![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfepfr | Structured version Visualization version GIF version |
Description: An alternate way of saying that the membership relation is well-founded. (Contributed by NM, 17-Feb-2004.) (Revised by Mario Carneiro, 23-Jun-2015.) |
Ref | Expression |
---|---|
dfepfr | ⊢ ( E Fr 𝐴 ↔ ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 (𝑥 ∩ 𝑦) = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dffr2 5640 | . 2 ⊢ ( E Fr 𝐴 ↔ ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 {𝑧 ∈ 𝑥 ∣ 𝑧 E 𝑦} = ∅)) | |
2 | epel 5583 | . . . . . . . 8 ⊢ (𝑧 E 𝑦 ↔ 𝑧 ∈ 𝑦) | |
3 | 2 | rabbii 3438 | . . . . . . 7 ⊢ {𝑧 ∈ 𝑥 ∣ 𝑧 E 𝑦} = {𝑧 ∈ 𝑥 ∣ 𝑧 ∈ 𝑦} |
4 | dfin5 3956 | . . . . . . 7 ⊢ (𝑥 ∩ 𝑦) = {𝑧 ∈ 𝑥 ∣ 𝑧 ∈ 𝑦} | |
5 | 3, 4 | eqtr4i 2763 | . . . . . 6 ⊢ {𝑧 ∈ 𝑥 ∣ 𝑧 E 𝑦} = (𝑥 ∩ 𝑦) |
6 | 5 | eqeq1i 2737 | . . . . 5 ⊢ ({𝑧 ∈ 𝑥 ∣ 𝑧 E 𝑦} = ∅ ↔ (𝑥 ∩ 𝑦) = ∅) |
7 | 6 | rexbii 3094 | . . . 4 ⊢ (∃𝑦 ∈ 𝑥 {𝑧 ∈ 𝑥 ∣ 𝑧 E 𝑦} = ∅ ↔ ∃𝑦 ∈ 𝑥 (𝑥 ∩ 𝑦) = ∅) |
8 | 7 | imbi2i 335 | . . 3 ⊢ (((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 {𝑧 ∈ 𝑥 ∣ 𝑧 E 𝑦} = ∅) ↔ ((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 (𝑥 ∩ 𝑦) = ∅)) |
9 | 8 | albii 1821 | . 2 ⊢ (∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 {𝑧 ∈ 𝑥 ∣ 𝑧 E 𝑦} = ∅) ↔ ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 (𝑥 ∩ 𝑦) = ∅)) |
10 | 1, 9 | bitri 274 | 1 ⊢ ( E Fr 𝐴 ↔ ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 (𝑥 ∩ 𝑦) = ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∀wal 1539 = wceq 1541 ≠ wne 2940 ∃wrex 3070 {crab 3432 ∩ cin 3947 ⊆ wss 3948 ∅c0 4322 class class class wbr 5148 E cep 5579 Fr wfr 5628 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 df-opab 5211 df-eprel 5580 df-fr 5631 |
This theorem is referenced by: onfr 6403 zfregfr 9599 onfrALTlem3 43295 onfrALT 43300 onfrALTlem3VD 43638 onfrALTVD 43642 |
Copyright terms: Public domain | W3C validator |