Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfso2 Structured version   Visualization version   GIF version

Theorem dfso2 35480
Description: Quantifier-free definition of a strict order. (Contributed by Scott Fenton, 22-Feb-2013.)
Assertion
Ref Expression
dfso2 (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ (𝐴 × 𝐴) ⊆ (𝑅 ∪ ( I ∪ 𝑅))))

Proof of Theorem dfso2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-so 5591 . 2 (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)))
2 opelxp 5714 . . . . . 6 (⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐴) ↔ (𝑥𝐴𝑦𝐴))
3 brun 5200 . . . . . . . . . 10 (𝑥( I ∪ 𝑅)𝑦 ↔ (𝑥 I 𝑦𝑥𝑅𝑦))
4 vex 3465 . . . . . . . . . . . 12 𝑦 ∈ V
54ideq 5855 . . . . . . . . . . 11 (𝑥 I 𝑦𝑥 = 𝑦)
6 vex 3465 . . . . . . . . . . . 12 𝑥 ∈ V
76, 4brcnv 5885 . . . . . . . . . . 11 (𝑥𝑅𝑦𝑦𝑅𝑥)
85, 7orbi12i 912 . . . . . . . . . 10 ((𝑥 I 𝑦𝑥𝑅𝑦) ↔ (𝑥 = 𝑦𝑦𝑅𝑥))
93, 8bitr2i 275 . . . . . . . . 9 ((𝑥 = 𝑦𝑦𝑅𝑥) ↔ 𝑥( I ∪ 𝑅)𝑦)
109orbi2i 910 . . . . . . . 8 ((𝑥𝑅𝑦 ∨ (𝑥 = 𝑦𝑦𝑅𝑥)) ↔ (𝑥𝑅𝑦𝑥( I ∪ 𝑅)𝑦))
11 3orass 1087 . . . . . . . 8 ((𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥) ↔ (𝑥𝑅𝑦 ∨ (𝑥 = 𝑦𝑦𝑅𝑥)))
12 brun 5200 . . . . . . . 8 (𝑥(𝑅 ∪ ( I ∪ 𝑅))𝑦 ↔ (𝑥𝑅𝑦𝑥( I ∪ 𝑅)𝑦))
1310, 11, 123bitr4i 302 . . . . . . 7 ((𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥) ↔ 𝑥(𝑅 ∪ ( I ∪ 𝑅))𝑦)
14 df-br 5150 . . . . . . 7 (𝑥(𝑅 ∪ ( I ∪ 𝑅))𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ (𝑅 ∪ ( I ∪ 𝑅)))
1513, 14bitr2i 275 . . . . . 6 (⟨𝑥, 𝑦⟩ ∈ (𝑅 ∪ ( I ∪ 𝑅)) ↔ (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥))
162, 15imbi12i 349 . . . . 5 ((⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐴) → ⟨𝑥, 𝑦⟩ ∈ (𝑅 ∪ ( I ∪ 𝑅))) ↔ ((𝑥𝐴𝑦𝐴) → (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)))
17162albii 1814 . . . 4 (∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐴) → ⟨𝑥, 𝑦⟩ ∈ (𝑅 ∪ ( I ∪ 𝑅))) ↔ ∀𝑥𝑦((𝑥𝐴𝑦𝐴) → (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)))
18 relxp 5696 . . . . 5 Rel (𝐴 × 𝐴)
19 ssrel 5784 . . . . 5 (Rel (𝐴 × 𝐴) → ((𝐴 × 𝐴) ⊆ (𝑅 ∪ ( I ∪ 𝑅)) ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐴) → ⟨𝑥, 𝑦⟩ ∈ (𝑅 ∪ ( I ∪ 𝑅)))))
2018, 19ax-mp 5 . . . 4 ((𝐴 × 𝐴) ⊆ (𝑅 ∪ ( I ∪ 𝑅)) ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐴) → ⟨𝑥, 𝑦⟩ ∈ (𝑅 ∪ ( I ∪ 𝑅))))
21 r2al 3184 . . . 4 (∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥) ↔ ∀𝑥𝑦((𝑥𝐴𝑦𝐴) → (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)))
2217, 20, 213bitr4i 302 . . 3 ((𝐴 × 𝐴) ⊆ (𝑅 ∪ ( I ∪ 𝑅)) ↔ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥))
2322anbi2i 621 . 2 ((𝑅 Po 𝐴 ∧ (𝐴 × 𝐴) ⊆ (𝑅 ∪ ( I ∪ 𝑅))) ↔ (𝑅 Po 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)))
241, 23bitr4i 277 1 (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ (𝐴 × 𝐴) ⊆ (𝑅 ∪ ( I ∪ 𝑅))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  wo 845  w3o 1083  wal 1531  wcel 2098  wral 3050  cun 3942  wss 3944  cop 4636   class class class wbr 5149   I cid 5575   Po wpo 5588   Or wor 5589   × cxp 5676  ccnv 5677  Rel wrel 5683
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-ral 3051  df-rex 3060  df-rab 3419  df-v 3463  df-dif 3947  df-un 3949  df-ss 3961  df-nul 4323  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-br 5150  df-opab 5212  df-id 5576  df-so 5591  df-xp 5684  df-rel 5685  df-cnv 5686
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator