Step | Hyp | Ref
| Expression |
1 | | dff14b 7125 |
. 2
⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ (𝐴 ∖ {𝑥})(𝐹‘𝑥) ≠ (𝐹‘𝑦))) |
2 | | f12dfv.a |
. . . . 5
⊢ 𝐴 = {𝑋, 𝑌} |
3 | 2 | raleqi 3337 |
. . . 4
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ (𝐴 ∖ {𝑥})(𝐹‘𝑥) ≠ (𝐹‘𝑦) ↔ ∀𝑥 ∈ {𝑋, 𝑌}∀𝑦 ∈ (𝐴 ∖ {𝑥})(𝐹‘𝑥) ≠ (𝐹‘𝑦)) |
4 | | sneq 4568 |
. . . . . . . . 9
⊢ (𝑥 = 𝑋 → {𝑥} = {𝑋}) |
5 | 4 | difeq2d 4053 |
. . . . . . . 8
⊢ (𝑥 = 𝑋 → (𝐴 ∖ {𝑥}) = (𝐴 ∖ {𝑋})) |
6 | | fveq2 6756 |
. . . . . . . . 9
⊢ (𝑥 = 𝑋 → (𝐹‘𝑥) = (𝐹‘𝑋)) |
7 | 6 | neeq1d 3002 |
. . . . . . . 8
⊢ (𝑥 = 𝑋 → ((𝐹‘𝑥) ≠ (𝐹‘𝑦) ↔ (𝐹‘𝑋) ≠ (𝐹‘𝑦))) |
8 | 5, 7 | raleqbidv 3327 |
. . . . . . 7
⊢ (𝑥 = 𝑋 → (∀𝑦 ∈ (𝐴 ∖ {𝑥})(𝐹‘𝑥) ≠ (𝐹‘𝑦) ↔ ∀𝑦 ∈ (𝐴 ∖ {𝑋})(𝐹‘𝑋) ≠ (𝐹‘𝑦))) |
9 | | sneq 4568 |
. . . . . . . . 9
⊢ (𝑥 = 𝑌 → {𝑥} = {𝑌}) |
10 | 9 | difeq2d 4053 |
. . . . . . . 8
⊢ (𝑥 = 𝑌 → (𝐴 ∖ {𝑥}) = (𝐴 ∖ {𝑌})) |
11 | | fveq2 6756 |
. . . . . . . . 9
⊢ (𝑥 = 𝑌 → (𝐹‘𝑥) = (𝐹‘𝑌)) |
12 | 11 | neeq1d 3002 |
. . . . . . . 8
⊢ (𝑥 = 𝑌 → ((𝐹‘𝑥) ≠ (𝐹‘𝑦) ↔ (𝐹‘𝑌) ≠ (𝐹‘𝑦))) |
13 | 10, 12 | raleqbidv 3327 |
. . . . . . 7
⊢ (𝑥 = 𝑌 → (∀𝑦 ∈ (𝐴 ∖ {𝑥})(𝐹‘𝑥) ≠ (𝐹‘𝑦) ↔ ∀𝑦 ∈ (𝐴 ∖ {𝑌})(𝐹‘𝑌) ≠ (𝐹‘𝑦))) |
14 | 8, 13 | ralprg 4627 |
. . . . . 6
⊢ ((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉) → (∀𝑥 ∈ {𝑋, 𝑌}∀𝑦 ∈ (𝐴 ∖ {𝑥})(𝐹‘𝑥) ≠ (𝐹‘𝑦) ↔ (∀𝑦 ∈ (𝐴 ∖ {𝑋})(𝐹‘𝑋) ≠ (𝐹‘𝑦) ∧ ∀𝑦 ∈ (𝐴 ∖ {𝑌})(𝐹‘𝑌) ≠ (𝐹‘𝑦)))) |
15 | 14 | adantr 480 |
. . . . 5
⊢ (((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉) ∧ 𝑋 ≠ 𝑌) → (∀𝑥 ∈ {𝑋, 𝑌}∀𝑦 ∈ (𝐴 ∖ {𝑥})(𝐹‘𝑥) ≠ (𝐹‘𝑦) ↔ (∀𝑦 ∈ (𝐴 ∖ {𝑋})(𝐹‘𝑋) ≠ (𝐹‘𝑦) ∧ ∀𝑦 ∈ (𝐴 ∖ {𝑌})(𝐹‘𝑌) ≠ (𝐹‘𝑦)))) |
16 | 2 | difeq1i 4049 |
. . . . . . . . . . 11
⊢ (𝐴 ∖ {𝑋}) = ({𝑋, 𝑌} ∖ {𝑋}) |
17 | | difprsn1 4730 |
. . . . . . . . . . 11
⊢ (𝑋 ≠ 𝑌 → ({𝑋, 𝑌} ∖ {𝑋}) = {𝑌}) |
18 | 16, 17 | eqtrid 2790 |
. . . . . . . . . 10
⊢ (𝑋 ≠ 𝑌 → (𝐴 ∖ {𝑋}) = {𝑌}) |
19 | 18 | adantl 481 |
. . . . . . . . 9
⊢ (((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉) ∧ 𝑋 ≠ 𝑌) → (𝐴 ∖ {𝑋}) = {𝑌}) |
20 | 19 | raleqdv 3339 |
. . . . . . . 8
⊢ (((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉) ∧ 𝑋 ≠ 𝑌) → (∀𝑦 ∈ (𝐴 ∖ {𝑋})(𝐹‘𝑋) ≠ (𝐹‘𝑦) ↔ ∀𝑦 ∈ {𝑌} (𝐹‘𝑋) ≠ (𝐹‘𝑦))) |
21 | | fveq2 6756 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑌 → (𝐹‘𝑦) = (𝐹‘𝑌)) |
22 | 21 | neeq2d 3003 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑌 → ((𝐹‘𝑋) ≠ (𝐹‘𝑦) ↔ (𝐹‘𝑋) ≠ (𝐹‘𝑌))) |
23 | 22 | ralsng 4606 |
. . . . . . . . . 10
⊢ (𝑌 ∈ 𝑉 → (∀𝑦 ∈ {𝑌} (𝐹‘𝑋) ≠ (𝐹‘𝑦) ↔ (𝐹‘𝑋) ≠ (𝐹‘𝑌))) |
24 | 23 | adantl 481 |
. . . . . . . . 9
⊢ ((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉) → (∀𝑦 ∈ {𝑌} (𝐹‘𝑋) ≠ (𝐹‘𝑦) ↔ (𝐹‘𝑋) ≠ (𝐹‘𝑌))) |
25 | 24 | adantr 480 |
. . . . . . . 8
⊢ (((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉) ∧ 𝑋 ≠ 𝑌) → (∀𝑦 ∈ {𝑌} (𝐹‘𝑋) ≠ (𝐹‘𝑦) ↔ (𝐹‘𝑋) ≠ (𝐹‘𝑌))) |
26 | 20, 25 | bitrd 278 |
. . . . . . 7
⊢ (((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉) ∧ 𝑋 ≠ 𝑌) → (∀𝑦 ∈ (𝐴 ∖ {𝑋})(𝐹‘𝑋) ≠ (𝐹‘𝑦) ↔ (𝐹‘𝑋) ≠ (𝐹‘𝑌))) |
27 | 2 | difeq1i 4049 |
. . . . . . . . . . 11
⊢ (𝐴 ∖ {𝑌}) = ({𝑋, 𝑌} ∖ {𝑌}) |
28 | | difprsn2 4731 |
. . . . . . . . . . 11
⊢ (𝑋 ≠ 𝑌 → ({𝑋, 𝑌} ∖ {𝑌}) = {𝑋}) |
29 | 27, 28 | eqtrid 2790 |
. . . . . . . . . 10
⊢ (𝑋 ≠ 𝑌 → (𝐴 ∖ {𝑌}) = {𝑋}) |
30 | 29 | adantl 481 |
. . . . . . . . 9
⊢ (((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉) ∧ 𝑋 ≠ 𝑌) → (𝐴 ∖ {𝑌}) = {𝑋}) |
31 | 30 | raleqdv 3339 |
. . . . . . . 8
⊢ (((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉) ∧ 𝑋 ≠ 𝑌) → (∀𝑦 ∈ (𝐴 ∖ {𝑌})(𝐹‘𝑌) ≠ (𝐹‘𝑦) ↔ ∀𝑦 ∈ {𝑋} (𝐹‘𝑌) ≠ (𝐹‘𝑦))) |
32 | | fveq2 6756 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑋 → (𝐹‘𝑦) = (𝐹‘𝑋)) |
33 | 32 | neeq2d 3003 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑋 → ((𝐹‘𝑌) ≠ (𝐹‘𝑦) ↔ (𝐹‘𝑌) ≠ (𝐹‘𝑋))) |
34 | 33 | ralsng 4606 |
. . . . . . . . . 10
⊢ (𝑋 ∈ 𝑈 → (∀𝑦 ∈ {𝑋} (𝐹‘𝑌) ≠ (𝐹‘𝑦) ↔ (𝐹‘𝑌) ≠ (𝐹‘𝑋))) |
35 | 34 | adantr 480 |
. . . . . . . . 9
⊢ ((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉) → (∀𝑦 ∈ {𝑋} (𝐹‘𝑌) ≠ (𝐹‘𝑦) ↔ (𝐹‘𝑌) ≠ (𝐹‘𝑋))) |
36 | 35 | adantr 480 |
. . . . . . . 8
⊢ (((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉) ∧ 𝑋 ≠ 𝑌) → (∀𝑦 ∈ {𝑋} (𝐹‘𝑌) ≠ (𝐹‘𝑦) ↔ (𝐹‘𝑌) ≠ (𝐹‘𝑋))) |
37 | 31, 36 | bitrd 278 |
. . . . . . 7
⊢ (((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉) ∧ 𝑋 ≠ 𝑌) → (∀𝑦 ∈ (𝐴 ∖ {𝑌})(𝐹‘𝑌) ≠ (𝐹‘𝑦) ↔ (𝐹‘𝑌) ≠ (𝐹‘𝑋))) |
38 | 26, 37 | anbi12d 630 |
. . . . . 6
⊢ (((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉) ∧ 𝑋 ≠ 𝑌) → ((∀𝑦 ∈ (𝐴 ∖ {𝑋})(𝐹‘𝑋) ≠ (𝐹‘𝑦) ∧ ∀𝑦 ∈ (𝐴 ∖ {𝑌})(𝐹‘𝑌) ≠ (𝐹‘𝑦)) ↔ ((𝐹‘𝑋) ≠ (𝐹‘𝑌) ∧ (𝐹‘𝑌) ≠ (𝐹‘𝑋)))) |
39 | | necom 2996 |
. . . . . . . 8
⊢ ((𝐹‘𝑋) ≠ (𝐹‘𝑌) ↔ (𝐹‘𝑌) ≠ (𝐹‘𝑋)) |
40 | 39 | biimpi 215 |
. . . . . . 7
⊢ ((𝐹‘𝑋) ≠ (𝐹‘𝑌) → (𝐹‘𝑌) ≠ (𝐹‘𝑋)) |
41 | 40 | pm4.71i 559 |
. . . . . 6
⊢ ((𝐹‘𝑋) ≠ (𝐹‘𝑌) ↔ ((𝐹‘𝑋) ≠ (𝐹‘𝑌) ∧ (𝐹‘𝑌) ≠ (𝐹‘𝑋))) |
42 | 38, 41 | bitr4di 288 |
. . . . 5
⊢ (((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉) ∧ 𝑋 ≠ 𝑌) → ((∀𝑦 ∈ (𝐴 ∖ {𝑋})(𝐹‘𝑋) ≠ (𝐹‘𝑦) ∧ ∀𝑦 ∈ (𝐴 ∖ {𝑌})(𝐹‘𝑌) ≠ (𝐹‘𝑦)) ↔ (𝐹‘𝑋) ≠ (𝐹‘𝑌))) |
43 | 15, 42 | bitrd 278 |
. . . 4
⊢ (((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉) ∧ 𝑋 ≠ 𝑌) → (∀𝑥 ∈ {𝑋, 𝑌}∀𝑦 ∈ (𝐴 ∖ {𝑥})(𝐹‘𝑥) ≠ (𝐹‘𝑦) ↔ (𝐹‘𝑋) ≠ (𝐹‘𝑌))) |
44 | 3, 43 | syl5bb 282 |
. . 3
⊢ (((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉) ∧ 𝑋 ≠ 𝑌) → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ (𝐴 ∖ {𝑥})(𝐹‘𝑥) ≠ (𝐹‘𝑦) ↔ (𝐹‘𝑋) ≠ (𝐹‘𝑌))) |
45 | 44 | anbi2d 628 |
. 2
⊢ (((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉) ∧ 𝑋 ≠ 𝑌) → ((𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ (𝐴 ∖ {𝑥})(𝐹‘𝑥) ≠ (𝐹‘𝑦)) ↔ (𝐹:𝐴⟶𝐵 ∧ (𝐹‘𝑋) ≠ (𝐹‘𝑌)))) |
46 | 1, 45 | syl5bb 282 |
1
⊢ (((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉) ∧ 𝑋 ≠ 𝑌) → (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ (𝐹‘𝑋) ≠ (𝐹‘𝑌)))) |