| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > difprsn2 | Structured version Visualization version GIF version | ||
| Description: Removal of a singleton from an unordered pair. (Contributed by Alexander van der Vekens, 5-Oct-2017.) |
| Ref | Expression |
|---|---|
| difprsn2 | ⊢ (𝐴 ≠ 𝐵 → ({𝐴, 𝐵} ∖ {𝐵}) = {𝐴}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prcom 4685 | . . 3 ⊢ {𝐴, 𝐵} = {𝐵, 𝐴} | |
| 2 | 1 | difeq1i 4072 | . 2 ⊢ ({𝐴, 𝐵} ∖ {𝐵}) = ({𝐵, 𝐴} ∖ {𝐵}) |
| 3 | necom 2981 | . . 3 ⊢ (𝐴 ≠ 𝐵 ↔ 𝐵 ≠ 𝐴) | |
| 4 | difprsn1 4752 | . . 3 ⊢ (𝐵 ≠ 𝐴 → ({𝐵, 𝐴} ∖ {𝐵}) = {𝐴}) | |
| 5 | 3, 4 | sylbi 217 | . 2 ⊢ (𝐴 ≠ 𝐵 → ({𝐵, 𝐴} ∖ {𝐵}) = {𝐴}) |
| 6 | 2, 5 | eqtrid 2778 | 1 ⊢ (𝐴 ≠ 𝐵 → ({𝐴, 𝐵} ∖ {𝐵}) = {𝐴}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ≠ wne 2928 ∖ cdif 3899 {csn 4576 {cpr 4578 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-nul 4284 df-sn 4577 df-pr 4579 |
| This theorem is referenced by: f12dfv 7207 pmtrprfval 19397 nbgr2vtx1edg 29326 nbuhgr2vtx1edgb 29328 nfrgr2v 30247 indsupp 32843 cycpm2tr 33083 drngmxidl 33437 ldepsnlinc 48539 |
| Copyright terms: Public domain | W3C validator |