Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfso2 Structured version   Visualization version   GIF version

Theorem dfso2 32600
Description: Quantifier free definition of a strict order. (Contributed by Scott Fenton, 22-Feb-2013.)
Assertion
Ref Expression
dfso2 (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ (𝐴 × 𝐴) ⊆ (𝑅 ∪ ( I ∪ 𝑅))))

Proof of Theorem dfso2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-so 5370 . 2 (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)))
2 opelxp 5486 . . . . . 6 (⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐴) ↔ (𝑥𝐴𝑦𝐴))
3 brun 5019 . . . . . . . . . 10 (𝑥( I ∪ 𝑅)𝑦 ↔ (𝑥 I 𝑦𝑥𝑅𝑦))
4 vex 3443 . . . . . . . . . . . 12 𝑦 ∈ V
54ideq 5616 . . . . . . . . . . 11 (𝑥 I 𝑦𝑥 = 𝑦)
6 vex 3443 . . . . . . . . . . . 12 𝑥 ∈ V
76, 4brcnv 5646 . . . . . . . . . . 11 (𝑥𝑅𝑦𝑦𝑅𝑥)
85, 7orbi12i 909 . . . . . . . . . 10 ((𝑥 I 𝑦𝑥𝑅𝑦) ↔ (𝑥 = 𝑦𝑦𝑅𝑥))
93, 8bitr2i 277 . . . . . . . . 9 ((𝑥 = 𝑦𝑦𝑅𝑥) ↔ 𝑥( I ∪ 𝑅)𝑦)
109orbi2i 907 . . . . . . . 8 ((𝑥𝑅𝑦 ∨ (𝑥 = 𝑦𝑦𝑅𝑥)) ↔ (𝑥𝑅𝑦𝑥( I ∪ 𝑅)𝑦))
11 3orass 1083 . . . . . . . 8 ((𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥) ↔ (𝑥𝑅𝑦 ∨ (𝑥 = 𝑦𝑦𝑅𝑥)))
12 brun 5019 . . . . . . . 8 (𝑥(𝑅 ∪ ( I ∪ 𝑅))𝑦 ↔ (𝑥𝑅𝑦𝑥( I ∪ 𝑅)𝑦))
1310, 11, 123bitr4i 304 . . . . . . 7 ((𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥) ↔ 𝑥(𝑅 ∪ ( I ∪ 𝑅))𝑦)
14 df-br 4969 . . . . . . 7 (𝑥(𝑅 ∪ ( I ∪ 𝑅))𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ (𝑅 ∪ ( I ∪ 𝑅)))
1513, 14bitr2i 277 . . . . . 6 (⟨𝑥, 𝑦⟩ ∈ (𝑅 ∪ ( I ∪ 𝑅)) ↔ (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥))
162, 15imbi12i 352 . . . . 5 ((⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐴) → ⟨𝑥, 𝑦⟩ ∈ (𝑅 ∪ ( I ∪ 𝑅))) ↔ ((𝑥𝐴𝑦𝐴) → (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)))
17162albii 1806 . . . 4 (∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐴) → ⟨𝑥, 𝑦⟩ ∈ (𝑅 ∪ ( I ∪ 𝑅))) ↔ ∀𝑥𝑦((𝑥𝐴𝑦𝐴) → (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)))
18 relxp 5468 . . . . 5 Rel (𝐴 × 𝐴)
19 ssrel 5550 . . . . 5 (Rel (𝐴 × 𝐴) → ((𝐴 × 𝐴) ⊆ (𝑅 ∪ ( I ∪ 𝑅)) ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐴) → ⟨𝑥, 𝑦⟩ ∈ (𝑅 ∪ ( I ∪ 𝑅)))))
2018, 19ax-mp 5 . . . 4 ((𝐴 × 𝐴) ⊆ (𝑅 ∪ ( I ∪ 𝑅)) ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐴) → ⟨𝑥, 𝑦⟩ ∈ (𝑅 ∪ ( I ∪ 𝑅))))
21 r2al 3170 . . . 4 (∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥) ↔ ∀𝑥𝑦((𝑥𝐴𝑦𝐴) → (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)))
2217, 20, 213bitr4i 304 . . 3 ((𝐴 × 𝐴) ⊆ (𝑅 ∪ ( I ∪ 𝑅)) ↔ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥))
2322anbi2i 622 . 2 ((𝑅 Po 𝐴 ∧ (𝐴 × 𝐴) ⊆ (𝑅 ∪ ( I ∪ 𝑅))) ↔ (𝑅 Po 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)))
241, 23bitr4i 279 1 (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ (𝐴 × 𝐴) ⊆ (𝑅 ∪ ( I ∪ 𝑅))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  wo 842  w3o 1079  wal 1523  wcel 2083  wral 3107  cun 3863  wss 3865  cop 4484   class class class wbr 4968   I cid 5354   Po wpo 5367   Or wor 5368   × cxp 5448  ccnv 5449  Rel wrel 5455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771  ax-sep 5101  ax-nul 5108  ax-pr 5228
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1528  df-ex 1766  df-nf 1770  df-sb 2045  df-mo 2578  df-eu 2614  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ral 3112  df-rex 3113  df-rab 3116  df-v 3442  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-nul 4218  df-if 4388  df-sn 4479  df-pr 4481  df-op 4485  df-br 4969  df-opab 5031  df-id 5355  df-so 5370  df-xp 5456  df-rel 5457  df-cnv 5458
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator