MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fr0 Structured version   Visualization version   GIF version

Theorem fr0 5536
Description: Any relation is well-founded on the empty set. (Contributed by NM, 17-Sep-1993.)
Assertion
Ref Expression
fr0 𝑅 Fr ∅

Proof of Theorem fr0
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dffr2 5522 . 2 (𝑅 Fr ∅ ↔ ∀𝑥((𝑥 ⊆ ∅ ∧ 𝑥 ≠ ∅) → ∃𝑦𝑥 {𝑧𝑥𝑧𝑅𝑦} = ∅))
2 ss0 4354 . . . . 5 (𝑥 ⊆ ∅ → 𝑥 = ∅)
32a1d 25 . . . 4 (𝑥 ⊆ ∅ → (¬ ∃𝑦𝑥 {𝑧𝑥𝑧𝑅𝑦} = ∅ → 𝑥 = ∅))
43necon1ad 3035 . . 3 (𝑥 ⊆ ∅ → (𝑥 ≠ ∅ → ∃𝑦𝑥 {𝑧𝑥𝑧𝑅𝑦} = ∅))
54imp 409 . 2 ((𝑥 ⊆ ∅ ∧ 𝑥 ≠ ∅) → ∃𝑦𝑥 {𝑧𝑥𝑧𝑅𝑦} = ∅)
61, 5mpgbir 1800 1 𝑅 Fr ∅
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398   = wceq 1537  wne 3018  wrex 3141  {crab 3144  wss 3938  c0 4293   class class class wbr 5068   Fr wfr 5513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-rab 3149  df-dif 3941  df-in 3945  df-ss 3954  df-nul 4294  df-fr 5516
This theorem is referenced by:  we0  5552  frsn  5641  frfi  8765  ifr0  40789
  Copyright terms: Public domain W3C validator