![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dffr3 | Structured version Visualization version GIF version |
Description: Alternate definition of well-founded relation. Definition 6.21 of [TakeutiZaring] p. 30. (Contributed by NM, 23-Apr-2004.) (Revised by Mario Carneiro, 23-Jun-2015.) |
Ref | Expression |
---|---|
dffr3 | ⊢ (𝑅 Fr 𝐴 ↔ ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 (𝑥 ∩ (◡𝑅 “ {𝑦})) = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dffr2 5650 | . 2 ⊢ (𝑅 Fr 𝐴 ↔ ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 {𝑧 ∈ 𝑥 ∣ 𝑧𝑅𝑦} = ∅)) | |
2 | iniseg 6118 | . . . . . . . . 9 ⊢ (𝑦 ∈ V → (◡𝑅 “ {𝑦}) = {𝑧 ∣ 𝑧𝑅𝑦}) | |
3 | 2 | elv 3483 | . . . . . . . 8 ⊢ (◡𝑅 “ {𝑦}) = {𝑧 ∣ 𝑧𝑅𝑦} |
4 | 3 | ineq2i 4225 | . . . . . . 7 ⊢ (𝑥 ∩ (◡𝑅 “ {𝑦})) = (𝑥 ∩ {𝑧 ∣ 𝑧𝑅𝑦}) |
5 | dfrab3 4325 | . . . . . . 7 ⊢ {𝑧 ∈ 𝑥 ∣ 𝑧𝑅𝑦} = (𝑥 ∩ {𝑧 ∣ 𝑧𝑅𝑦}) | |
6 | 4, 5 | eqtr4i 2766 | . . . . . 6 ⊢ (𝑥 ∩ (◡𝑅 “ {𝑦})) = {𝑧 ∈ 𝑥 ∣ 𝑧𝑅𝑦} |
7 | 6 | eqeq1i 2740 | . . . . 5 ⊢ ((𝑥 ∩ (◡𝑅 “ {𝑦})) = ∅ ↔ {𝑧 ∈ 𝑥 ∣ 𝑧𝑅𝑦} = ∅) |
8 | 7 | rexbii 3092 | . . . 4 ⊢ (∃𝑦 ∈ 𝑥 (𝑥 ∩ (◡𝑅 “ {𝑦})) = ∅ ↔ ∃𝑦 ∈ 𝑥 {𝑧 ∈ 𝑥 ∣ 𝑧𝑅𝑦} = ∅) |
9 | 8 | imbi2i 336 | . . 3 ⊢ (((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 (𝑥 ∩ (◡𝑅 “ {𝑦})) = ∅) ↔ ((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 {𝑧 ∈ 𝑥 ∣ 𝑧𝑅𝑦} = ∅)) |
10 | 9 | albii 1816 | . 2 ⊢ (∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 (𝑥 ∩ (◡𝑅 “ {𝑦})) = ∅) ↔ ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 {𝑧 ∈ 𝑥 ∣ 𝑧𝑅𝑦} = ∅)) |
11 | 1, 10 | bitr4i 278 | 1 ⊢ (𝑅 Fr 𝐴 ↔ ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 (𝑥 ∩ (◡𝑅 “ {𝑦})) = ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1535 = wceq 1537 {cab 2712 ≠ wne 2938 ∃wrex 3068 {crab 3433 Vcvv 3478 ∩ cin 3962 ⊆ wss 3963 ∅c0 4339 {csn 4631 class class class wbr 5148 Fr wfr 5638 ◡ccnv 5688 “ cima 5692 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-fr 5641 df-xp 5695 df-cnv 5697 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 |
This theorem is referenced by: dffr4 6343 isofrlem 7360 |
Copyright terms: Public domain | W3C validator |