MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfepfr Structured version   Visualization version   GIF version

Theorem dfepfr 5573
Description: An alternate way of saying that the membership relation is well-founded. (Contributed by NM, 17-Feb-2004.) (Revised by Mario Carneiro, 23-Jun-2015.)
Assertion
Ref Expression
dfepfr ( E Fr 𝐴 ↔ ∀𝑥((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥 (𝑥𝑦) = ∅))
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem dfepfr
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 dffr2 5552 . 2 ( E Fr 𝐴 ↔ ∀𝑥((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥 {𝑧𝑥𝑧 E 𝑦} = ∅))
2 epel 5497 . . . . . . . 8 (𝑧 E 𝑦𝑧𝑦)
32rabbii 3405 . . . . . . 7 {𝑧𝑥𝑧 E 𝑦} = {𝑧𝑥𝑧𝑦}
4 dfin5 3899 . . . . . . 7 (𝑥𝑦) = {𝑧𝑥𝑧𝑦}
53, 4eqtr4i 2770 . . . . . 6 {𝑧𝑥𝑧 E 𝑦} = (𝑥𝑦)
65eqeq1i 2744 . . . . 5 ({𝑧𝑥𝑧 E 𝑦} = ∅ ↔ (𝑥𝑦) = ∅)
76rexbii 3179 . . . 4 (∃𝑦𝑥 {𝑧𝑥𝑧 E 𝑦} = ∅ ↔ ∃𝑦𝑥 (𝑥𝑦) = ∅)
87imbi2i 335 . . 3 (((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥 {𝑧𝑥𝑧 E 𝑦} = ∅) ↔ ((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥 (𝑥𝑦) = ∅))
98albii 1825 . 2 (∀𝑥((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥 {𝑧𝑥𝑧 E 𝑦} = ∅) ↔ ∀𝑥((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥 (𝑥𝑦) = ∅))
101, 9bitri 274 1 ( E Fr 𝐴 ↔ ∀𝑥((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥 (𝑥𝑦) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wal 1539   = wceq 1541  wne 2944  wrex 3066  {crab 3069  cin 3890  wss 3891  c0 4261   class class class wbr 5078   E cep 5493   Fr wfr 5540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pr 5355
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-ne 2945  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-in 3898  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573  df-br 5079  df-opab 5141  df-eprel 5494  df-fr 5543
This theorem is referenced by:  onfr  6302  zfregfr  9324  onfrALTlem3  42117  onfrALT  42122  onfrALTlem3VD  42460  onfrALTVD  42464
  Copyright terms: Public domain W3C validator