MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtrprfval Structured version   Visualization version   GIF version

Theorem pmtrprfval 19269
Description: The transpositions on a pair. (Contributed by AV, 9-Dec-2018.)
Assertion
Ref Expression
pmtrprfval (pmTrsp‘{1, 2}) = (𝑝 ∈ {{1, 2}} ↦ (𝑧 ∈ {1, 2} ↦ if(𝑧 = 1, 2, 1)))
Distinct variable group:   𝑧,𝑝

Proof of Theorem pmtrprfval
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 prex 5389 . . 3 {1, 2} ∈ V
2 eqid 2736 . . . 4 (pmTrsp‘{1, 2}) = (pmTrsp‘{1, 2})
32pmtrfval 19232 . . 3 ({1, 2} ∈ V → (pmTrsp‘{1, 2}) = (𝑝 ∈ {𝑡 ∈ 𝒫 {1, 2} ∣ 𝑡 ≈ 2o} ↦ (𝑧 ∈ {1, 2} ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))))
41, 3ax-mp 5 . 2 (pmTrsp‘{1, 2}) = (𝑝 ∈ {𝑡 ∈ 𝒫 {1, 2} ∣ 𝑡 ≈ 2o} ↦ (𝑧 ∈ {1, 2} ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧)))
5 1ex 11151 . . . . 5 1 ∈ V
6 2nn0 12430 . . . . 5 2 ∈ ℕ0
7 1ne2 12361 . . . . 5 1 ≠ 2
8 pr2pwpr 14378 . . . . 5 ((1 ∈ V ∧ 2 ∈ ℕ0 ∧ 1 ≠ 2) → {𝑡 ∈ 𝒫 {1, 2} ∣ 𝑡 ≈ 2o} = {{1, 2}})
95, 6, 7, 8mp3an 1461 . . . 4 {𝑡 ∈ 𝒫 {1, 2} ∣ 𝑡 ≈ 2o} = {{1, 2}}
109mpteq1i 5201 . . 3 (𝑝 ∈ {𝑡 ∈ 𝒫 {1, 2} ∣ 𝑡 ≈ 2o} ↦ (𝑧 ∈ {1, 2} ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) = (𝑝 ∈ {{1, 2}} ↦ (𝑧 ∈ {1, 2} ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧)))
11 elsni 4603 . . . . . 6 (𝑝 ∈ {{1, 2}} → 𝑝 = {1, 2})
12 eleq2 2826 . . . . . . . . 9 (𝑝 = {1, 2} → (𝑧𝑝𝑧 ∈ {1, 2}))
1312biimpar 478 . . . . . . . 8 ((𝑝 = {1, 2} ∧ 𝑧 ∈ {1, 2}) → 𝑧𝑝)
1413iftrued 4494 . . . . . . 7 ((𝑝 = {1, 2} ∧ 𝑧 ∈ {1, 2}) → if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧) = (𝑝 ∖ {𝑧}))
15 elpri 4608 . . . . . . . . 9 (𝑧 ∈ {1, 2} → (𝑧 = 1 ∨ 𝑧 = 2))
16 2ex 12230 . . . . . . . . . . . . 13 2 ∈ V
1716unisn 4887 . . . . . . . . . . . 12 {2} = 2
18 simpr 485 . . . . . . . . . . . . . . 15 ((𝑧 = 1 ∧ 𝑝 = {1, 2}) → 𝑝 = {1, 2})
19 sneq 4596 . . . . . . . . . . . . . . . 16 (𝑧 = 1 → {𝑧} = {1})
2019adantr 481 . . . . . . . . . . . . . . 15 ((𝑧 = 1 ∧ 𝑝 = {1, 2}) → {𝑧} = {1})
2118, 20difeq12d 4083 . . . . . . . . . . . . . 14 ((𝑧 = 1 ∧ 𝑝 = {1, 2}) → (𝑝 ∖ {𝑧}) = ({1, 2} ∖ {1}))
22 difprsn1 4760 . . . . . . . . . . . . . . 15 (1 ≠ 2 → ({1, 2} ∖ {1}) = {2})
237, 22ax-mp 5 . . . . . . . . . . . . . 14 ({1, 2} ∖ {1}) = {2}
2421, 23eqtrdi 2792 . . . . . . . . . . . . 13 ((𝑧 = 1 ∧ 𝑝 = {1, 2}) → (𝑝 ∖ {𝑧}) = {2})
2524unieqd 4879 . . . . . . . . . . . 12 ((𝑧 = 1 ∧ 𝑝 = {1, 2}) → (𝑝 ∖ {𝑧}) = {2})
26 iftrue 4492 . . . . . . . . . . . . 13 (𝑧 = 1 → if(𝑧 = 1, 2, 1) = 2)
2726adantr 481 . . . . . . . . . . . 12 ((𝑧 = 1 ∧ 𝑝 = {1, 2}) → if(𝑧 = 1, 2, 1) = 2)
2817, 25, 273eqtr4a 2802 . . . . . . . . . . 11 ((𝑧 = 1 ∧ 𝑝 = {1, 2}) → (𝑝 ∖ {𝑧}) = if(𝑧 = 1, 2, 1))
2928ex 413 . . . . . . . . . 10 (𝑧 = 1 → (𝑝 = {1, 2} → (𝑝 ∖ {𝑧}) = if(𝑧 = 1, 2, 1)))
305unisn 4887 . . . . . . . . . . . 12 {1} = 1
31 simpr 485 . . . . . . . . . . . . . . 15 ((𝑧 = 2 ∧ 𝑝 = {1, 2}) → 𝑝 = {1, 2})
32 sneq 4596 . . . . . . . . . . . . . . . 16 (𝑧 = 2 → {𝑧} = {2})
3332adantr 481 . . . . . . . . . . . . . . 15 ((𝑧 = 2 ∧ 𝑝 = {1, 2}) → {𝑧} = {2})
3431, 33difeq12d 4083 . . . . . . . . . . . . . 14 ((𝑧 = 2 ∧ 𝑝 = {1, 2}) → (𝑝 ∖ {𝑧}) = ({1, 2} ∖ {2}))
35 difprsn2 4761 . . . . . . . . . . . . . . 15 (1 ≠ 2 → ({1, 2} ∖ {2}) = {1})
367, 35ax-mp 5 . . . . . . . . . . . . . 14 ({1, 2} ∖ {2}) = {1}
3734, 36eqtrdi 2792 . . . . . . . . . . . . 13 ((𝑧 = 2 ∧ 𝑝 = {1, 2}) → (𝑝 ∖ {𝑧}) = {1})
3837unieqd 4879 . . . . . . . . . . . 12 ((𝑧 = 2 ∧ 𝑝 = {1, 2}) → (𝑝 ∖ {𝑧}) = {1})
397nesymi 3001 . . . . . . . . . . . . . . 15 ¬ 2 = 1
40 eqeq1 2740 . . . . . . . . . . . . . . 15 (𝑧 = 2 → (𝑧 = 1 ↔ 2 = 1))
4139, 40mtbiri 326 . . . . . . . . . . . . . 14 (𝑧 = 2 → ¬ 𝑧 = 1)
4241iffalsed 4497 . . . . . . . . . . . . 13 (𝑧 = 2 → if(𝑧 = 1, 2, 1) = 1)
4342adantr 481 . . . . . . . . . . . 12 ((𝑧 = 2 ∧ 𝑝 = {1, 2}) → if(𝑧 = 1, 2, 1) = 1)
4430, 38, 433eqtr4a 2802 . . . . . . . . . . 11 ((𝑧 = 2 ∧ 𝑝 = {1, 2}) → (𝑝 ∖ {𝑧}) = if(𝑧 = 1, 2, 1))
4544ex 413 . . . . . . . . . 10 (𝑧 = 2 → (𝑝 = {1, 2} → (𝑝 ∖ {𝑧}) = if(𝑧 = 1, 2, 1)))
4629, 45jaoi 855 . . . . . . . . 9 ((𝑧 = 1 ∨ 𝑧 = 2) → (𝑝 = {1, 2} → (𝑝 ∖ {𝑧}) = if(𝑧 = 1, 2, 1)))
4715, 46syl 17 . . . . . . . 8 (𝑧 ∈ {1, 2} → (𝑝 = {1, 2} → (𝑝 ∖ {𝑧}) = if(𝑧 = 1, 2, 1)))
4847impcom 408 . . . . . . 7 ((𝑝 = {1, 2} ∧ 𝑧 ∈ {1, 2}) → (𝑝 ∖ {𝑧}) = if(𝑧 = 1, 2, 1))
4914, 48eqtrd 2776 . . . . . 6 ((𝑝 = {1, 2} ∧ 𝑧 ∈ {1, 2}) → if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧) = if(𝑧 = 1, 2, 1))
5011, 49sylan 580 . . . . 5 ((𝑝 ∈ {{1, 2}} ∧ 𝑧 ∈ {1, 2}) → if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧) = if(𝑧 = 1, 2, 1))
5150mpteq2dva 5205 . . . 4 (𝑝 ∈ {{1, 2}} → (𝑧 ∈ {1, 2} ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧)) = (𝑧 ∈ {1, 2} ↦ if(𝑧 = 1, 2, 1)))
5251mpteq2ia 5208 . . 3 (𝑝 ∈ {{1, 2}} ↦ (𝑧 ∈ {1, 2} ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) = (𝑝 ∈ {{1, 2}} ↦ (𝑧 ∈ {1, 2} ↦ if(𝑧 = 1, 2, 1)))
5310, 52eqtri 2764 . 2 (𝑝 ∈ {𝑡 ∈ 𝒫 {1, 2} ∣ 𝑡 ≈ 2o} ↦ (𝑧 ∈ {1, 2} ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) = (𝑝 ∈ {{1, 2}} ↦ (𝑧 ∈ {1, 2} ↦ if(𝑧 = 1, 2, 1)))
544, 53eqtri 2764 1 (pmTrsp‘{1, 2}) = (𝑝 ∈ {{1, 2}} ↦ (𝑧 ∈ {1, 2} ↦ if(𝑧 = 1, 2, 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wo 845   = wceq 1541  wcel 2106  wne 2943  {crab 3407  Vcvv 3445  cdif 3907  ifcif 4486  𝒫 cpw 4560  {csn 4586  {cpr 4588   cuni 4865   class class class wbr 5105  cmpt 5188  cfv 6496  2oc2o 8406  cen 8880  1c1 11052  2c2 12208  0cn0 12413  pmTrspcpmtr 19223
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-oadd 8416  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-dju 9837  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-n0 12414  df-z 12500  df-uz 12764  df-fz 13425  df-hash 14231  df-pmtr 19224
This theorem is referenced by:  pmtrprfvalrn  19270
  Copyright terms: Public domain W3C validator