![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > difprsn2 | Structured version Visualization version GIF version |
Description: Removal of a singleton from an unordered pair. (Contributed by Alexander van der Vekens, 5-Oct-2017.) |
Ref | Expression |
---|---|
difprsn2 | ⊢ (𝐴 ≠ 𝐵 → ({𝐴, 𝐵} ∖ {𝐵}) = {𝐴}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prcom 4757 | . . 3 ⊢ {𝐴, 𝐵} = {𝐵, 𝐴} | |
2 | 1 | difeq1i 4145 | . 2 ⊢ ({𝐴, 𝐵} ∖ {𝐵}) = ({𝐵, 𝐴} ∖ {𝐵}) |
3 | necom 3000 | . . 3 ⊢ (𝐴 ≠ 𝐵 ↔ 𝐵 ≠ 𝐴) | |
4 | difprsn1 4825 | . . 3 ⊢ (𝐵 ≠ 𝐴 → ({𝐵, 𝐴} ∖ {𝐵}) = {𝐴}) | |
5 | 3, 4 | sylbi 217 | . 2 ⊢ (𝐴 ≠ 𝐵 → ({𝐵, 𝐴} ∖ {𝐵}) = {𝐴}) |
6 | 2, 5 | eqtrid 2792 | 1 ⊢ (𝐴 ≠ 𝐵 → ({𝐴, 𝐵} ∖ {𝐵}) = {𝐴}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ≠ wne 2946 ∖ cdif 3973 {csn 4648 {cpr 4650 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-nul 4353 df-sn 4649 df-pr 4651 |
This theorem is referenced by: f12dfv 7309 pmtrprfval 19529 nbgr2vtx1edg 29385 nbuhgr2vtx1edgb 29387 nfrgr2v 30304 cycpm2tr 33112 drngmxidl 33470 ldepsnlinc 48237 |
Copyright terms: Public domain | W3C validator |