![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfepfr | Structured version Visualization version GIF version |
Description: An alternate way of saying that the membership relation is well-founded. (Contributed by NM, 17-Feb-2004.) (Revised by Mario Carneiro, 23-Jun-2015.) |
Ref | Expression |
---|---|
dfepfr | ⊢ ( E Fr 𝐴 ↔ ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 (𝑥 ∩ 𝑦) = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dffr2 5650 | . 2 ⊢ ( E Fr 𝐴 ↔ ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 {𝑧 ∈ 𝑥 ∣ 𝑧 E 𝑦} = ∅)) | |
2 | epel 5592 | . . . . . . . 8 ⊢ (𝑧 E 𝑦 ↔ 𝑧 ∈ 𝑦) | |
3 | 2 | rabbii 3439 | . . . . . . 7 ⊢ {𝑧 ∈ 𝑥 ∣ 𝑧 E 𝑦} = {𝑧 ∈ 𝑥 ∣ 𝑧 ∈ 𝑦} |
4 | dfin5 3971 | . . . . . . 7 ⊢ (𝑥 ∩ 𝑦) = {𝑧 ∈ 𝑥 ∣ 𝑧 ∈ 𝑦} | |
5 | 3, 4 | eqtr4i 2766 | . . . . . 6 ⊢ {𝑧 ∈ 𝑥 ∣ 𝑧 E 𝑦} = (𝑥 ∩ 𝑦) |
6 | 5 | eqeq1i 2740 | . . . . 5 ⊢ ({𝑧 ∈ 𝑥 ∣ 𝑧 E 𝑦} = ∅ ↔ (𝑥 ∩ 𝑦) = ∅) |
7 | 6 | rexbii 3092 | . . . 4 ⊢ (∃𝑦 ∈ 𝑥 {𝑧 ∈ 𝑥 ∣ 𝑧 E 𝑦} = ∅ ↔ ∃𝑦 ∈ 𝑥 (𝑥 ∩ 𝑦) = ∅) |
8 | 7 | imbi2i 336 | . . 3 ⊢ (((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 {𝑧 ∈ 𝑥 ∣ 𝑧 E 𝑦} = ∅) ↔ ((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 (𝑥 ∩ 𝑦) = ∅)) |
9 | 8 | albii 1816 | . 2 ⊢ (∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 {𝑧 ∈ 𝑥 ∣ 𝑧 E 𝑦} = ∅) ↔ ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 (𝑥 ∩ 𝑦) = ∅)) |
10 | 1, 9 | bitri 275 | 1 ⊢ ( E Fr 𝐴 ↔ ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 (𝑥 ∩ 𝑦) = ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1535 = wceq 1537 ≠ wne 2938 ∃wrex 3068 {crab 3433 ∩ cin 3962 ⊆ wss 3963 ∅c0 4339 class class class wbr 5148 E cep 5588 Fr wfr 5638 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-eprel 5589 df-fr 5641 |
This theorem is referenced by: onfr 6425 zfregfr 9643 onfrALTlem3 44542 onfrALT 44547 onfrALTlem3VD 44885 onfrALTVD 44889 |
Copyright terms: Public domain | W3C validator |