Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dfepfr | Structured version Visualization version GIF version |
Description: An alternate way of saying that the membership relation is well-founded. (Contributed by NM, 17-Feb-2004.) (Revised by Mario Carneiro, 23-Jun-2015.) |
Ref | Expression |
---|---|
dfepfr | ⊢ ( E Fr 𝐴 ↔ ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 (𝑥 ∩ 𝑦) = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dffr2 5564 | . 2 ⊢ ( E Fr 𝐴 ↔ ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 {𝑧 ∈ 𝑥 ∣ 𝑧 E 𝑦} = ∅)) | |
2 | epel 5509 | . . . . . . . 8 ⊢ (𝑧 E 𝑦 ↔ 𝑧 ∈ 𝑦) | |
3 | 2 | rabbii 3415 | . . . . . . 7 ⊢ {𝑧 ∈ 𝑥 ∣ 𝑧 E 𝑦} = {𝑧 ∈ 𝑥 ∣ 𝑧 ∈ 𝑦} |
4 | dfin5 3900 | . . . . . . 7 ⊢ (𝑥 ∩ 𝑦) = {𝑧 ∈ 𝑥 ∣ 𝑧 ∈ 𝑦} | |
5 | 3, 4 | eqtr4i 2767 | . . . . . 6 ⊢ {𝑧 ∈ 𝑥 ∣ 𝑧 E 𝑦} = (𝑥 ∩ 𝑦) |
6 | 5 | eqeq1i 2741 | . . . . 5 ⊢ ({𝑧 ∈ 𝑥 ∣ 𝑧 E 𝑦} = ∅ ↔ (𝑥 ∩ 𝑦) = ∅) |
7 | 6 | rexbii 3094 | . . . 4 ⊢ (∃𝑦 ∈ 𝑥 {𝑧 ∈ 𝑥 ∣ 𝑧 E 𝑦} = ∅ ↔ ∃𝑦 ∈ 𝑥 (𝑥 ∩ 𝑦) = ∅) |
8 | 7 | imbi2i 336 | . . 3 ⊢ (((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 {𝑧 ∈ 𝑥 ∣ 𝑧 E 𝑦} = ∅) ↔ ((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 (𝑥 ∩ 𝑦) = ∅)) |
9 | 8 | albii 1819 | . 2 ⊢ (∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 {𝑧 ∈ 𝑥 ∣ 𝑧 E 𝑦} = ∅) ↔ ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 (𝑥 ∩ 𝑦) = ∅)) |
10 | 1, 9 | bitri 275 | 1 ⊢ ( E Fr 𝐴 ↔ ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 (𝑥 ∩ 𝑦) = ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∀wal 1537 = wceq 1539 ≠ wne 2941 ∃wrex 3071 {crab 3303 ∩ cin 3891 ⊆ wss 3892 ∅c0 4262 class class class wbr 5081 E cep 5505 Fr wfr 5552 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3306 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-br 5082 df-opab 5144 df-eprel 5506 df-fr 5555 |
This theorem is referenced by: onfr 6320 zfregfr 9411 onfrALTlem3 42377 onfrALT 42382 onfrALTlem3VD 42720 onfrALTVD 42724 |
Copyright terms: Public domain | W3C validator |