MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dffr3 Structured version   Visualization version   GIF version

Theorem dffr3 6052
Description: Alternate definition of well-founded relation. Definition 6.21 of [TakeutiZaring] p. 30. (Contributed by NM, 23-Apr-2004.) (Revised by Mario Carneiro, 23-Jun-2015.)
Assertion
Ref Expression
dffr3 (𝑅 Fr 𝐴 ↔ ∀𝑥((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥 (𝑥 ∩ (𝑅 “ {𝑦})) = ∅))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝑅,𝑦

Proof of Theorem dffr3
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 dffr2 5598 . 2 (𝑅 Fr 𝐴 ↔ ∀𝑥((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥 {𝑧𝑥𝑧𝑅𝑦} = ∅))
2 iniseg 6050 . . . . . . . . 9 (𝑦 ∈ V → (𝑅 “ {𝑦}) = {𝑧𝑧𝑅𝑦})
32elv 3452 . . . . . . . 8 (𝑅 “ {𝑦}) = {𝑧𝑧𝑅𝑦}
43ineq2i 4170 . . . . . . 7 (𝑥 ∩ (𝑅 “ {𝑦})) = (𝑥 ∩ {𝑧𝑧𝑅𝑦})
5 dfrab3 4270 . . . . . . 7 {𝑧𝑥𝑧𝑅𝑦} = (𝑥 ∩ {𝑧𝑧𝑅𝑦})
64, 5eqtr4i 2768 . . . . . 6 (𝑥 ∩ (𝑅 “ {𝑦})) = {𝑧𝑥𝑧𝑅𝑦}
76eqeq1i 2742 . . . . 5 ((𝑥 ∩ (𝑅 “ {𝑦})) = ∅ ↔ {𝑧𝑥𝑧𝑅𝑦} = ∅)
87rexbii 3098 . . . 4 (∃𝑦𝑥 (𝑥 ∩ (𝑅 “ {𝑦})) = ∅ ↔ ∃𝑦𝑥 {𝑧𝑥𝑧𝑅𝑦} = ∅)
98imbi2i 336 . . 3 (((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥 (𝑥 ∩ (𝑅 “ {𝑦})) = ∅) ↔ ((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥 {𝑧𝑥𝑧𝑅𝑦} = ∅))
109albii 1822 . 2 (∀𝑥((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥 (𝑥 ∩ (𝑅 “ {𝑦})) = ∅) ↔ ∀𝑥((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥 {𝑧𝑥𝑧𝑅𝑦} = ∅))
111, 10bitr4i 278 1 (𝑅 Fr 𝐴 ↔ ∀𝑥((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥 (𝑥 ∩ (𝑅 “ {𝑦})) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  wal 1540   = wceq 1542  {cab 2714  wne 2944  wrex 3074  {crab 3408  Vcvv 3446  cin 3910  wss 3911  c0 4283  {csn 4587   class class class wbr 5106   Fr wfr 5586  ccnv 5633  cima 5637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2708  ax-sep 5257  ax-nul 5264  ax-pr 5385
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2715  df-cleq 2729  df-clel 2815  df-ral 3066  df-rex 3075  df-rab 3409  df-v 3448  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-sn 4588  df-pr 4590  df-op 4594  df-br 5107  df-opab 5169  df-fr 5589  df-xp 5640  df-cnv 5642  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647
This theorem is referenced by:  dffr4  6274  isofrlem  7286
  Copyright terms: Public domain W3C validator