MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtrprfval Structured version   Visualization version   GIF version

Theorem pmtrprfval 18607
Description: The transpositions on a pair. (Contributed by AV, 9-Dec-2018.)
Assertion
Ref Expression
pmtrprfval (pmTrsp‘{1, 2}) = (𝑝 ∈ {{1, 2}} ↦ (𝑧 ∈ {1, 2} ↦ if(𝑧 = 1, 2, 1)))
Distinct variable group:   𝑧,𝑝

Proof of Theorem pmtrprfval
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 prex 5298 . . 3 {1, 2} ∈ V
2 eqid 2798 . . . 4 (pmTrsp‘{1, 2}) = (pmTrsp‘{1, 2})
32pmtrfval 18570 . . 3 ({1, 2} ∈ V → (pmTrsp‘{1, 2}) = (𝑝 ∈ {𝑡 ∈ 𝒫 {1, 2} ∣ 𝑡 ≈ 2o} ↦ (𝑧 ∈ {1, 2} ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))))
41, 3ax-mp 5 . 2 (pmTrsp‘{1, 2}) = (𝑝 ∈ {𝑡 ∈ 𝒫 {1, 2} ∣ 𝑡 ≈ 2o} ↦ (𝑧 ∈ {1, 2} ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧)))
5 1ex 10626 . . . . 5 1 ∈ V
6 2nn0 11902 . . . . 5 2 ∈ ℕ0
7 1ne2 11833 . . . . 5 1 ≠ 2
8 pr2pwpr 13833 . . . . 5 ((1 ∈ V ∧ 2 ∈ ℕ0 ∧ 1 ≠ 2) → {𝑡 ∈ 𝒫 {1, 2} ∣ 𝑡 ≈ 2o} = {{1, 2}})
95, 6, 7, 8mp3an 1458 . . . 4 {𝑡 ∈ 𝒫 {1, 2} ∣ 𝑡 ≈ 2o} = {{1, 2}}
109mpteq1i 5120 . . 3 (𝑝 ∈ {𝑡 ∈ 𝒫 {1, 2} ∣ 𝑡 ≈ 2o} ↦ (𝑧 ∈ {1, 2} ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) = (𝑝 ∈ {{1, 2}} ↦ (𝑧 ∈ {1, 2} ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧)))
11 elsni 4542 . . . . . 6 (𝑝 ∈ {{1, 2}} → 𝑝 = {1, 2})
12 eleq2 2878 . . . . . . . . 9 (𝑝 = {1, 2} → (𝑧𝑝𝑧 ∈ {1, 2}))
1312biimpar 481 . . . . . . . 8 ((𝑝 = {1, 2} ∧ 𝑧 ∈ {1, 2}) → 𝑧𝑝)
1413iftrued 4433 . . . . . . 7 ((𝑝 = {1, 2} ∧ 𝑧 ∈ {1, 2}) → if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧) = (𝑝 ∖ {𝑧}))
15 elpri 4547 . . . . . . . . 9 (𝑧 ∈ {1, 2} → (𝑧 = 1 ∨ 𝑧 = 2))
16 2ex 11702 . . . . . . . . . . . . 13 2 ∈ V
1716unisn 4820 . . . . . . . . . . . 12 {2} = 2
18 simpr 488 . . . . . . . . . . . . . . 15 ((𝑧 = 1 ∧ 𝑝 = {1, 2}) → 𝑝 = {1, 2})
19 sneq 4535 . . . . . . . . . . . . . . . 16 (𝑧 = 1 → {𝑧} = {1})
2019adantr 484 . . . . . . . . . . . . . . 15 ((𝑧 = 1 ∧ 𝑝 = {1, 2}) → {𝑧} = {1})
2118, 20difeq12d 4051 . . . . . . . . . . . . . 14 ((𝑧 = 1 ∧ 𝑝 = {1, 2}) → (𝑝 ∖ {𝑧}) = ({1, 2} ∖ {1}))
22 difprsn1 4693 . . . . . . . . . . . . . . 15 (1 ≠ 2 → ({1, 2} ∖ {1}) = {2})
237, 22ax-mp 5 . . . . . . . . . . . . . 14 ({1, 2} ∖ {1}) = {2}
2421, 23eqtrdi 2849 . . . . . . . . . . . . 13 ((𝑧 = 1 ∧ 𝑝 = {1, 2}) → (𝑝 ∖ {𝑧}) = {2})
2524unieqd 4814 . . . . . . . . . . . 12 ((𝑧 = 1 ∧ 𝑝 = {1, 2}) → (𝑝 ∖ {𝑧}) = {2})
26 iftrue 4431 . . . . . . . . . . . . 13 (𝑧 = 1 → if(𝑧 = 1, 2, 1) = 2)
2726adantr 484 . . . . . . . . . . . 12 ((𝑧 = 1 ∧ 𝑝 = {1, 2}) → if(𝑧 = 1, 2, 1) = 2)
2817, 25, 273eqtr4a 2859 . . . . . . . . . . 11 ((𝑧 = 1 ∧ 𝑝 = {1, 2}) → (𝑝 ∖ {𝑧}) = if(𝑧 = 1, 2, 1))
2928ex 416 . . . . . . . . . 10 (𝑧 = 1 → (𝑝 = {1, 2} → (𝑝 ∖ {𝑧}) = if(𝑧 = 1, 2, 1)))
305unisn 4820 . . . . . . . . . . . 12 {1} = 1
31 simpr 488 . . . . . . . . . . . . . . 15 ((𝑧 = 2 ∧ 𝑝 = {1, 2}) → 𝑝 = {1, 2})
32 sneq 4535 . . . . . . . . . . . . . . . 16 (𝑧 = 2 → {𝑧} = {2})
3332adantr 484 . . . . . . . . . . . . . . 15 ((𝑧 = 2 ∧ 𝑝 = {1, 2}) → {𝑧} = {2})
3431, 33difeq12d 4051 . . . . . . . . . . . . . 14 ((𝑧 = 2 ∧ 𝑝 = {1, 2}) → (𝑝 ∖ {𝑧}) = ({1, 2} ∖ {2}))
35 difprsn2 4694 . . . . . . . . . . . . . . 15 (1 ≠ 2 → ({1, 2} ∖ {2}) = {1})
367, 35ax-mp 5 . . . . . . . . . . . . . 14 ({1, 2} ∖ {2}) = {1}
3734, 36eqtrdi 2849 . . . . . . . . . . . . 13 ((𝑧 = 2 ∧ 𝑝 = {1, 2}) → (𝑝 ∖ {𝑧}) = {1})
3837unieqd 4814 . . . . . . . . . . . 12 ((𝑧 = 2 ∧ 𝑝 = {1, 2}) → (𝑝 ∖ {𝑧}) = {1})
397nesymi 3044 . . . . . . . . . . . . . . 15 ¬ 2 = 1
40 eqeq1 2802 . . . . . . . . . . . . . . 15 (𝑧 = 2 → (𝑧 = 1 ↔ 2 = 1))
4139, 40mtbiri 330 . . . . . . . . . . . . . 14 (𝑧 = 2 → ¬ 𝑧 = 1)
4241iffalsed 4436 . . . . . . . . . . . . 13 (𝑧 = 2 → if(𝑧 = 1, 2, 1) = 1)
4342adantr 484 . . . . . . . . . . . 12 ((𝑧 = 2 ∧ 𝑝 = {1, 2}) → if(𝑧 = 1, 2, 1) = 1)
4430, 38, 433eqtr4a 2859 . . . . . . . . . . 11 ((𝑧 = 2 ∧ 𝑝 = {1, 2}) → (𝑝 ∖ {𝑧}) = if(𝑧 = 1, 2, 1))
4544ex 416 . . . . . . . . . 10 (𝑧 = 2 → (𝑝 = {1, 2} → (𝑝 ∖ {𝑧}) = if(𝑧 = 1, 2, 1)))
4629, 45jaoi 854 . . . . . . . . 9 ((𝑧 = 1 ∨ 𝑧 = 2) → (𝑝 = {1, 2} → (𝑝 ∖ {𝑧}) = if(𝑧 = 1, 2, 1)))
4715, 46syl 17 . . . . . . . 8 (𝑧 ∈ {1, 2} → (𝑝 = {1, 2} → (𝑝 ∖ {𝑧}) = if(𝑧 = 1, 2, 1)))
4847impcom 411 . . . . . . 7 ((𝑝 = {1, 2} ∧ 𝑧 ∈ {1, 2}) → (𝑝 ∖ {𝑧}) = if(𝑧 = 1, 2, 1))
4914, 48eqtrd 2833 . . . . . 6 ((𝑝 = {1, 2} ∧ 𝑧 ∈ {1, 2}) → if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧) = if(𝑧 = 1, 2, 1))
5011, 49sylan 583 . . . . 5 ((𝑝 ∈ {{1, 2}} ∧ 𝑧 ∈ {1, 2}) → if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧) = if(𝑧 = 1, 2, 1))
5150mpteq2dva 5125 . . . 4 (𝑝 ∈ {{1, 2}} → (𝑧 ∈ {1, 2} ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧)) = (𝑧 ∈ {1, 2} ↦ if(𝑧 = 1, 2, 1)))
5251mpteq2ia 5121 . . 3 (𝑝 ∈ {{1, 2}} ↦ (𝑧 ∈ {1, 2} ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) = (𝑝 ∈ {{1, 2}} ↦ (𝑧 ∈ {1, 2} ↦ if(𝑧 = 1, 2, 1)))
5310, 52eqtri 2821 . 2 (𝑝 ∈ {𝑡 ∈ 𝒫 {1, 2} ∣ 𝑡 ≈ 2o} ↦ (𝑧 ∈ {1, 2} ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) = (𝑝 ∈ {{1, 2}} ↦ (𝑧 ∈ {1, 2} ↦ if(𝑧 = 1, 2, 1)))
544, 53eqtri 2821 1 (pmTrsp‘{1, 2}) = (𝑝 ∈ {{1, 2}} ↦ (𝑧 ∈ {1, 2} ↦ if(𝑧 = 1, 2, 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wo 844   = wceq 1538  wcel 2111  wne 2987  {crab 3110  Vcvv 3441  cdif 3878  ifcif 4425  𝒫 cpw 4497  {csn 4525  {cpr 4527   cuni 4800   class class class wbr 5030  cmpt 5110  cfv 6324  2oc2o 8079  cen 8489  1c1 10527  2c2 11680  0cn0 11885  pmTrspcpmtr 18561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-dju 9314  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886  df-hash 13687  df-pmtr 18562
This theorem is referenced by:  pmtrprfvalrn  18608
  Copyright terms: Public domain W3C validator