![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dffr3 | Structured version Visualization version GIF version |
Description: Alternate definition of well-founded relation. Definition 6.21 of [TakeutiZaring] p. 30. (Contributed by NM, 23-Apr-2004.) (Revised by Mario Carneiro, 23-Jun-2015.) |
Ref | Expression |
---|---|
dffr3 | ⊢ (𝑅 Fr 𝐴 ↔ ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 (𝑥 ∩ (◡𝑅 “ {𝑦})) = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dffr2 5408 | . 2 ⊢ (𝑅 Fr 𝐴 ↔ ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 {𝑧 ∈ 𝑥 ∣ 𝑧𝑅𝑦} = ∅)) | |
2 | iniseg 5836 | . . . . . . . . 9 ⊢ (𝑦 ∈ V → (◡𝑅 “ {𝑦}) = {𝑧 ∣ 𝑧𝑅𝑦}) | |
3 | 2 | elv 3442 | . . . . . . . 8 ⊢ (◡𝑅 “ {𝑦}) = {𝑧 ∣ 𝑧𝑅𝑦} |
4 | 3 | ineq2i 4106 | . . . . . . 7 ⊢ (𝑥 ∩ (◡𝑅 “ {𝑦})) = (𝑥 ∩ {𝑧 ∣ 𝑧𝑅𝑦}) |
5 | dfrab3 4198 | . . . . . . 7 ⊢ {𝑧 ∈ 𝑥 ∣ 𝑧𝑅𝑦} = (𝑥 ∩ {𝑧 ∣ 𝑧𝑅𝑦}) | |
6 | 4, 5 | eqtr4i 2822 | . . . . . 6 ⊢ (𝑥 ∩ (◡𝑅 “ {𝑦})) = {𝑧 ∈ 𝑥 ∣ 𝑧𝑅𝑦} |
7 | 6 | eqeq1i 2800 | . . . . 5 ⊢ ((𝑥 ∩ (◡𝑅 “ {𝑦})) = ∅ ↔ {𝑧 ∈ 𝑥 ∣ 𝑧𝑅𝑦} = ∅) |
8 | 7 | rexbii 3211 | . . . 4 ⊢ (∃𝑦 ∈ 𝑥 (𝑥 ∩ (◡𝑅 “ {𝑦})) = ∅ ↔ ∃𝑦 ∈ 𝑥 {𝑧 ∈ 𝑥 ∣ 𝑧𝑅𝑦} = ∅) |
9 | 8 | imbi2i 337 | . . 3 ⊢ (((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 (𝑥 ∩ (◡𝑅 “ {𝑦})) = ∅) ↔ ((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 {𝑧 ∈ 𝑥 ∣ 𝑧𝑅𝑦} = ∅)) |
10 | 9 | albii 1801 | . 2 ⊢ (∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 (𝑥 ∩ (◡𝑅 “ {𝑦})) = ∅) ↔ ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 {𝑧 ∈ 𝑥 ∣ 𝑧𝑅𝑦} = ∅)) |
11 | 1, 10 | bitr4i 279 | 1 ⊢ (𝑅 Fr 𝐴 ↔ ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 (𝑥 ∩ (◡𝑅 “ {𝑦})) = ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 207 ∧ wa 396 ∀wal 1520 = wceq 1522 {cab 2775 ≠ wne 2984 ∃wrex 3106 {crab 3109 Vcvv 3437 ∩ cin 3858 ⊆ wss 3859 ∅c0 4211 {csn 4472 class class class wbr 4962 Fr wfr 5399 ◡ccnv 5442 “ cima 5446 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-sep 5094 ax-nul 5101 ax-pr 5221 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ral 3110 df-rex 3111 df-rab 3114 df-v 3439 df-sbc 3707 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-nul 4212 df-if 4382 df-sn 4473 df-pr 4475 df-op 4479 df-br 4963 df-opab 5025 df-fr 5402 df-xp 5449 df-cnv 5451 df-dm 5453 df-rn 5454 df-res 5455 df-ima 5456 |
This theorem is referenced by: dffr4 6039 isofrlem 6956 |
Copyright terms: Public domain | W3C validator |