Step | Hyp | Ref
| Expression |
1 | | prex 5355 |
. . 3
⊢ {1, 2}
∈ V |
2 | | eqid 2738 |
. . . 4
⊢
(pmTrsp‘{1, 2}) = (pmTrsp‘{1, 2}) |
3 | 2 | pmtrfval 19058 |
. . 3
⊢ ({1, 2}
∈ V → (pmTrsp‘{1, 2}) = (𝑝 ∈ {𝑡 ∈ 𝒫 {1, 2} ∣ 𝑡 ≈ 2o} ↦
(𝑧 ∈ {1, 2} ↦
if(𝑧 ∈ 𝑝, ∪
(𝑝 ∖ {𝑧}), 𝑧)))) |
4 | 1, 3 | ax-mp 5 |
. 2
⊢
(pmTrsp‘{1, 2}) = (𝑝 ∈ {𝑡 ∈ 𝒫 {1, 2} ∣ 𝑡 ≈ 2o} ↦
(𝑧 ∈ {1, 2} ↦
if(𝑧 ∈ 𝑝, ∪
(𝑝 ∖ {𝑧}), 𝑧))) |
5 | | 1ex 10971 |
. . . . 5
⊢ 1 ∈
V |
6 | | 2nn0 12250 |
. . . . 5
⊢ 2 ∈
ℕ0 |
7 | | 1ne2 12181 |
. . . . 5
⊢ 1 ≠
2 |
8 | | pr2pwpr 14193 |
. . . . 5
⊢ ((1
∈ V ∧ 2 ∈ ℕ0 ∧ 1 ≠ 2) → {𝑡 ∈ 𝒫 {1, 2} ∣
𝑡 ≈ 2o} =
{{1, 2}}) |
9 | 5, 6, 7, 8 | mp3an 1460 |
. . . 4
⊢ {𝑡 ∈ 𝒫 {1, 2} ∣
𝑡 ≈ 2o} =
{{1, 2}} |
10 | 9 | mpteq1i 5170 |
. . 3
⊢ (𝑝 ∈ {𝑡 ∈ 𝒫 {1, 2} ∣ 𝑡 ≈ 2o} ↦
(𝑧 ∈ {1, 2} ↦
if(𝑧 ∈ 𝑝, ∪
(𝑝 ∖ {𝑧}), 𝑧))) = (𝑝 ∈ {{1, 2}} ↦ (𝑧 ∈ {1, 2} ↦ if(𝑧 ∈ 𝑝, ∪ (𝑝 ∖ {𝑧}), 𝑧))) |
11 | | elsni 4578 |
. . . . . 6
⊢ (𝑝 ∈ {{1, 2}} → 𝑝 = {1, 2}) |
12 | | eleq2 2827 |
. . . . . . . . 9
⊢ (𝑝 = {1, 2} → (𝑧 ∈ 𝑝 ↔ 𝑧 ∈ {1, 2})) |
13 | 12 | biimpar 478 |
. . . . . . . 8
⊢ ((𝑝 = {1, 2} ∧ 𝑧 ∈ {1, 2}) → 𝑧 ∈ 𝑝) |
14 | 13 | iftrued 4467 |
. . . . . . 7
⊢ ((𝑝 = {1, 2} ∧ 𝑧 ∈ {1, 2}) → if(𝑧 ∈ 𝑝, ∪ (𝑝 ∖ {𝑧}), 𝑧) = ∪ (𝑝 ∖ {𝑧})) |
15 | | elpri 4583 |
. . . . . . . . 9
⊢ (𝑧 ∈ {1, 2} → (𝑧 = 1 ∨ 𝑧 = 2)) |
16 | | 2ex 12050 |
. . . . . . . . . . . . 13
⊢ 2 ∈
V |
17 | 16 | unisn 4861 |
. . . . . . . . . . . 12
⊢ ∪ {2} = 2 |
18 | | simpr 485 |
. . . . . . . . . . . . . . 15
⊢ ((𝑧 = 1 ∧ 𝑝 = {1, 2}) → 𝑝 = {1, 2}) |
19 | | sneq 4571 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = 1 → {𝑧} = {1}) |
20 | 19 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝑧 = 1 ∧ 𝑝 = {1, 2}) → {𝑧} = {1}) |
21 | 18, 20 | difeq12d 4058 |
. . . . . . . . . . . . . 14
⊢ ((𝑧 = 1 ∧ 𝑝 = {1, 2}) → (𝑝 ∖ {𝑧}) = ({1, 2} ∖ {1})) |
22 | | difprsn1 4733 |
. . . . . . . . . . . . . . 15
⊢ (1 ≠ 2
→ ({1, 2} ∖ {1}) = {2}) |
23 | 7, 22 | ax-mp 5 |
. . . . . . . . . . . . . 14
⊢ ({1, 2}
∖ {1}) = {2} |
24 | 21, 23 | eqtrdi 2794 |
. . . . . . . . . . . . 13
⊢ ((𝑧 = 1 ∧ 𝑝 = {1, 2}) → (𝑝 ∖ {𝑧}) = {2}) |
25 | 24 | unieqd 4853 |
. . . . . . . . . . . 12
⊢ ((𝑧 = 1 ∧ 𝑝 = {1, 2}) → ∪ (𝑝
∖ {𝑧}) = ∪ {2}) |
26 | | iftrue 4465 |
. . . . . . . . . . . . 13
⊢ (𝑧 = 1 → if(𝑧 = 1, 2, 1) =
2) |
27 | 26 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝑧 = 1 ∧ 𝑝 = {1, 2}) → if(𝑧 = 1, 2, 1) = 2) |
28 | 17, 25, 27 | 3eqtr4a 2804 |
. . . . . . . . . . 11
⊢ ((𝑧 = 1 ∧ 𝑝 = {1, 2}) → ∪ (𝑝
∖ {𝑧}) = if(𝑧 = 1, 2, 1)) |
29 | 28 | ex 413 |
. . . . . . . . . 10
⊢ (𝑧 = 1 → (𝑝 = {1, 2} → ∪
(𝑝 ∖ {𝑧}) = if(𝑧 = 1, 2, 1))) |
30 | 5 | unisn 4861 |
. . . . . . . . . . . 12
⊢ ∪ {1} = 1 |
31 | | simpr 485 |
. . . . . . . . . . . . . . 15
⊢ ((𝑧 = 2 ∧ 𝑝 = {1, 2}) → 𝑝 = {1, 2}) |
32 | | sneq 4571 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = 2 → {𝑧} = {2}) |
33 | 32 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝑧 = 2 ∧ 𝑝 = {1, 2}) → {𝑧} = {2}) |
34 | 31, 33 | difeq12d 4058 |
. . . . . . . . . . . . . 14
⊢ ((𝑧 = 2 ∧ 𝑝 = {1, 2}) → (𝑝 ∖ {𝑧}) = ({1, 2} ∖ {2})) |
35 | | difprsn2 4734 |
. . . . . . . . . . . . . . 15
⊢ (1 ≠ 2
→ ({1, 2} ∖ {2}) = {1}) |
36 | 7, 35 | ax-mp 5 |
. . . . . . . . . . . . . 14
⊢ ({1, 2}
∖ {2}) = {1} |
37 | 34, 36 | eqtrdi 2794 |
. . . . . . . . . . . . 13
⊢ ((𝑧 = 2 ∧ 𝑝 = {1, 2}) → (𝑝 ∖ {𝑧}) = {1}) |
38 | 37 | unieqd 4853 |
. . . . . . . . . . . 12
⊢ ((𝑧 = 2 ∧ 𝑝 = {1, 2}) → ∪ (𝑝
∖ {𝑧}) = ∪ {1}) |
39 | 7 | nesymi 3001 |
. . . . . . . . . . . . . . 15
⊢ ¬ 2
= 1 |
40 | | eqeq1 2742 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = 2 → (𝑧 = 1 ↔ 2 = 1)) |
41 | 39, 40 | mtbiri 327 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = 2 → ¬ 𝑧 = 1) |
42 | 41 | iffalsed 4470 |
. . . . . . . . . . . . 13
⊢ (𝑧 = 2 → if(𝑧 = 1, 2, 1) =
1) |
43 | 42 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝑧 = 2 ∧ 𝑝 = {1, 2}) → if(𝑧 = 1, 2, 1) = 1) |
44 | 30, 38, 43 | 3eqtr4a 2804 |
. . . . . . . . . . 11
⊢ ((𝑧 = 2 ∧ 𝑝 = {1, 2}) → ∪ (𝑝
∖ {𝑧}) = if(𝑧 = 1, 2, 1)) |
45 | 44 | ex 413 |
. . . . . . . . . 10
⊢ (𝑧 = 2 → (𝑝 = {1, 2} → ∪
(𝑝 ∖ {𝑧}) = if(𝑧 = 1, 2, 1))) |
46 | 29, 45 | jaoi 854 |
. . . . . . . . 9
⊢ ((𝑧 = 1 ∨ 𝑧 = 2) → (𝑝 = {1, 2} → ∪
(𝑝 ∖ {𝑧}) = if(𝑧 = 1, 2, 1))) |
47 | 15, 46 | syl 17 |
. . . . . . . 8
⊢ (𝑧 ∈ {1, 2} → (𝑝 = {1, 2} → ∪ (𝑝
∖ {𝑧}) = if(𝑧 = 1, 2, 1))) |
48 | 47 | impcom 408 |
. . . . . . 7
⊢ ((𝑝 = {1, 2} ∧ 𝑧 ∈ {1, 2}) → ∪ (𝑝
∖ {𝑧}) = if(𝑧 = 1, 2, 1)) |
49 | 14, 48 | eqtrd 2778 |
. . . . . 6
⊢ ((𝑝 = {1, 2} ∧ 𝑧 ∈ {1, 2}) → if(𝑧 ∈ 𝑝, ∪ (𝑝 ∖ {𝑧}), 𝑧) = if(𝑧 = 1, 2, 1)) |
50 | 11, 49 | sylan 580 |
. . . . 5
⊢ ((𝑝 ∈ {{1, 2}} ∧ 𝑧 ∈ {1, 2}) → if(𝑧 ∈ 𝑝, ∪ (𝑝 ∖ {𝑧}), 𝑧) = if(𝑧 = 1, 2, 1)) |
51 | 50 | mpteq2dva 5174 |
. . . 4
⊢ (𝑝 ∈ {{1, 2}} → (𝑧 ∈ {1, 2} ↦ if(𝑧 ∈ 𝑝, ∪ (𝑝 ∖ {𝑧}), 𝑧)) = (𝑧 ∈ {1, 2} ↦ if(𝑧 = 1, 2, 1))) |
52 | 51 | mpteq2ia 5177 |
. . 3
⊢ (𝑝 ∈ {{1, 2}} ↦ (𝑧 ∈ {1, 2} ↦ if(𝑧 ∈ 𝑝, ∪ (𝑝 ∖ {𝑧}), 𝑧))) = (𝑝 ∈ {{1, 2}} ↦ (𝑧 ∈ {1, 2} ↦ if(𝑧 = 1, 2, 1))) |
53 | 10, 52 | eqtri 2766 |
. 2
⊢ (𝑝 ∈ {𝑡 ∈ 𝒫 {1, 2} ∣ 𝑡 ≈ 2o} ↦
(𝑧 ∈ {1, 2} ↦
if(𝑧 ∈ 𝑝, ∪
(𝑝 ∖ {𝑧}), 𝑧))) = (𝑝 ∈ {{1, 2}} ↦ (𝑧 ∈ {1, 2} ↦ if(𝑧 = 1, 2, 1))) |
54 | 4, 53 | eqtri 2766 |
1
⊢
(pmTrsp‘{1, 2}) = (𝑝 ∈ {{1, 2}} ↦ (𝑧 ∈ {1, 2} ↦ if(𝑧 = 1, 2, 1))) |