MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fr0 Structured version   Visualization version   GIF version

Theorem fr0 5678
Description: Any relation is well-founded on the empty set. (Contributed by NM, 17-Sep-1993.)
Assertion
Ref Expression
fr0 𝑅 Fr ∅

Proof of Theorem fr0
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dffr2 5661 . 2 (𝑅 Fr ∅ ↔ ∀𝑥((𝑥 ⊆ ∅ ∧ 𝑥 ≠ ∅) → ∃𝑦𝑥 {𝑧𝑥𝑧𝑅𝑦} = ∅))
2 ss0 4425 . . . . 5 (𝑥 ⊆ ∅ → 𝑥 = ∅)
32a1d 25 . . . 4 (𝑥 ⊆ ∅ → (¬ ∃𝑦𝑥 {𝑧𝑥𝑧𝑅𝑦} = ∅ → 𝑥 = ∅))
43necon1ad 2963 . . 3 (𝑥 ⊆ ∅ → (𝑥 ≠ ∅ → ∃𝑦𝑥 {𝑧𝑥𝑧𝑅𝑦} = ∅))
54imp 406 . 2 ((𝑥 ⊆ ∅ ∧ 𝑥 ≠ ∅) → ∃𝑦𝑥 {𝑧𝑥𝑧𝑅𝑦} = ∅)
61, 5mpgbir 1797 1 𝑅 Fr ∅
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wne 2946  wrex 3076  {crab 3443  wss 3976  c0 4352   class class class wbr 5166   Fr wfr 5649
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-fr 5652
This theorem is referenced by:  we0  5695  frsn  5787  frfi  9349  ifr0  44419
  Copyright terms: Public domain W3C validator