MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtrprfval Structured version   Visualization version   GIF version

Theorem pmtrprfval 19401
Description: The transpositions on a pair. (Contributed by AV, 9-Dec-2018.)
Assertion
Ref Expression
pmtrprfval (pmTrsp‘{1, 2}) = (𝑝 ∈ {{1, 2}} ↦ (𝑧 ∈ {1, 2} ↦ if(𝑧 = 1, 2, 1)))
Distinct variable group:   𝑧,𝑝

Proof of Theorem pmtrprfval
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 prex 5377 . . 3 {1, 2} ∈ V
2 eqid 2733 . . . 4 (pmTrsp‘{1, 2}) = (pmTrsp‘{1, 2})
32pmtrfval 19364 . . 3 ({1, 2} ∈ V → (pmTrsp‘{1, 2}) = (𝑝 ∈ {𝑡 ∈ 𝒫 {1, 2} ∣ 𝑡 ≈ 2o} ↦ (𝑧 ∈ {1, 2} ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))))
41, 3ax-mp 5 . 2 (pmTrsp‘{1, 2}) = (𝑝 ∈ {𝑡 ∈ 𝒫 {1, 2} ∣ 𝑡 ≈ 2o} ↦ (𝑧 ∈ {1, 2} ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧)))
5 1ex 11115 . . . . 5 1 ∈ V
6 2nn0 12405 . . . . 5 2 ∈ ℕ0
7 1ne2 12335 . . . . 5 1 ≠ 2
8 pr2pwpr 14388 . . . . 5 ((1 ∈ V ∧ 2 ∈ ℕ0 ∧ 1 ≠ 2) → {𝑡 ∈ 𝒫 {1, 2} ∣ 𝑡 ≈ 2o} = {{1, 2}})
95, 6, 7, 8mp3an 1463 . . . 4 {𝑡 ∈ 𝒫 {1, 2} ∣ 𝑡 ≈ 2o} = {{1, 2}}
109mpteq1i 5184 . . 3 (𝑝 ∈ {𝑡 ∈ 𝒫 {1, 2} ∣ 𝑡 ≈ 2o} ↦ (𝑧 ∈ {1, 2} ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) = (𝑝 ∈ {{1, 2}} ↦ (𝑧 ∈ {1, 2} ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧)))
11 elsni 4592 . . . . . 6 (𝑝 ∈ {{1, 2}} → 𝑝 = {1, 2})
12 eleq2 2822 . . . . . . . . 9 (𝑝 = {1, 2} → (𝑧𝑝𝑧 ∈ {1, 2}))
1312biimpar 477 . . . . . . . 8 ((𝑝 = {1, 2} ∧ 𝑧 ∈ {1, 2}) → 𝑧𝑝)
1413iftrued 4482 . . . . . . 7 ((𝑝 = {1, 2} ∧ 𝑧 ∈ {1, 2}) → if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧) = (𝑝 ∖ {𝑧}))
15 elpri 4599 . . . . . . . . 9 (𝑧 ∈ {1, 2} → (𝑧 = 1 ∨ 𝑧 = 2))
16 2ex 12209 . . . . . . . . . . . . 13 2 ∈ V
1716unisn 4877 . . . . . . . . . . . 12 {2} = 2
18 simpr 484 . . . . . . . . . . . . . . 15 ((𝑧 = 1 ∧ 𝑝 = {1, 2}) → 𝑝 = {1, 2})
19 sneq 4585 . . . . . . . . . . . . . . . 16 (𝑧 = 1 → {𝑧} = {1})
2019adantr 480 . . . . . . . . . . . . . . 15 ((𝑧 = 1 ∧ 𝑝 = {1, 2}) → {𝑧} = {1})
2118, 20difeq12d 4076 . . . . . . . . . . . . . 14 ((𝑧 = 1 ∧ 𝑝 = {1, 2}) → (𝑝 ∖ {𝑧}) = ({1, 2} ∖ {1}))
22 difprsn1 4751 . . . . . . . . . . . . . . 15 (1 ≠ 2 → ({1, 2} ∖ {1}) = {2})
237, 22ax-mp 5 . . . . . . . . . . . . . 14 ({1, 2} ∖ {1}) = {2}
2421, 23eqtrdi 2784 . . . . . . . . . . . . 13 ((𝑧 = 1 ∧ 𝑝 = {1, 2}) → (𝑝 ∖ {𝑧}) = {2})
2524unieqd 4871 . . . . . . . . . . . 12 ((𝑧 = 1 ∧ 𝑝 = {1, 2}) → (𝑝 ∖ {𝑧}) = {2})
26 iftrue 4480 . . . . . . . . . . . . 13 (𝑧 = 1 → if(𝑧 = 1, 2, 1) = 2)
2726adantr 480 . . . . . . . . . . . 12 ((𝑧 = 1 ∧ 𝑝 = {1, 2}) → if(𝑧 = 1, 2, 1) = 2)
2817, 25, 273eqtr4a 2794 . . . . . . . . . . 11 ((𝑧 = 1 ∧ 𝑝 = {1, 2}) → (𝑝 ∖ {𝑧}) = if(𝑧 = 1, 2, 1))
2928ex 412 . . . . . . . . . 10 (𝑧 = 1 → (𝑝 = {1, 2} → (𝑝 ∖ {𝑧}) = if(𝑧 = 1, 2, 1)))
305unisn 4877 . . . . . . . . . . . 12 {1} = 1
31 simpr 484 . . . . . . . . . . . . . . 15 ((𝑧 = 2 ∧ 𝑝 = {1, 2}) → 𝑝 = {1, 2})
32 sneq 4585 . . . . . . . . . . . . . . . 16 (𝑧 = 2 → {𝑧} = {2})
3332adantr 480 . . . . . . . . . . . . . . 15 ((𝑧 = 2 ∧ 𝑝 = {1, 2}) → {𝑧} = {2})
3431, 33difeq12d 4076 . . . . . . . . . . . . . 14 ((𝑧 = 2 ∧ 𝑝 = {1, 2}) → (𝑝 ∖ {𝑧}) = ({1, 2} ∖ {2}))
35 difprsn2 4752 . . . . . . . . . . . . . . 15 (1 ≠ 2 → ({1, 2} ∖ {2}) = {1})
367, 35ax-mp 5 . . . . . . . . . . . . . 14 ({1, 2} ∖ {2}) = {1}
3734, 36eqtrdi 2784 . . . . . . . . . . . . 13 ((𝑧 = 2 ∧ 𝑝 = {1, 2}) → (𝑝 ∖ {𝑧}) = {1})
3837unieqd 4871 . . . . . . . . . . . 12 ((𝑧 = 2 ∧ 𝑝 = {1, 2}) → (𝑝 ∖ {𝑧}) = {1})
397nesymi 2986 . . . . . . . . . . . . . . 15 ¬ 2 = 1
40 eqeq1 2737 . . . . . . . . . . . . . . 15 (𝑧 = 2 → (𝑧 = 1 ↔ 2 = 1))
4139, 40mtbiri 327 . . . . . . . . . . . . . 14 (𝑧 = 2 → ¬ 𝑧 = 1)
4241iffalsed 4485 . . . . . . . . . . . . 13 (𝑧 = 2 → if(𝑧 = 1, 2, 1) = 1)
4342adantr 480 . . . . . . . . . . . 12 ((𝑧 = 2 ∧ 𝑝 = {1, 2}) → if(𝑧 = 1, 2, 1) = 1)
4430, 38, 433eqtr4a 2794 . . . . . . . . . . 11 ((𝑧 = 2 ∧ 𝑝 = {1, 2}) → (𝑝 ∖ {𝑧}) = if(𝑧 = 1, 2, 1))
4544ex 412 . . . . . . . . . 10 (𝑧 = 2 → (𝑝 = {1, 2} → (𝑝 ∖ {𝑧}) = if(𝑧 = 1, 2, 1)))
4629, 45jaoi 857 . . . . . . . . 9 ((𝑧 = 1 ∨ 𝑧 = 2) → (𝑝 = {1, 2} → (𝑝 ∖ {𝑧}) = if(𝑧 = 1, 2, 1)))
4715, 46syl 17 . . . . . . . 8 (𝑧 ∈ {1, 2} → (𝑝 = {1, 2} → (𝑝 ∖ {𝑧}) = if(𝑧 = 1, 2, 1)))
4847impcom 407 . . . . . . 7 ((𝑝 = {1, 2} ∧ 𝑧 ∈ {1, 2}) → (𝑝 ∖ {𝑧}) = if(𝑧 = 1, 2, 1))
4914, 48eqtrd 2768 . . . . . 6 ((𝑝 = {1, 2} ∧ 𝑧 ∈ {1, 2}) → if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧) = if(𝑧 = 1, 2, 1))
5011, 49sylan 580 . . . . 5 ((𝑝 ∈ {{1, 2}} ∧ 𝑧 ∈ {1, 2}) → if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧) = if(𝑧 = 1, 2, 1))
5150mpteq2dva 5186 . . . 4 (𝑝 ∈ {{1, 2}} → (𝑧 ∈ {1, 2} ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧)) = (𝑧 ∈ {1, 2} ↦ if(𝑧 = 1, 2, 1)))
5251mpteq2ia 5188 . . 3 (𝑝 ∈ {{1, 2}} ↦ (𝑧 ∈ {1, 2} ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) = (𝑝 ∈ {{1, 2}} ↦ (𝑧 ∈ {1, 2} ↦ if(𝑧 = 1, 2, 1)))
5310, 52eqtri 2756 . 2 (𝑝 ∈ {𝑡 ∈ 𝒫 {1, 2} ∣ 𝑡 ≈ 2o} ↦ (𝑧 ∈ {1, 2} ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) = (𝑝 ∈ {{1, 2}} ↦ (𝑧 ∈ {1, 2} ↦ if(𝑧 = 1, 2, 1)))
544, 53eqtri 2756 1 (pmTrsp‘{1, 2}) = (𝑝 ∈ {{1, 2}} ↦ (𝑧 ∈ {1, 2} ↦ if(𝑧 = 1, 2, 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1541  wcel 2113  wne 2929  {crab 3396  Vcvv 3437  cdif 3895  ifcif 4474  𝒫 cpw 4549  {csn 4575  {cpr 4577   cuni 4858   class class class wbr 5093  cmpt 5174  cfv 6486  2oc2o 8385  cen 8872  1c1 11014  2c2 12187  0cn0 12388  pmTrspcpmtr 19355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-oadd 8395  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-dju 9801  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-n0 12389  df-z 12476  df-uz 12739  df-fz 13410  df-hash 14240  df-pmtr 19356
This theorem is referenced by:  pmtrprfvalrn  19402
  Copyright terms: Public domain W3C validator