Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fr0 | Structured version Visualization version GIF version |
Description: Any relation is well-founded on the empty set. (Contributed by NM, 17-Sep-1993.) |
Ref | Expression |
---|---|
fr0 | ⊢ 𝑅 Fr ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dffr2 5552 | . 2 ⊢ (𝑅 Fr ∅ ↔ ∀𝑥((𝑥 ⊆ ∅ ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 {𝑧 ∈ 𝑥 ∣ 𝑧𝑅𝑦} = ∅)) | |
2 | ss0 4337 | . . . . 5 ⊢ (𝑥 ⊆ ∅ → 𝑥 = ∅) | |
3 | 2 | a1d 25 | . . . 4 ⊢ (𝑥 ⊆ ∅ → (¬ ∃𝑦 ∈ 𝑥 {𝑧 ∈ 𝑥 ∣ 𝑧𝑅𝑦} = ∅ → 𝑥 = ∅)) |
4 | 3 | necon1ad 2961 | . . 3 ⊢ (𝑥 ⊆ ∅ → (𝑥 ≠ ∅ → ∃𝑦 ∈ 𝑥 {𝑧 ∈ 𝑥 ∣ 𝑧𝑅𝑦} = ∅)) |
5 | 4 | imp 406 | . 2 ⊢ ((𝑥 ⊆ ∅ ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 {𝑧 ∈ 𝑥 ∣ 𝑧𝑅𝑦} = ∅) |
6 | 1, 5 | mpgbir 1805 | 1 ⊢ 𝑅 Fr ∅ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ≠ wne 2944 ∃wrex 3066 {crab 3069 ⊆ wss 3891 ∅c0 4261 class class class wbr 5078 Fr wfr 5540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-ne 2945 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-br 5079 df-fr 5543 |
This theorem is referenced by: we0 5583 frsn 5673 frfi 9020 ifr0 42021 |
Copyright terms: Public domain | W3C validator |