Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dffr3 | Structured version Visualization version GIF version |
Description: Alternate definition of well-founded relation. Definition 6.21 of [TakeutiZaring] p. 30. (Contributed by NM, 23-Apr-2004.) (Revised by Mario Carneiro, 23-Jun-2015.) |
Ref | Expression |
---|---|
dffr3 | ⊢ (𝑅 Fr 𝐴 ↔ ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 (𝑥 ∩ (◡𝑅 “ {𝑦})) = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dffr2 5553 | . 2 ⊢ (𝑅 Fr 𝐴 ↔ ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 {𝑧 ∈ 𝑥 ∣ 𝑧𝑅𝑦} = ∅)) | |
2 | iniseg 6005 | . . . . . . . . 9 ⊢ (𝑦 ∈ V → (◡𝑅 “ {𝑦}) = {𝑧 ∣ 𝑧𝑅𝑦}) | |
3 | 2 | elv 3438 | . . . . . . . 8 ⊢ (◡𝑅 “ {𝑦}) = {𝑧 ∣ 𝑧𝑅𝑦} |
4 | 3 | ineq2i 4143 | . . . . . . 7 ⊢ (𝑥 ∩ (◡𝑅 “ {𝑦})) = (𝑥 ∩ {𝑧 ∣ 𝑧𝑅𝑦}) |
5 | dfrab3 4243 | . . . . . . 7 ⊢ {𝑧 ∈ 𝑥 ∣ 𝑧𝑅𝑦} = (𝑥 ∩ {𝑧 ∣ 𝑧𝑅𝑦}) | |
6 | 4, 5 | eqtr4i 2769 | . . . . . 6 ⊢ (𝑥 ∩ (◡𝑅 “ {𝑦})) = {𝑧 ∈ 𝑥 ∣ 𝑧𝑅𝑦} |
7 | 6 | eqeq1i 2743 | . . . . 5 ⊢ ((𝑥 ∩ (◡𝑅 “ {𝑦})) = ∅ ↔ {𝑧 ∈ 𝑥 ∣ 𝑧𝑅𝑦} = ∅) |
8 | 7 | rexbii 3181 | . . . 4 ⊢ (∃𝑦 ∈ 𝑥 (𝑥 ∩ (◡𝑅 “ {𝑦})) = ∅ ↔ ∃𝑦 ∈ 𝑥 {𝑧 ∈ 𝑥 ∣ 𝑧𝑅𝑦} = ∅) |
9 | 8 | imbi2i 336 | . . 3 ⊢ (((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 (𝑥 ∩ (◡𝑅 “ {𝑦})) = ∅) ↔ ((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 {𝑧 ∈ 𝑥 ∣ 𝑧𝑅𝑦} = ∅)) |
10 | 9 | albii 1822 | . 2 ⊢ (∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 (𝑥 ∩ (◡𝑅 “ {𝑦})) = ∅) ↔ ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 {𝑧 ∈ 𝑥 ∣ 𝑧𝑅𝑦} = ∅)) |
11 | 1, 10 | bitr4i 277 | 1 ⊢ (𝑅 Fr 𝐴 ↔ ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 (𝑥 ∩ (◡𝑅 “ {𝑦})) = ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∀wal 1537 = wceq 1539 {cab 2715 ≠ wne 2943 ∃wrex 3065 {crab 3068 Vcvv 3432 ∩ cin 3886 ⊆ wss 3887 ∅c0 4256 {csn 4561 class class class wbr 5074 Fr wfr 5541 ◡ccnv 5588 “ cima 5592 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-fr 5544 df-xp 5595 df-cnv 5597 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 |
This theorem is referenced by: dffr4 6222 isofrlem 7211 |
Copyright terms: Public domain | W3C validator |