MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difprsn2 Structured version   Visualization version   GIF version

Theorem difprsn2 4826
Description: Removal of a singleton from an unordered pair. (Contributed by Alexander van der Vekens, 5-Oct-2017.)
Assertion
Ref Expression
difprsn2 (𝐴𝐵 → ({𝐴, 𝐵} ∖ {𝐵}) = {𝐴})

Proof of Theorem difprsn2
StepHypRef Expression
1 prcom 4757 . . 3 {𝐴, 𝐵} = {𝐵, 𝐴}
21difeq1i 4145 . 2 ({𝐴, 𝐵} ∖ {𝐵}) = ({𝐵, 𝐴} ∖ {𝐵})
3 necom 3000 . . 3 (𝐴𝐵𝐵𝐴)
4 difprsn1 4825 . . 3 (𝐵𝐴 → ({𝐵, 𝐴} ∖ {𝐵}) = {𝐴})
53, 4sylbi 217 . 2 (𝐴𝐵 → ({𝐵, 𝐴} ∖ {𝐵}) = {𝐴})
62, 5eqtrid 2792 1 (𝐴𝐵 → ({𝐴, 𝐵} ∖ {𝐵}) = {𝐴})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wne 2946  cdif 3973  {csn 4648  {cpr 4650
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-nul 4353  df-sn 4649  df-pr 4651
This theorem is referenced by:  f12dfv  7309  pmtrprfval  19529  nbgr2vtx1edg  29385  nbuhgr2vtx1edgb  29387  nfrgr2v  30304  cycpm2tr  33112  drngmxidl  33470  ldepsnlinc  48237
  Copyright terms: Public domain W3C validator