![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dffr3 | Structured version Visualization version GIF version |
Description: Alternate definition of well-founded relation. Definition 6.21 of [TakeutiZaring] p. 30. (Contributed by NM, 23-Apr-2004.) (Revised by Mario Carneiro, 23-Jun-2015.) |
Ref | Expression |
---|---|
dffr3 | ⊢ (𝑅 Fr 𝐴 ↔ ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 (𝑥 ∩ (◡𝑅 “ {𝑦})) = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dffr2 5598 | . 2 ⊢ (𝑅 Fr 𝐴 ↔ ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 {𝑧 ∈ 𝑥 ∣ 𝑧𝑅𝑦} = ∅)) | |
2 | iniseg 6050 | . . . . . . . . 9 ⊢ (𝑦 ∈ V → (◡𝑅 “ {𝑦}) = {𝑧 ∣ 𝑧𝑅𝑦}) | |
3 | 2 | elv 3452 | . . . . . . . 8 ⊢ (◡𝑅 “ {𝑦}) = {𝑧 ∣ 𝑧𝑅𝑦} |
4 | 3 | ineq2i 4170 | . . . . . . 7 ⊢ (𝑥 ∩ (◡𝑅 “ {𝑦})) = (𝑥 ∩ {𝑧 ∣ 𝑧𝑅𝑦}) |
5 | dfrab3 4270 | . . . . . . 7 ⊢ {𝑧 ∈ 𝑥 ∣ 𝑧𝑅𝑦} = (𝑥 ∩ {𝑧 ∣ 𝑧𝑅𝑦}) | |
6 | 4, 5 | eqtr4i 2768 | . . . . . 6 ⊢ (𝑥 ∩ (◡𝑅 “ {𝑦})) = {𝑧 ∈ 𝑥 ∣ 𝑧𝑅𝑦} |
7 | 6 | eqeq1i 2742 | . . . . 5 ⊢ ((𝑥 ∩ (◡𝑅 “ {𝑦})) = ∅ ↔ {𝑧 ∈ 𝑥 ∣ 𝑧𝑅𝑦} = ∅) |
8 | 7 | rexbii 3098 | . . . 4 ⊢ (∃𝑦 ∈ 𝑥 (𝑥 ∩ (◡𝑅 “ {𝑦})) = ∅ ↔ ∃𝑦 ∈ 𝑥 {𝑧 ∈ 𝑥 ∣ 𝑧𝑅𝑦} = ∅) |
9 | 8 | imbi2i 336 | . . 3 ⊢ (((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 (𝑥 ∩ (◡𝑅 “ {𝑦})) = ∅) ↔ ((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 {𝑧 ∈ 𝑥 ∣ 𝑧𝑅𝑦} = ∅)) |
10 | 9 | albii 1822 | . 2 ⊢ (∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 (𝑥 ∩ (◡𝑅 “ {𝑦})) = ∅) ↔ ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 {𝑧 ∈ 𝑥 ∣ 𝑧𝑅𝑦} = ∅)) |
11 | 1, 10 | bitr4i 278 | 1 ⊢ (𝑅 Fr 𝐴 ↔ ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 (𝑥 ∩ (◡𝑅 “ {𝑦})) = ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∀wal 1540 = wceq 1542 {cab 2714 ≠ wne 2944 ∃wrex 3074 {crab 3408 Vcvv 3446 ∩ cin 3910 ⊆ wss 3911 ∅c0 4283 {csn 4587 class class class wbr 5106 Fr wfr 5586 ◡ccnv 5633 “ cima 5637 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2708 ax-sep 5257 ax-nul 5264 ax-pr 5385 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2715 df-cleq 2729 df-clel 2815 df-ral 3066 df-rex 3075 df-rab 3409 df-v 3448 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-sn 4588 df-pr 4590 df-op 4594 df-br 5107 df-opab 5169 df-fr 5589 df-xp 5640 df-cnv 5642 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 |
This theorem is referenced by: dffr4 6274 isofrlem 7286 |
Copyright terms: Public domain | W3C validator |