MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dffr3 Structured version   Visualization version   GIF version

Theorem dffr3 6070
Description: Alternate definition of well-founded relation. Definition 6.21 of [TakeutiZaring] p. 30. (Contributed by NM, 23-Apr-2004.) (Revised by Mario Carneiro, 23-Jun-2015.)
Assertion
Ref Expression
dffr3 (𝑅 Fr 𝐴 ↔ ∀𝑥((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥 (𝑥 ∩ (𝑅 “ {𝑦})) = ∅))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝑅,𝑦

Proof of Theorem dffr3
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 dffr2 5599 . 2 (𝑅 Fr 𝐴 ↔ ∀𝑥((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥 {𝑧𝑥𝑧𝑅𝑦} = ∅))
2 iniseg 6068 . . . . . . . . 9 (𝑦 ∈ V → (𝑅 “ {𝑦}) = {𝑧𝑧𝑅𝑦})
32elv 3452 . . . . . . . 8 (𝑅 “ {𝑦}) = {𝑧𝑧𝑅𝑦}
43ineq2i 4180 . . . . . . 7 (𝑥 ∩ (𝑅 “ {𝑦})) = (𝑥 ∩ {𝑧𝑧𝑅𝑦})
5 dfrab3 4282 . . . . . . 7 {𝑧𝑥𝑧𝑅𝑦} = (𝑥 ∩ {𝑧𝑧𝑅𝑦})
64, 5eqtr4i 2755 . . . . . 6 (𝑥 ∩ (𝑅 “ {𝑦})) = {𝑧𝑥𝑧𝑅𝑦}
76eqeq1i 2734 . . . . 5 ((𝑥 ∩ (𝑅 “ {𝑦})) = ∅ ↔ {𝑧𝑥𝑧𝑅𝑦} = ∅)
87rexbii 3076 . . . 4 (∃𝑦𝑥 (𝑥 ∩ (𝑅 “ {𝑦})) = ∅ ↔ ∃𝑦𝑥 {𝑧𝑥𝑧𝑅𝑦} = ∅)
98imbi2i 336 . . 3 (((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥 (𝑥 ∩ (𝑅 “ {𝑦})) = ∅) ↔ ((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥 {𝑧𝑥𝑧𝑅𝑦} = ∅))
109albii 1819 . 2 (∀𝑥((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥 (𝑥 ∩ (𝑅 “ {𝑦})) = ∅) ↔ ∀𝑥((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥 {𝑧𝑥𝑧𝑅𝑦} = ∅))
111, 10bitr4i 278 1 (𝑅 Fr 𝐴 ↔ ∀𝑥((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥 (𝑥 ∩ (𝑅 “ {𝑦})) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  {cab 2707  wne 2925  wrex 3053  {crab 3405  Vcvv 3447  cin 3913  wss 3914  c0 4296  {csn 4589   class class class wbr 5107   Fr wfr 5588  ccnv 5637  cima 5641
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-fr 5591  df-xp 5644  df-cnv 5646  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651
This theorem is referenced by:  dffr4  6293  isofrlem  7315  relpfrlem  44943
  Copyright terms: Public domain W3C validator