Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldepsnlinc Structured version   Visualization version   GIF version

Theorem ldepsnlinc 48451
Description: The reverse implication of islindeps2 48426 does not hold for arbitrary (left) modules, see note in [Roman] p. 112: "... if a nontrivial linear combination of the elements ... in an R-module M is 0, ... where not all of the coefficients are 0, then we cannot conclude ... that one of the elements ... is a linear combination of the others." This means that there is at least one left module having a linearly dependent subset in which there is at least one element which is not a linear combination of the other elements of this subset. Such a left module can be constructed by using zlmodzxzequa 48439 and zlmodzxznm 48440. (Contributed by AV, 25-May-2019.) (Revised by AV, 30-Jul-2019.)
Assertion
Ref Expression
ldepsnlinc 𝑚 ∈ LMod ∃𝑠 ∈ 𝒫 (Base‘𝑚)(𝑠 linDepS 𝑚 ∧ ∀𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) → (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) ≠ 𝑣))
Distinct variable group:   𝑓,𝑚,𝑠,𝑣

Proof of Theorem ldepsnlinc
StepHypRef Expression
1 eqid 2736 . . . 4 (ℤring freeLMod {0, 1}) = (ℤring freeLMod {0, 1})
21zlmodzxzlmod 48296 . . 3 ((ℤring freeLMod {0, 1}) ∈ LMod ∧ ℤring = (Scalar‘(ℤring freeLMod {0, 1})))
32simpli 483 . 2 (ℤring freeLMod {0, 1}) ∈ LMod
4 3z 12630 . . . . 5 3 ∈ ℤ
5 6nn 12334 . . . . . 6 6 ∈ ℕ
65nnzi 12621 . . . . 5 6 ∈ ℤ
71zlmodzxzel 48297 . . . . 5 ((3 ∈ ℤ ∧ 6 ∈ ℤ) → {⟨0, 3⟩, ⟨1, 6⟩} ∈ (Base‘(ℤring freeLMod {0, 1})))
84, 6, 7mp2an 692 . . . 4 {⟨0, 3⟩, ⟨1, 6⟩} ∈ (Base‘(ℤring freeLMod {0, 1}))
9 2z 12629 . . . . 5 2 ∈ ℤ
10 4z 12631 . . . . 5 4 ∈ ℤ
111zlmodzxzel 48297 . . . . 5 ((2 ∈ ℤ ∧ 4 ∈ ℤ) → {⟨0, 2⟩, ⟨1, 4⟩} ∈ (Base‘(ℤring freeLMod {0, 1})))
129, 10, 11mp2an 692 . . . 4 {⟨0, 2⟩, ⟨1, 4⟩} ∈ (Base‘(ℤring freeLMod {0, 1}))
13 prelpwi 5427 . . . 4 (({⟨0, 3⟩, ⟨1, 6⟩} ∈ (Base‘(ℤring freeLMod {0, 1})) ∧ {⟨0, 2⟩, ⟨1, 4⟩} ∈ (Base‘(ℤring freeLMod {0, 1}))) → {{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∈ 𝒫 (Base‘(ℤring freeLMod {0, 1})))
148, 12, 13mp2an 692 . . 3 {{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∈ 𝒫 (Base‘(ℤring freeLMod {0, 1}))
15 eqid 2736 . . . . 5 {⟨0, 3⟩, ⟨1, 6⟩} = {⟨0, 3⟩, ⟨1, 6⟩}
16 eqid 2736 . . . . 5 {⟨0, 2⟩, ⟨1, 4⟩} = {⟨0, 2⟩, ⟨1, 4⟩}
171, 15, 16zlmodzxzldep 48447 . . . 4 {{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} linDepS (ℤring freeLMod {0, 1})
181, 15, 16ldepsnlinclem1 48448 . . . . . . . 8 (𝑓 ∈ ((Base‘ℤring) ↑m {{⟨0, 2⟩, ⟨1, 4⟩}}) → (𝑓( linC ‘(ℤring freeLMod {0, 1})){{⟨0, 2⟩, ⟨1, 4⟩}}) ≠ {⟨0, 3⟩, ⟨1, 6⟩})
19 simpr 484 . . . . . . . . . . . 12 (((ℤring freeLMod {0, 1}) ∈ LMod ∧ ℤring = (Scalar‘(ℤring freeLMod {0, 1}))) → ℤring = (Scalar‘(ℤring freeLMod {0, 1})))
2019eqcomd 2742 . . . . . . . . . . 11 (((ℤring freeLMod {0, 1}) ∈ LMod ∧ ℤring = (Scalar‘(ℤring freeLMod {0, 1}))) → (Scalar‘(ℤring freeLMod {0, 1})) = ℤring)
212, 20ax-mp 5 . . . . . . . . . 10 (Scalar‘(ℤring freeLMod {0, 1})) = ℤring
2221fveq2i 6884 . . . . . . . . 9 (Base‘(Scalar‘(ℤring freeLMod {0, 1}))) = (Base‘ℤring)
2322oveq1i 7420 . . . . . . . 8 ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑m {{⟨0, 2⟩, ⟨1, 4⟩}}) = ((Base‘ℤring) ↑m {{⟨0, 2⟩, ⟨1, 4⟩}})
2418, 23eleq2s 2853 . . . . . . 7 (𝑓 ∈ ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑m {{⟨0, 2⟩, ⟨1, 4⟩}}) → (𝑓( linC ‘(ℤring freeLMod {0, 1})){{⟨0, 2⟩, ⟨1, 4⟩}}) ≠ {⟨0, 3⟩, ⟨1, 6⟩})
2524a1d 25 . . . . . 6 (𝑓 ∈ ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑m {{⟨0, 2⟩, ⟨1, 4⟩}}) → (𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1})){{⟨0, 2⟩, ⟨1, 4⟩}}) ≠ {⟨0, 3⟩, ⟨1, 6⟩}))
2625rgen 3054 . . . . 5 𝑓 ∈ ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑m {{⟨0, 2⟩, ⟨1, 4⟩}})(𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1})){{⟨0, 2⟩, ⟨1, 4⟩}}) ≠ {⟨0, 3⟩, ⟨1, 6⟩})
271, 15, 16ldepsnlinclem2 48449 . . . . . . . 8 (𝑓 ∈ ((Base‘ℤring) ↑m {{⟨0, 3⟩, ⟨1, 6⟩}}) → (𝑓( linC ‘(ℤring freeLMod {0, 1})){{⟨0, 3⟩, ⟨1, 6⟩}}) ≠ {⟨0, 2⟩, ⟨1, 4⟩})
2822oveq1i 7420 . . . . . . . 8 ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑m {{⟨0, 3⟩, ⟨1, 6⟩}}) = ((Base‘ℤring) ↑m {{⟨0, 3⟩, ⟨1, 6⟩}})
2927, 28eleq2s 2853 . . . . . . 7 (𝑓 ∈ ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑m {{⟨0, 3⟩, ⟨1, 6⟩}}) → (𝑓( linC ‘(ℤring freeLMod {0, 1})){{⟨0, 3⟩, ⟨1, 6⟩}}) ≠ {⟨0, 2⟩, ⟨1, 4⟩})
3029a1d 25 . . . . . 6 (𝑓 ∈ ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑m {{⟨0, 3⟩, ⟨1, 6⟩}}) → (𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1})){{⟨0, 3⟩, ⟨1, 6⟩}}) ≠ {⟨0, 2⟩, ⟨1, 4⟩}))
3130rgen 3054 . . . . 5 𝑓 ∈ ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑m {{⟨0, 3⟩, ⟨1, 6⟩}})(𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1})){{⟨0, 3⟩, ⟨1, 6⟩}}) ≠ {⟨0, 2⟩, ⟨1, 4⟩})
32 prex 5412 . . . . . 6 {⟨0, 3⟩, ⟨1, 6⟩} ∈ V
33 prex 5412 . . . . . 6 {⟨0, 2⟩, ⟨1, 4⟩} ∈ V
34 sneq 4616 . . . . . . . . . 10 (𝑣 = {⟨0, 3⟩, ⟨1, 6⟩} → {𝑣} = {{⟨0, 3⟩, ⟨1, 6⟩}})
3534difeq2d 4106 . . . . . . . . 9 (𝑣 = {⟨0, 3⟩, ⟨1, 6⟩} → ({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣}) = ({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {{⟨0, 3⟩, ⟨1, 6⟩}}))
361, 15, 16zlmodzxzldeplem 48441 . . . . . . . . . 10 {⟨0, 3⟩, ⟨1, 6⟩} ≠ {⟨0, 2⟩, ⟨1, 4⟩}
37 difprsn1 4781 . . . . . . . . . 10 ({⟨0, 3⟩, ⟨1, 6⟩} ≠ {⟨0, 2⟩, ⟨1, 4⟩} → ({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {{⟨0, 3⟩, ⟨1, 6⟩}}) = {{⟨0, 2⟩, ⟨1, 4⟩}})
3836, 37ax-mp 5 . . . . . . . . 9 ({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {{⟨0, 3⟩, ⟨1, 6⟩}}) = {{⟨0, 2⟩, ⟨1, 4⟩}}
3935, 38eqtrdi 2787 . . . . . . . 8 (𝑣 = {⟨0, 3⟩, ⟨1, 6⟩} → ({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣}) = {{⟨0, 2⟩, ⟨1, 4⟩}})
4039oveq2d 7426 . . . . . . 7 (𝑣 = {⟨0, 3⟩, ⟨1, 6⟩} → ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑m ({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣})) = ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑m {{⟨0, 2⟩, ⟨1, 4⟩}}))
4139oveq2d 7426 . . . . . . . . 9 (𝑣 = {⟨0, 3⟩, ⟨1, 6⟩} → (𝑓( linC ‘(ℤring freeLMod {0, 1}))({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣})) = (𝑓( linC ‘(ℤring freeLMod {0, 1})){{⟨0, 2⟩, ⟨1, 4⟩}}))
42 id 22 . . . . . . . . 9 (𝑣 = {⟨0, 3⟩, ⟨1, 6⟩} → 𝑣 = {⟨0, 3⟩, ⟨1, 6⟩})
4341, 42neeq12d 2994 . . . . . . . 8 (𝑣 = {⟨0, 3⟩, ⟨1, 6⟩} → ((𝑓( linC ‘(ℤring freeLMod {0, 1}))({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣})) ≠ 𝑣 ↔ (𝑓( linC ‘(ℤring freeLMod {0, 1})){{⟨0, 2⟩, ⟨1, 4⟩}}) ≠ {⟨0, 3⟩, ⟨1, 6⟩}))
4443imbi2d 340 . . . . . . 7 (𝑣 = {⟨0, 3⟩, ⟨1, 6⟩} → ((𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1}))({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣})) ≠ 𝑣) ↔ (𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1})){{⟨0, 2⟩, ⟨1, 4⟩}}) ≠ {⟨0, 3⟩, ⟨1, 6⟩})))
4540, 44raleqbidv 3329 . . . . . 6 (𝑣 = {⟨0, 3⟩, ⟨1, 6⟩} → (∀𝑓 ∈ ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑m ({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1}))({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣})) ≠ 𝑣) ↔ ∀𝑓 ∈ ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑m {{⟨0, 2⟩, ⟨1, 4⟩}})(𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1})){{⟨0, 2⟩, ⟨1, 4⟩}}) ≠ {⟨0, 3⟩, ⟨1, 6⟩})))
46 sneq 4616 . . . . . . . . . 10 (𝑣 = {⟨0, 2⟩, ⟨1, 4⟩} → {𝑣} = {{⟨0, 2⟩, ⟨1, 4⟩}})
4746difeq2d 4106 . . . . . . . . 9 (𝑣 = {⟨0, 2⟩, ⟨1, 4⟩} → ({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣}) = ({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {{⟨0, 2⟩, ⟨1, 4⟩}}))
48 difprsn2 4782 . . . . . . . . . 10 ({⟨0, 3⟩, ⟨1, 6⟩} ≠ {⟨0, 2⟩, ⟨1, 4⟩} → ({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {{⟨0, 2⟩, ⟨1, 4⟩}}) = {{⟨0, 3⟩, ⟨1, 6⟩}})
4936, 48ax-mp 5 . . . . . . . . 9 ({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {{⟨0, 2⟩, ⟨1, 4⟩}}) = {{⟨0, 3⟩, ⟨1, 6⟩}}
5047, 49eqtrdi 2787 . . . . . . . 8 (𝑣 = {⟨0, 2⟩, ⟨1, 4⟩} → ({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣}) = {{⟨0, 3⟩, ⟨1, 6⟩}})
5150oveq2d 7426 . . . . . . 7 (𝑣 = {⟨0, 2⟩, ⟨1, 4⟩} → ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑m ({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣})) = ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑m {{⟨0, 3⟩, ⟨1, 6⟩}}))
5250oveq2d 7426 . . . . . . . . 9 (𝑣 = {⟨0, 2⟩, ⟨1, 4⟩} → (𝑓( linC ‘(ℤring freeLMod {0, 1}))({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣})) = (𝑓( linC ‘(ℤring freeLMod {0, 1})){{⟨0, 3⟩, ⟨1, 6⟩}}))
53 id 22 . . . . . . . . 9 (𝑣 = {⟨0, 2⟩, ⟨1, 4⟩} → 𝑣 = {⟨0, 2⟩, ⟨1, 4⟩})
5452, 53neeq12d 2994 . . . . . . . 8 (𝑣 = {⟨0, 2⟩, ⟨1, 4⟩} → ((𝑓( linC ‘(ℤring freeLMod {0, 1}))({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣})) ≠ 𝑣 ↔ (𝑓( linC ‘(ℤring freeLMod {0, 1})){{⟨0, 3⟩, ⟨1, 6⟩}}) ≠ {⟨0, 2⟩, ⟨1, 4⟩}))
5554imbi2d 340 . . . . . . 7 (𝑣 = {⟨0, 2⟩, ⟨1, 4⟩} → ((𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1}))({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣})) ≠ 𝑣) ↔ (𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1})){{⟨0, 3⟩, ⟨1, 6⟩}}) ≠ {⟨0, 2⟩, ⟨1, 4⟩})))
5651, 55raleqbidv 3329 . . . . . 6 (𝑣 = {⟨0, 2⟩, ⟨1, 4⟩} → (∀𝑓 ∈ ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑m ({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1}))({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣})) ≠ 𝑣) ↔ ∀𝑓 ∈ ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑m {{⟨0, 3⟩, ⟨1, 6⟩}})(𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1})){{⟨0, 3⟩, ⟨1, 6⟩}}) ≠ {⟨0, 2⟩, ⟨1, 4⟩})))
5732, 33, 45, 56ralpr 4681 . . . . 5 (∀𝑣 ∈ {{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}}∀𝑓 ∈ ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑m ({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1}))({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣})) ≠ 𝑣) ↔ (∀𝑓 ∈ ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑m {{⟨0, 2⟩, ⟨1, 4⟩}})(𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1})){{⟨0, 2⟩, ⟨1, 4⟩}}) ≠ {⟨0, 3⟩, ⟨1, 6⟩}) ∧ ∀𝑓 ∈ ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑m {{⟨0, 3⟩, ⟨1, 6⟩}})(𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1})){{⟨0, 3⟩, ⟨1, 6⟩}}) ≠ {⟨0, 2⟩, ⟨1, 4⟩})))
5826, 31, 57mpbir2an 711 . . . 4 𝑣 ∈ {{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}}∀𝑓 ∈ ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑m ({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1}))({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣})) ≠ 𝑣)
5917, 58pm3.2i 470 . . 3 ({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} linDepS (ℤring freeLMod {0, 1}) ∧ ∀𝑣 ∈ {{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}}∀𝑓 ∈ ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑m ({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1}))({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣})) ≠ 𝑣))
60 breq1 5127 . . . . 5 (𝑠 = {{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} → (𝑠 linDepS (ℤring freeLMod {0, 1}) ↔ {{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} linDepS (ℤring freeLMod {0, 1})))
61 id 22 . . . . . 6 (𝑠 = {{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} → 𝑠 = {{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}})
62 difeq1 4099 . . . . . . . 8 (𝑠 = {{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} → (𝑠 ∖ {𝑣}) = ({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣}))
6362oveq2d 7426 . . . . . . 7 (𝑠 = {{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} → ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑m (𝑠 ∖ {𝑣})) = ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑m ({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣})))
6462oveq2d 7426 . . . . . . . . 9 (𝑠 = {{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} → (𝑓( linC ‘(ℤring freeLMod {0, 1}))(𝑠 ∖ {𝑣})) = (𝑓( linC ‘(ℤring freeLMod {0, 1}))({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣})))
6564neeq1d 2992 . . . . . . . 8 (𝑠 = {{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} → ((𝑓( linC ‘(ℤring freeLMod {0, 1}))(𝑠 ∖ {𝑣})) ≠ 𝑣 ↔ (𝑓( linC ‘(ℤring freeLMod {0, 1}))({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣})) ≠ 𝑣))
6665imbi2d 340 . . . . . . 7 (𝑠 = {{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} → ((𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1}))(𝑠 ∖ {𝑣})) ≠ 𝑣) ↔ (𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1}))({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣})) ≠ 𝑣)))
6763, 66raleqbidv 3329 . . . . . 6 (𝑠 = {{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} → (∀𝑓 ∈ ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1}))(𝑠 ∖ {𝑣})) ≠ 𝑣) ↔ ∀𝑓 ∈ ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑m ({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1}))({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣})) ≠ 𝑣)))
6861, 67raleqbidv 3329 . . . . 5 (𝑠 = {{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} → (∀𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1}))(𝑠 ∖ {𝑣})) ≠ 𝑣) ↔ ∀𝑣 ∈ {{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}}∀𝑓 ∈ ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑m ({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1}))({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣})) ≠ 𝑣)))
6960, 68anbi12d 632 . . . 4 (𝑠 = {{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} → ((𝑠 linDepS (ℤring freeLMod {0, 1}) ∧ ∀𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1}))(𝑠 ∖ {𝑣})) ≠ 𝑣)) ↔ ({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} linDepS (ℤring freeLMod {0, 1}) ∧ ∀𝑣 ∈ {{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}}∀𝑓 ∈ ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑m ({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1}))({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣})) ≠ 𝑣))))
7069rspcev 3606 . . 3 (({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∈ 𝒫 (Base‘(ℤring freeLMod {0, 1})) ∧ ({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} linDepS (ℤring freeLMod {0, 1}) ∧ ∀𝑣 ∈ {{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}}∀𝑓 ∈ ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑m ({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1}))({{⟨0, 3⟩, ⟨1, 6⟩}, {⟨0, 2⟩, ⟨1, 4⟩}} ∖ {𝑣})) ≠ 𝑣))) → ∃𝑠 ∈ 𝒫 (Base‘(ℤring freeLMod {0, 1}))(𝑠 linDepS (ℤring freeLMod {0, 1}) ∧ ∀𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1}))(𝑠 ∖ {𝑣})) ≠ 𝑣)))
7114, 59, 70mp2an 692 . 2 𝑠 ∈ 𝒫 (Base‘(ℤring freeLMod {0, 1}))(𝑠 linDepS (ℤring freeLMod {0, 1}) ∧ ∀𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1}))(𝑠 ∖ {𝑣})) ≠ 𝑣))
72 fveq2 6881 . . . . 5 (𝑚 = (ℤring freeLMod {0, 1}) → (Base‘𝑚) = (Base‘(ℤring freeLMod {0, 1})))
7372pweqd 4597 . . . 4 (𝑚 = (ℤring freeLMod {0, 1}) → 𝒫 (Base‘𝑚) = 𝒫 (Base‘(ℤring freeLMod {0, 1})))
74 breq2 5128 . . . . 5 (𝑚 = (ℤring freeLMod {0, 1}) → (𝑠 linDepS 𝑚𝑠 linDepS (ℤring freeLMod {0, 1})))
75 2fveq3 6886 . . . . . . . 8 (𝑚 = (ℤring freeLMod {0, 1}) → (Base‘(Scalar‘𝑚)) = (Base‘(Scalar‘(ℤring freeLMod {0, 1}))))
7675oveq1d 7425 . . . . . . 7 (𝑚 = (ℤring freeLMod {0, 1}) → ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣})) = ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑m (𝑠 ∖ {𝑣})))
77 2fveq3 6886 . . . . . . . . 9 (𝑚 = (ℤring freeLMod {0, 1}) → (0g‘(Scalar‘𝑚)) = (0g‘(Scalar‘(ℤring freeLMod {0, 1}))))
7877breq2d 5136 . . . . . . . 8 (𝑚 = (ℤring freeLMod {0, 1}) → (𝑓 finSupp (0g‘(Scalar‘𝑚)) ↔ 𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1})))))
79 fveq2 6881 . . . . . . . . . 10 (𝑚 = (ℤring freeLMod {0, 1}) → ( linC ‘𝑚) = ( linC ‘(ℤring freeLMod {0, 1})))
8079oveqd 7427 . . . . . . . . 9 (𝑚 = (ℤring freeLMod {0, 1}) → (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = (𝑓( linC ‘(ℤring freeLMod {0, 1}))(𝑠 ∖ {𝑣})))
8180neeq1d 2992 . . . . . . . 8 (𝑚 = (ℤring freeLMod {0, 1}) → ((𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) ≠ 𝑣 ↔ (𝑓( linC ‘(ℤring freeLMod {0, 1}))(𝑠 ∖ {𝑣})) ≠ 𝑣))
8278, 81imbi12d 344 . . . . . . 7 (𝑚 = (ℤring freeLMod {0, 1}) → ((𝑓 finSupp (0g‘(Scalar‘𝑚)) → (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) ≠ 𝑣) ↔ (𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1}))(𝑠 ∖ {𝑣})) ≠ 𝑣)))
8376, 82raleqbidv 3329 . . . . . 6 (𝑚 = (ℤring freeLMod {0, 1}) → (∀𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) → (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) ≠ 𝑣) ↔ ∀𝑓 ∈ ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1}))(𝑠 ∖ {𝑣})) ≠ 𝑣)))
8483ralbidv 3164 . . . . 5 (𝑚 = (ℤring freeLMod {0, 1}) → (∀𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) → (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) ≠ 𝑣) ↔ ∀𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1}))(𝑠 ∖ {𝑣})) ≠ 𝑣)))
8574, 84anbi12d 632 . . . 4 (𝑚 = (ℤring freeLMod {0, 1}) → ((𝑠 linDepS 𝑚 ∧ ∀𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) → (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) ≠ 𝑣)) ↔ (𝑠 linDepS (ℤring freeLMod {0, 1}) ∧ ∀𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1}))(𝑠 ∖ {𝑣})) ≠ 𝑣))))
8673, 85rexeqbidv 3330 . . 3 (𝑚 = (ℤring freeLMod {0, 1}) → (∃𝑠 ∈ 𝒫 (Base‘𝑚)(𝑠 linDepS 𝑚 ∧ ∀𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) → (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) ≠ 𝑣)) ↔ ∃𝑠 ∈ 𝒫 (Base‘(ℤring freeLMod {0, 1}))(𝑠 linDepS (ℤring freeLMod {0, 1}) ∧ ∀𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1}))(𝑠 ∖ {𝑣})) ≠ 𝑣))))
8786rspcev 3606 . 2 (((ℤring freeLMod {0, 1}) ∈ LMod ∧ ∃𝑠 ∈ 𝒫 (Base‘(ℤring freeLMod {0, 1}))(𝑠 linDepS (ℤring freeLMod {0, 1}) ∧ ∀𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘(ℤring freeLMod {0, 1}))) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘(ℤring freeLMod {0, 1}))) → (𝑓( linC ‘(ℤring freeLMod {0, 1}))(𝑠 ∖ {𝑣})) ≠ 𝑣))) → ∃𝑚 ∈ LMod ∃𝑠 ∈ 𝒫 (Base‘𝑚)(𝑠 linDepS 𝑚 ∧ ∀𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) → (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) ≠ 𝑣)))
883, 71, 87mp2an 692 1 𝑚 ∈ LMod ∃𝑠 ∈ 𝒫 (Base‘𝑚)(𝑠 linDepS 𝑚 ∧ ∀𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) → (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) ≠ 𝑣))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2933  wral 3052  wrex 3061  cdif 3928  𝒫 cpw 4580  {csn 4606  {cpr 4608  cop 4612   class class class wbr 5124  cfv 6536  (class class class)co 7410  m cmap 8845   finSupp cfsupp 9378  0cc0 11134  1c1 11135  2c2 12300  3c3 12301  4c4 12302  6c6 12304  cz 12593  Basecbs 17233  Scalarcsca 17279  0gc0g 17458  LModclmod 20822  ringczring 21412   freeLMod cfrlm 21711   linC clinc 48347   linDepS clindeps 48384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212  ax-addf 11213  ax-mulf 11214
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8724  df-map 8847  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-sup 9459  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-rp 13014  df-fz 13530  df-fzo 13677  df-seq 14025  df-exp 14085  df-hash 14354  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-dvds 16278  df-prm 16696  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-starv 17291  df-sca 17292  df-vsca 17293  df-ip 17294  df-tset 17295  df-ple 17296  df-ds 17298  df-unif 17299  df-hom 17300  df-cco 17301  df-0g 17460  df-gsum 17461  df-prds 17466  df-pws 17468  df-mre 17603  df-mrc 17604  df-acs 17606  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-submnd 18767  df-grp 18924  df-minusg 18925  df-sbg 18926  df-mulg 19056  df-subg 19111  df-cntz 19305  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-ring 20200  df-cring 20201  df-subrng 20511  df-subrg 20535  df-lmod 20824  df-lss 20894  df-sra 21136  df-rgmod 21137  df-cnfld 21321  df-zring 21413  df-dsmm 21697  df-frlm 21712  df-linc 48349  df-lininds 48385  df-lindeps 48387
This theorem is referenced by:  ldepslinc  48452
  Copyright terms: Public domain W3C validator