MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difprsn2 Structured version   Visualization version   GIF version

Theorem difprsn2 4777
Description: Removal of a singleton from an unordered pair. (Contributed by Alexander van der Vekens, 5-Oct-2017.)
Assertion
Ref Expression
difprsn2 (𝐴𝐵 → ({𝐴, 𝐵} ∖ {𝐵}) = {𝐴})

Proof of Theorem difprsn2
StepHypRef Expression
1 prcom 4708 . . 3 {𝐴, 𝐵} = {𝐵, 𝐴}
21difeq1i 4097 . 2 ({𝐴, 𝐵} ∖ {𝐵}) = ({𝐵, 𝐴} ∖ {𝐵})
3 necom 2985 . . 3 (𝐴𝐵𝐵𝐴)
4 difprsn1 4776 . . 3 (𝐵𝐴 → ({𝐵, 𝐴} ∖ {𝐵}) = {𝐴})
53, 4sylbi 217 . 2 (𝐴𝐵 → ({𝐵, 𝐴} ∖ {𝐵}) = {𝐴})
62, 5eqtrid 2782 1 (𝐴𝐵 → ({𝐴, 𝐵} ∖ {𝐵}) = {𝐴})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wne 2932  cdif 3923  {csn 4601  {cpr 4603
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ne 2933  df-ral 3052  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-nul 4309  df-sn 4602  df-pr 4604
This theorem is referenced by:  f12dfv  7266  pmtrprfval  19468  nbgr2vtx1edg  29329  nbuhgr2vtx1edgb  29331  nfrgr2v  30253  indsupp  32844  cycpm2tr  33130  drngmxidl  33492  ldepsnlinc  48484
  Copyright terms: Public domain W3C validator