![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fr0 | Structured version Visualization version GIF version |
Description: Any relation is well-founded on the empty set. (Contributed by NM, 17-Sep-1993.) |
Ref | Expression |
---|---|
fr0 | ⊢ 𝑅 Fr ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dffr2 5641 | . 2 ⊢ (𝑅 Fr ∅ ↔ ∀𝑥((𝑥 ⊆ ∅ ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 {𝑧 ∈ 𝑥 ∣ 𝑧𝑅𝑦} = ∅)) | |
2 | ss0 4399 | . . . . 5 ⊢ (𝑥 ⊆ ∅ → 𝑥 = ∅) | |
3 | 2 | a1d 25 | . . . 4 ⊢ (𝑥 ⊆ ∅ → (¬ ∃𝑦 ∈ 𝑥 {𝑧 ∈ 𝑥 ∣ 𝑧𝑅𝑦} = ∅ → 𝑥 = ∅)) |
4 | 3 | necon1ad 2958 | . . 3 ⊢ (𝑥 ⊆ ∅ → (𝑥 ≠ ∅ → ∃𝑦 ∈ 𝑥 {𝑧 ∈ 𝑥 ∣ 𝑧𝑅𝑦} = ∅)) |
5 | 4 | imp 408 | . 2 ⊢ ((𝑥 ⊆ ∅ ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 {𝑧 ∈ 𝑥 ∣ 𝑧𝑅𝑦} = ∅) |
6 | 1, 5 | mpgbir 1802 | 1 ⊢ 𝑅 Fr ∅ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 397 = wceq 1542 ≠ wne 2941 ∃wrex 3071 {crab 3433 ⊆ wss 3949 ∅c0 4323 class class class wbr 5149 Fr wfr 5629 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5150 df-fr 5632 |
This theorem is referenced by: we0 5672 frsn 5764 frfi 9288 ifr0 43209 |
Copyright terms: Public domain | W3C validator |