| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fr0 | Structured version Visualization version GIF version | ||
| Description: Any relation is well-founded on the empty set. (Contributed by NM, 17-Sep-1993.) |
| Ref | Expression |
|---|---|
| fr0 | ⊢ 𝑅 Fr ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dffr2 5620 | . 2 ⊢ (𝑅 Fr ∅ ↔ ∀𝑥((𝑥 ⊆ ∅ ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 {𝑧 ∈ 𝑥 ∣ 𝑧𝑅𝑦} = ∅)) | |
| 2 | ss0 4382 | . . . . 5 ⊢ (𝑥 ⊆ ∅ → 𝑥 = ∅) | |
| 3 | 2 | a1d 25 | . . . 4 ⊢ (𝑥 ⊆ ∅ → (¬ ∃𝑦 ∈ 𝑥 {𝑧 ∈ 𝑥 ∣ 𝑧𝑅𝑦} = ∅ → 𝑥 = ∅)) |
| 4 | 3 | necon1ad 2950 | . . 3 ⊢ (𝑥 ⊆ ∅ → (𝑥 ≠ ∅ → ∃𝑦 ∈ 𝑥 {𝑧 ∈ 𝑥 ∣ 𝑧𝑅𝑦} = ∅)) |
| 5 | 4 | imp 406 | . 2 ⊢ ((𝑥 ⊆ ∅ ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 {𝑧 ∈ 𝑥 ∣ 𝑧𝑅𝑦} = ∅) |
| 6 | 1, 5 | mpgbir 1799 | 1 ⊢ 𝑅 Fr ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ≠ wne 2933 ∃wrex 3061 {crab 3420 ⊆ wss 3931 ∅c0 4313 class class class wbr 5124 Fr wfr 5608 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-fr 5611 |
| This theorem is referenced by: we0 5654 frsn 5747 frfi 9298 ifr0 44441 |
| Copyright terms: Public domain | W3C validator |