| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfepfr | Structured version Visualization version GIF version | ||
| Description: An alternate way of saying that the membership relation is well-founded. (Contributed by NM, 17-Feb-2004.) (Revised by Mario Carneiro, 23-Jun-2015.) |
| Ref | Expression |
|---|---|
| dfepfr | ⊢ ( E Fr 𝐴 ↔ ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 (𝑥 ∩ 𝑦) = ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dffr2 5646 | . 2 ⊢ ( E Fr 𝐴 ↔ ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 {𝑧 ∈ 𝑥 ∣ 𝑧 E 𝑦} = ∅)) | |
| 2 | epel 5587 | . . . . . . . 8 ⊢ (𝑧 E 𝑦 ↔ 𝑧 ∈ 𝑦) | |
| 3 | 2 | rabbii 3442 | . . . . . . 7 ⊢ {𝑧 ∈ 𝑥 ∣ 𝑧 E 𝑦} = {𝑧 ∈ 𝑥 ∣ 𝑧 ∈ 𝑦} |
| 4 | dfin5 3959 | . . . . . . 7 ⊢ (𝑥 ∩ 𝑦) = {𝑧 ∈ 𝑥 ∣ 𝑧 ∈ 𝑦} | |
| 5 | 3, 4 | eqtr4i 2768 | . . . . . 6 ⊢ {𝑧 ∈ 𝑥 ∣ 𝑧 E 𝑦} = (𝑥 ∩ 𝑦) |
| 6 | 5 | eqeq1i 2742 | . . . . 5 ⊢ ({𝑧 ∈ 𝑥 ∣ 𝑧 E 𝑦} = ∅ ↔ (𝑥 ∩ 𝑦) = ∅) |
| 7 | 6 | rexbii 3094 | . . . 4 ⊢ (∃𝑦 ∈ 𝑥 {𝑧 ∈ 𝑥 ∣ 𝑧 E 𝑦} = ∅ ↔ ∃𝑦 ∈ 𝑥 (𝑥 ∩ 𝑦) = ∅) |
| 8 | 7 | imbi2i 336 | . . 3 ⊢ (((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 {𝑧 ∈ 𝑥 ∣ 𝑧 E 𝑦} = ∅) ↔ ((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 (𝑥 ∩ 𝑦) = ∅)) |
| 9 | 8 | albii 1819 | . 2 ⊢ (∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 {𝑧 ∈ 𝑥 ∣ 𝑧 E 𝑦} = ∅) ↔ ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 (𝑥 ∩ 𝑦) = ∅)) |
| 10 | 1, 9 | bitri 275 | 1 ⊢ ( E Fr 𝐴 ↔ ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 (𝑥 ∩ 𝑦) = ∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 = wceq 1540 ≠ wne 2940 ∃wrex 3070 {crab 3436 ∩ cin 3950 ⊆ wss 3951 ∅c0 4333 class class class wbr 5143 E cep 5583 Fr wfr 5634 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-br 5144 df-opab 5206 df-eprel 5584 df-fr 5637 |
| This theorem is referenced by: onfr 6423 zfregfr 9645 onfrALTlem3 44564 onfrALT 44569 onfrALTlem3VD 44907 onfrALTVD 44911 |
| Copyright terms: Public domain | W3C validator |