| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > difprsn2 | Structured version Visualization version GIF version | ||
| Description: Removal of a singleton from an unordered pair. (Contributed by Alexander van der Vekens, 5-Oct-2017.) |
| Ref | Expression |
|---|---|
| difprsn2 | ⊢ (𝐴 ≠ 𝐵 → ({𝐴, 𝐵} ∖ {𝐵}) = {𝐴}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prcom 4696 | . . 3 ⊢ {𝐴, 𝐵} = {𝐵, 𝐴} | |
| 2 | 1 | difeq1i 4085 | . 2 ⊢ ({𝐴, 𝐵} ∖ {𝐵}) = ({𝐵, 𝐴} ∖ {𝐵}) |
| 3 | necom 2978 | . . 3 ⊢ (𝐴 ≠ 𝐵 ↔ 𝐵 ≠ 𝐴) | |
| 4 | difprsn1 4764 | . . 3 ⊢ (𝐵 ≠ 𝐴 → ({𝐵, 𝐴} ∖ {𝐵}) = {𝐴}) | |
| 5 | 3, 4 | sylbi 217 | . 2 ⊢ (𝐴 ≠ 𝐵 → ({𝐵, 𝐴} ∖ {𝐵}) = {𝐴}) |
| 6 | 2, 5 | eqtrid 2776 | 1 ⊢ (𝐴 ≠ 𝐵 → ({𝐴, 𝐵} ∖ {𝐵}) = {𝐴}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ≠ wne 2925 ∖ cdif 3911 {csn 4589 {cpr 4591 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-nul 4297 df-sn 4590 df-pr 4592 |
| This theorem is referenced by: f12dfv 7248 pmtrprfval 19417 nbgr2vtx1edg 29277 nbuhgr2vtx1edgb 29279 nfrgr2v 30201 indsupp 32790 cycpm2tr 33076 drngmxidl 33448 ldepsnlinc 48497 |
| Copyright terms: Public domain | W3C validator |