![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > difprsn2 | Structured version Visualization version GIF version |
Description: Removal of a singleton from an unordered pair. (Contributed by Alexander van der Vekens, 5-Oct-2017.) |
Ref | Expression |
---|---|
difprsn2 | ⊢ (𝐴 ≠ 𝐵 → ({𝐴, 𝐵} ∖ {𝐵}) = {𝐴}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prcom 4455 | . . 3 ⊢ {𝐴, 𝐵} = {𝐵, 𝐴} | |
2 | 1 | difeq1i 3921 | . 2 ⊢ ({𝐴, 𝐵} ∖ {𝐵}) = ({𝐵, 𝐴} ∖ {𝐵}) |
3 | necom 3023 | . . 3 ⊢ (𝐴 ≠ 𝐵 ↔ 𝐵 ≠ 𝐴) | |
4 | difprsn1 4518 | . . 3 ⊢ (𝐵 ≠ 𝐴 → ({𝐵, 𝐴} ∖ {𝐵}) = {𝐴}) | |
5 | 3, 4 | sylbi 209 | . 2 ⊢ (𝐴 ≠ 𝐵 → ({𝐵, 𝐴} ∖ {𝐵}) = {𝐴}) |
6 | 2, 5 | syl5eq 2844 | 1 ⊢ (𝐴 ≠ 𝐵 → ({𝐴, 𝐵} ∖ {𝐵}) = {𝐴}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1653 ≠ wne 2970 ∖ cdif 3765 {csn 4367 {cpr 4369 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2776 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2785 df-cleq 2791 df-clel 2794 df-nfc 2929 df-ne 2971 df-ral 3093 df-rab 3097 df-v 3386 df-dif 3771 df-un 3773 df-in 3775 df-ss 3782 df-nul 4115 df-sn 4368 df-pr 4370 |
This theorem is referenced by: f12dfv 6756 pmtrprfval 18216 nbgr2vtx1edg 26581 nbuhgr2vtx1edgb 26583 nfrgr2v 27614 ldepsnlinc 43085 |
Copyright terms: Public domain | W3C validator |