MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f12dfv Structured version   Visualization version   GIF version

Theorem f12dfv 7309
Description: A one-to-one function with a domain with at least two different elements in terms of function values. (Contributed by Alexander van der Vekens, 2-Mar-2018.)
Hypothesis
Ref Expression
f12dfv.a 𝐴 = {𝑋, 𝑌}
Assertion
Ref Expression
f12dfv (((𝑋𝑈𝑌𝑉) ∧ 𝑋𝑌) → (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ (𝐹𝑋) ≠ (𝐹𝑌))))

Proof of Theorem f12dfv
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dff14b 7308 . 2 (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦 ∈ (𝐴 ∖ {𝑥})(𝐹𝑥) ≠ (𝐹𝑦)))
2 f12dfv.a . . . . 5 𝐴 = {𝑋, 𝑌}
32raleqi 3332 . . . 4 (∀𝑥𝐴𝑦 ∈ (𝐴 ∖ {𝑥})(𝐹𝑥) ≠ (𝐹𝑦) ↔ ∀𝑥 ∈ {𝑋, 𝑌}∀𝑦 ∈ (𝐴 ∖ {𝑥})(𝐹𝑥) ≠ (𝐹𝑦))
4 sneq 4658 . . . . . . . . 9 (𝑥 = 𝑋 → {𝑥} = {𝑋})
54difeq2d 4149 . . . . . . . 8 (𝑥 = 𝑋 → (𝐴 ∖ {𝑥}) = (𝐴 ∖ {𝑋}))
6 fveq2 6920 . . . . . . . . 9 (𝑥 = 𝑋 → (𝐹𝑥) = (𝐹𝑋))
76neeq1d 3006 . . . . . . . 8 (𝑥 = 𝑋 → ((𝐹𝑥) ≠ (𝐹𝑦) ↔ (𝐹𝑋) ≠ (𝐹𝑦)))
85, 7raleqbidv 3354 . . . . . . 7 (𝑥 = 𝑋 → (∀𝑦 ∈ (𝐴 ∖ {𝑥})(𝐹𝑥) ≠ (𝐹𝑦) ↔ ∀𝑦 ∈ (𝐴 ∖ {𝑋})(𝐹𝑋) ≠ (𝐹𝑦)))
9 sneq 4658 . . . . . . . . 9 (𝑥 = 𝑌 → {𝑥} = {𝑌})
109difeq2d 4149 . . . . . . . 8 (𝑥 = 𝑌 → (𝐴 ∖ {𝑥}) = (𝐴 ∖ {𝑌}))
11 fveq2 6920 . . . . . . . . 9 (𝑥 = 𝑌 → (𝐹𝑥) = (𝐹𝑌))
1211neeq1d 3006 . . . . . . . 8 (𝑥 = 𝑌 → ((𝐹𝑥) ≠ (𝐹𝑦) ↔ (𝐹𝑌) ≠ (𝐹𝑦)))
1310, 12raleqbidv 3354 . . . . . . 7 (𝑥 = 𝑌 → (∀𝑦 ∈ (𝐴 ∖ {𝑥})(𝐹𝑥) ≠ (𝐹𝑦) ↔ ∀𝑦 ∈ (𝐴 ∖ {𝑌})(𝐹𝑌) ≠ (𝐹𝑦)))
148, 13ralprg 4719 . . . . . 6 ((𝑋𝑈𝑌𝑉) → (∀𝑥 ∈ {𝑋, 𝑌}∀𝑦 ∈ (𝐴 ∖ {𝑥})(𝐹𝑥) ≠ (𝐹𝑦) ↔ (∀𝑦 ∈ (𝐴 ∖ {𝑋})(𝐹𝑋) ≠ (𝐹𝑦) ∧ ∀𝑦 ∈ (𝐴 ∖ {𝑌})(𝐹𝑌) ≠ (𝐹𝑦))))
1514adantr 480 . . . . 5 (((𝑋𝑈𝑌𝑉) ∧ 𝑋𝑌) → (∀𝑥 ∈ {𝑋, 𝑌}∀𝑦 ∈ (𝐴 ∖ {𝑥})(𝐹𝑥) ≠ (𝐹𝑦) ↔ (∀𝑦 ∈ (𝐴 ∖ {𝑋})(𝐹𝑋) ≠ (𝐹𝑦) ∧ ∀𝑦 ∈ (𝐴 ∖ {𝑌})(𝐹𝑌) ≠ (𝐹𝑦))))
162difeq1i 4145 . . . . . . . . . . 11 (𝐴 ∖ {𝑋}) = ({𝑋, 𝑌} ∖ {𝑋})
17 difprsn1 4825 . . . . . . . . . . 11 (𝑋𝑌 → ({𝑋, 𝑌} ∖ {𝑋}) = {𝑌})
1816, 17eqtrid 2792 . . . . . . . . . 10 (𝑋𝑌 → (𝐴 ∖ {𝑋}) = {𝑌})
1918adantl 481 . . . . . . . . 9 (((𝑋𝑈𝑌𝑉) ∧ 𝑋𝑌) → (𝐴 ∖ {𝑋}) = {𝑌})
2019raleqdv 3334 . . . . . . . 8 (((𝑋𝑈𝑌𝑉) ∧ 𝑋𝑌) → (∀𝑦 ∈ (𝐴 ∖ {𝑋})(𝐹𝑋) ≠ (𝐹𝑦) ↔ ∀𝑦 ∈ {𝑌} (𝐹𝑋) ≠ (𝐹𝑦)))
21 fveq2 6920 . . . . . . . . . . . 12 (𝑦 = 𝑌 → (𝐹𝑦) = (𝐹𝑌))
2221neeq2d 3007 . . . . . . . . . . 11 (𝑦 = 𝑌 → ((𝐹𝑋) ≠ (𝐹𝑦) ↔ (𝐹𝑋) ≠ (𝐹𝑌)))
2322ralsng 4697 . . . . . . . . . 10 (𝑌𝑉 → (∀𝑦 ∈ {𝑌} (𝐹𝑋) ≠ (𝐹𝑦) ↔ (𝐹𝑋) ≠ (𝐹𝑌)))
2423adantl 481 . . . . . . . . 9 ((𝑋𝑈𝑌𝑉) → (∀𝑦 ∈ {𝑌} (𝐹𝑋) ≠ (𝐹𝑦) ↔ (𝐹𝑋) ≠ (𝐹𝑌)))
2524adantr 480 . . . . . . . 8 (((𝑋𝑈𝑌𝑉) ∧ 𝑋𝑌) → (∀𝑦 ∈ {𝑌} (𝐹𝑋) ≠ (𝐹𝑦) ↔ (𝐹𝑋) ≠ (𝐹𝑌)))
2620, 25bitrd 279 . . . . . . 7 (((𝑋𝑈𝑌𝑉) ∧ 𝑋𝑌) → (∀𝑦 ∈ (𝐴 ∖ {𝑋})(𝐹𝑋) ≠ (𝐹𝑦) ↔ (𝐹𝑋) ≠ (𝐹𝑌)))
272difeq1i 4145 . . . . . . . . . . 11 (𝐴 ∖ {𝑌}) = ({𝑋, 𝑌} ∖ {𝑌})
28 difprsn2 4826 . . . . . . . . . . 11 (𝑋𝑌 → ({𝑋, 𝑌} ∖ {𝑌}) = {𝑋})
2927, 28eqtrid 2792 . . . . . . . . . 10 (𝑋𝑌 → (𝐴 ∖ {𝑌}) = {𝑋})
3029adantl 481 . . . . . . . . 9 (((𝑋𝑈𝑌𝑉) ∧ 𝑋𝑌) → (𝐴 ∖ {𝑌}) = {𝑋})
3130raleqdv 3334 . . . . . . . 8 (((𝑋𝑈𝑌𝑉) ∧ 𝑋𝑌) → (∀𝑦 ∈ (𝐴 ∖ {𝑌})(𝐹𝑌) ≠ (𝐹𝑦) ↔ ∀𝑦 ∈ {𝑋} (𝐹𝑌) ≠ (𝐹𝑦)))
32 fveq2 6920 . . . . . . . . . . . 12 (𝑦 = 𝑋 → (𝐹𝑦) = (𝐹𝑋))
3332neeq2d 3007 . . . . . . . . . . 11 (𝑦 = 𝑋 → ((𝐹𝑌) ≠ (𝐹𝑦) ↔ (𝐹𝑌) ≠ (𝐹𝑋)))
3433ralsng 4697 . . . . . . . . . 10 (𝑋𝑈 → (∀𝑦 ∈ {𝑋} (𝐹𝑌) ≠ (𝐹𝑦) ↔ (𝐹𝑌) ≠ (𝐹𝑋)))
3534adantr 480 . . . . . . . . 9 ((𝑋𝑈𝑌𝑉) → (∀𝑦 ∈ {𝑋} (𝐹𝑌) ≠ (𝐹𝑦) ↔ (𝐹𝑌) ≠ (𝐹𝑋)))
3635adantr 480 . . . . . . . 8 (((𝑋𝑈𝑌𝑉) ∧ 𝑋𝑌) → (∀𝑦 ∈ {𝑋} (𝐹𝑌) ≠ (𝐹𝑦) ↔ (𝐹𝑌) ≠ (𝐹𝑋)))
3731, 36bitrd 279 . . . . . . 7 (((𝑋𝑈𝑌𝑉) ∧ 𝑋𝑌) → (∀𝑦 ∈ (𝐴 ∖ {𝑌})(𝐹𝑌) ≠ (𝐹𝑦) ↔ (𝐹𝑌) ≠ (𝐹𝑋)))
3826, 37anbi12d 631 . . . . . 6 (((𝑋𝑈𝑌𝑉) ∧ 𝑋𝑌) → ((∀𝑦 ∈ (𝐴 ∖ {𝑋})(𝐹𝑋) ≠ (𝐹𝑦) ∧ ∀𝑦 ∈ (𝐴 ∖ {𝑌})(𝐹𝑌) ≠ (𝐹𝑦)) ↔ ((𝐹𝑋) ≠ (𝐹𝑌) ∧ (𝐹𝑌) ≠ (𝐹𝑋))))
39 necom 3000 . . . . . . . 8 ((𝐹𝑋) ≠ (𝐹𝑌) ↔ (𝐹𝑌) ≠ (𝐹𝑋))
4039biimpi 216 . . . . . . 7 ((𝐹𝑋) ≠ (𝐹𝑌) → (𝐹𝑌) ≠ (𝐹𝑋))
4140pm4.71i 559 . . . . . 6 ((𝐹𝑋) ≠ (𝐹𝑌) ↔ ((𝐹𝑋) ≠ (𝐹𝑌) ∧ (𝐹𝑌) ≠ (𝐹𝑋)))
4238, 41bitr4di 289 . . . . 5 (((𝑋𝑈𝑌𝑉) ∧ 𝑋𝑌) → ((∀𝑦 ∈ (𝐴 ∖ {𝑋})(𝐹𝑋) ≠ (𝐹𝑦) ∧ ∀𝑦 ∈ (𝐴 ∖ {𝑌})(𝐹𝑌) ≠ (𝐹𝑦)) ↔ (𝐹𝑋) ≠ (𝐹𝑌)))
4315, 42bitrd 279 . . . 4 (((𝑋𝑈𝑌𝑉) ∧ 𝑋𝑌) → (∀𝑥 ∈ {𝑋, 𝑌}∀𝑦 ∈ (𝐴 ∖ {𝑥})(𝐹𝑥) ≠ (𝐹𝑦) ↔ (𝐹𝑋) ≠ (𝐹𝑌)))
443, 43bitrid 283 . . 3 (((𝑋𝑈𝑌𝑉) ∧ 𝑋𝑌) → (∀𝑥𝐴𝑦 ∈ (𝐴 ∖ {𝑥})(𝐹𝑥) ≠ (𝐹𝑦) ↔ (𝐹𝑋) ≠ (𝐹𝑌)))
4544anbi2d 629 . 2 (((𝑋𝑈𝑌𝑉) ∧ 𝑋𝑌) → ((𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦 ∈ (𝐴 ∖ {𝑥})(𝐹𝑥) ≠ (𝐹𝑦)) ↔ (𝐹:𝐴𝐵 ∧ (𝐹𝑋) ≠ (𝐹𝑌))))
461, 45bitrid 283 1 (((𝑋𝑈𝑌𝑉) ∧ 𝑋𝑌) → (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ (𝐹𝑋) ≠ (𝐹𝑌))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wne 2946  wral 3067  cdif 3973  {csn 4648  {cpr 4650  wf 6569  1-1wf1 6570  cfv 6573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fv 6581
This theorem is referenced by:  usgr2trlncl  29796
  Copyright terms: Public domain W3C validator