![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fr0 | Structured version Visualization version GIF version |
Description: Any relation is well-founded on the empty set. (Contributed by NM, 17-Sep-1993.) |
Ref | Expression |
---|---|
fr0 | ⊢ 𝑅 Fr ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dffr2 5661 | . 2 ⊢ (𝑅 Fr ∅ ↔ ∀𝑥((𝑥 ⊆ ∅ ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 {𝑧 ∈ 𝑥 ∣ 𝑧𝑅𝑦} = ∅)) | |
2 | ss0 4425 | . . . . 5 ⊢ (𝑥 ⊆ ∅ → 𝑥 = ∅) | |
3 | 2 | a1d 25 | . . . 4 ⊢ (𝑥 ⊆ ∅ → (¬ ∃𝑦 ∈ 𝑥 {𝑧 ∈ 𝑥 ∣ 𝑧𝑅𝑦} = ∅ → 𝑥 = ∅)) |
4 | 3 | necon1ad 2963 | . . 3 ⊢ (𝑥 ⊆ ∅ → (𝑥 ≠ ∅ → ∃𝑦 ∈ 𝑥 {𝑧 ∈ 𝑥 ∣ 𝑧𝑅𝑦} = ∅)) |
5 | 4 | imp 406 | . 2 ⊢ ((𝑥 ⊆ ∅ ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 {𝑧 ∈ 𝑥 ∣ 𝑧𝑅𝑦} = ∅) |
6 | 1, 5 | mpgbir 1797 | 1 ⊢ 𝑅 Fr ∅ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1537 ≠ wne 2946 ∃wrex 3076 {crab 3443 ⊆ wss 3976 ∅c0 4352 class class class wbr 5166 Fr wfr 5649 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-fr 5652 |
This theorem is referenced by: we0 5695 frsn 5787 frfi 9349 ifr0 44419 |
Copyright terms: Public domain | W3C validator |