| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > difprsn2 | Structured version Visualization version GIF version | ||
| Description: Removal of a singleton from an unordered pair. (Contributed by Alexander van der Vekens, 5-Oct-2017.) |
| Ref | Expression |
|---|---|
| difprsn2 | ⊢ (𝐴 ≠ 𝐵 → ({𝐴, 𝐵} ∖ {𝐵}) = {𝐴}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prcom 4708 | . . 3 ⊢ {𝐴, 𝐵} = {𝐵, 𝐴} | |
| 2 | 1 | difeq1i 4097 | . 2 ⊢ ({𝐴, 𝐵} ∖ {𝐵}) = ({𝐵, 𝐴} ∖ {𝐵}) |
| 3 | necom 2985 | . . 3 ⊢ (𝐴 ≠ 𝐵 ↔ 𝐵 ≠ 𝐴) | |
| 4 | difprsn1 4776 | . . 3 ⊢ (𝐵 ≠ 𝐴 → ({𝐵, 𝐴} ∖ {𝐵}) = {𝐴}) | |
| 5 | 3, 4 | sylbi 217 | . 2 ⊢ (𝐴 ≠ 𝐵 → ({𝐵, 𝐴} ∖ {𝐵}) = {𝐴}) |
| 6 | 2, 5 | eqtrid 2782 | 1 ⊢ (𝐴 ≠ 𝐵 → ({𝐴, 𝐵} ∖ {𝐵}) = {𝐴}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ≠ wne 2932 ∖ cdif 3923 {csn 4601 {cpr 4603 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-nul 4309 df-sn 4602 df-pr 4604 |
| This theorem is referenced by: f12dfv 7266 pmtrprfval 19468 nbgr2vtx1edg 29329 nbuhgr2vtx1edgb 29331 nfrgr2v 30253 indsupp 32844 cycpm2tr 33130 drngmxidl 33492 ldepsnlinc 48484 |
| Copyright terms: Public domain | W3C validator |