MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfepfr Structured version   Visualization version   GIF version

Theorem dfepfr 5663
Description: An alternate way of saying that the membership relation is well-founded. (Contributed by NM, 17-Feb-2004.) (Revised by Mario Carneiro, 23-Jun-2015.)
Assertion
Ref Expression
dfepfr ( E Fr 𝐴 ↔ ∀𝑥((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥 (𝑥𝑦) = ∅))
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem dfepfr
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 dffr2 5642 . 2 ( E Fr 𝐴 ↔ ∀𝑥((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥 {𝑧𝑥𝑧 E 𝑦} = ∅))
2 epel 5585 . . . . . . . 8 (𝑧 E 𝑦𝑧𝑦)
32rabbii 3435 . . . . . . 7 {𝑧𝑥𝑧 E 𝑦} = {𝑧𝑥𝑧𝑦}
4 dfin5 3955 . . . . . . 7 (𝑥𝑦) = {𝑧𝑥𝑧𝑦}
53, 4eqtr4i 2759 . . . . . 6 {𝑧𝑥𝑧 E 𝑦} = (𝑥𝑦)
65eqeq1i 2733 . . . . 5 ({𝑧𝑥𝑧 E 𝑦} = ∅ ↔ (𝑥𝑦) = ∅)
76rexbii 3091 . . . 4 (∃𝑦𝑥 {𝑧𝑥𝑧 E 𝑦} = ∅ ↔ ∃𝑦𝑥 (𝑥𝑦) = ∅)
87imbi2i 336 . . 3 (((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥 {𝑧𝑥𝑧 E 𝑦} = ∅) ↔ ((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥 (𝑥𝑦) = ∅))
98albii 1814 . 2 (∀𝑥((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥 {𝑧𝑥𝑧 E 𝑦} = ∅) ↔ ∀𝑥((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥 (𝑥𝑦) = ∅))
101, 9bitri 275 1 ( E Fr 𝐴 ↔ ∀𝑥((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥 (𝑥𝑦) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wal 1532   = wceq 1534  wne 2937  wrex 3067  {crab 3429  cin 3946  wss 3947  c0 4323   class class class wbr 5148   E cep 5581   Fr wfr 5630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3430  df-v 3473  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-br 5149  df-opab 5211  df-eprel 5582  df-fr 5633
This theorem is referenced by:  onfr  6408  zfregfr  9629  onfrALTlem3  43983  onfrALT  43988  onfrALTlem3VD  44326  onfrALTVD  44330
  Copyright terms: Public domain W3C validator