Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fr0 | Structured version Visualization version GIF version |
Description: Any relation is well-founded on the empty set. (Contributed by NM, 17-Sep-1993.) |
Ref | Expression |
---|---|
fr0 | ⊢ 𝑅 Fr ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dffr2 5553 | . 2 ⊢ (𝑅 Fr ∅ ↔ ∀𝑥((𝑥 ⊆ ∅ ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 {𝑧 ∈ 𝑥 ∣ 𝑧𝑅𝑦} = ∅)) | |
2 | ss0 4332 | . . . . 5 ⊢ (𝑥 ⊆ ∅ → 𝑥 = ∅) | |
3 | 2 | a1d 25 | . . . 4 ⊢ (𝑥 ⊆ ∅ → (¬ ∃𝑦 ∈ 𝑥 {𝑧 ∈ 𝑥 ∣ 𝑧𝑅𝑦} = ∅ → 𝑥 = ∅)) |
4 | 3 | necon1ad 2960 | . . 3 ⊢ (𝑥 ⊆ ∅ → (𝑥 ≠ ∅ → ∃𝑦 ∈ 𝑥 {𝑧 ∈ 𝑥 ∣ 𝑧𝑅𝑦} = ∅)) |
5 | 4 | imp 407 | . 2 ⊢ ((𝑥 ⊆ ∅ ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 {𝑧 ∈ 𝑥 ∣ 𝑧𝑅𝑦} = ∅) |
6 | 1, 5 | mpgbir 1802 | 1 ⊢ 𝑅 Fr ∅ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1539 ≠ wne 2943 ∃wrex 3065 {crab 3068 ⊆ wss 3887 ∅c0 4256 class class class wbr 5074 Fr wfr 5541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-fr 5544 |
This theorem is referenced by: we0 5584 frsn 5674 frfi 9059 ifr0 42068 |
Copyright terms: Public domain | W3C validator |