 𝑅))))

Proof of Theorem dfso2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-so 5500 . 2 (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)))
2 opelxp 5621 . . . . . 6 (⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐴) ↔ (𝑥𝐴𝑦𝐴))
3 brun 5125 . . . . . . . . . 10 (𝑥( I ∪ 𝑅)𝑦 ↔ (𝑥 I 𝑦𝑥𝑅𝑦))
4 vex 3434 . . . . . . . . . . . 12 𝑦 ∈ V
54ideq 5755 . . . . . . . . . . 11 (𝑥 I 𝑦𝑥 = 𝑦)
6 vex 3434 . . . . . . . . . . . 12 𝑥 ∈ V
76, 4brcnv 5785 . . . . . . . . . . 11 (𝑥𝑅𝑦𝑦𝑅𝑥)
85, 7orbi12i 912 . . . . . . . . . 10 ((𝑥 I 𝑦𝑥𝑅𝑦) ↔ (𝑥 = 𝑦𝑦𝑅𝑥))
93, 8bitr2i 275 . . . . . . . . 9 ((𝑥 = 𝑦𝑦𝑅𝑥) ↔ 𝑥( I ∪ 𝑅)𝑦)
109orbi2i 910 . . . . . . . 8 ((𝑥𝑅𝑦 ∨ (𝑥 = 𝑦𝑦𝑅𝑥)) ↔ (𝑥𝑅𝑦𝑥( I ∪ 𝑅)𝑦))
11 3orass 1089 . . . . . . . 8 ((𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥) ↔ (𝑥𝑅𝑦 ∨ (𝑥 = 𝑦𝑦𝑅𝑥)))
12 brun 5125 . . . . . . . 8 (𝑥(𝑅 ∪ ( I ∪ 𝑅))𝑦 ↔ (𝑥𝑅𝑦𝑥( I ∪ 𝑅)𝑦))
1310, 11, 123bitr4i 303 . . . . . . 7 ((𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥) ↔ 𝑥(𝑅 ∪ ( I ∪ 𝑅))𝑦)
14 df-br 5075 . . . . . . 7 (𝑥(𝑅 ∪ ( I ∪ 𝑅))𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ (𝑅 ∪ ( I ∪ 𝑅)))
1513, 14bitr2i 275 . . . . . 6 (⟨𝑥, 𝑦⟩ ∈ (𝑅 ∪ ( I ∪ 𝑅)) ↔ (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥))
162, 15imbi12i 351 . . . . 5 ((⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐴) → ⟨𝑥, 𝑦⟩ ∈ (𝑅 ∪ ( I ∪ 𝑅))) ↔ ((𝑥𝐴𝑦𝐴) → (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)))
17162albii 1823 . . . 4 (∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐴) → ⟨𝑥, 𝑦⟩ ∈ (𝑅 ∪ ( I ∪ 𝑅))) ↔ ∀𝑥𝑦((𝑥𝐴𝑦𝐴) → (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)))
18 relxp 5603 . . . . 5 Rel (𝐴 × 𝐴)
19 ssrel 5688 . . . . 5 (Rel (𝐴 × 𝐴) → ((𝐴 × 𝐴) ⊆ (𝑅 ∪ ( I ∪ 𝑅)) ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐴) → ⟨𝑥, 𝑦⟩ ∈ (𝑅 ∪ ( I ∪ 𝑅)))))
2018, 19ax-mp 5 . . . 4 ((𝐴 × 𝐴) ⊆ (𝑅 ∪ ( I ∪ 𝑅)) ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐴) → ⟨𝑥, 𝑦⟩ ∈ (𝑅 ∪ ( I ∪ 𝑅))))
21 r2al 3125 . . . 4 (∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥) ↔ ∀𝑥𝑦((𝑥𝐴𝑦𝐴) → (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)))
2217, 20, 213bitr4i 303 . . 3 ((𝐴 × 𝐴) ⊆ (𝑅 ∪ ( I ∪ 𝑅)) ↔ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥))
2322anbi2i 623 . 2 ((𝑅 Po 𝐴 ∧ (𝐴 × 𝐴) ⊆ (𝑅 ∪ ( I ∪ 𝑅))) ↔ (𝑅 Po 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)))
241, 23bitr4i 277 1 (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ (𝐴 × 𝐴) ⊆ (𝑅 ∪ ( I ∪ 𝑅))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 844  w3o 1085  wal 1537  wcel 2106  wral 3064  cun 3885  wss 3887  cop 4568   class class class wbr 5074   I cid 5484   Po wpo 5497   Or wor 5498   × cxp 5583  ccnv 5584  Rel wrel 5590
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-12 2171  ax-ext 2709  ax-sep 5222  ax-nul 5229  ax-pr 5351
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3432  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4258  df-if 4461  df-sn 4563  df-pr 4565  df-op 4569  df-br 5075  df-opab 5137  df-id 5485  df-so 5500  df-xp 5591  df-rel 5592  df-cnv 5593
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator