MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nbuhgr2vtx1edgb Structured version   Visualization version   GIF version

Theorem nbuhgr2vtx1edgb 27142
Description: If a hypergraph has two vertices, and there is an edge between the vertices, then each vertex is the neighbor of the other vertex. (Contributed by AV, 2-Nov-2020.) (Proof shortened by AV, 13-Feb-2022.)
Hypotheses
Ref Expression
nbgr2vtx1edg.v 𝑉 = (Vtx‘𝐺)
nbgr2vtx1edg.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
nbuhgr2vtx1edgb ((𝐺 ∈ UHGraph ∧ (♯‘𝑉) = 2) → (𝑉𝐸 ↔ ∀𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)))
Distinct variable groups:   𝑛,𝐸   𝑛,𝐺,𝑣   𝑛,𝑉,𝑣
Allowed substitution hint:   𝐸(𝑣)

Proof of Theorem nbuhgr2vtx1edgb
Dummy variables 𝑎 𝑏 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nbgr2vtx1edg.v . . . . 5 𝑉 = (Vtx‘𝐺)
21fvexi 6659 . . . 4 𝑉 ∈ V
3 hash2prb 13826 . . . 4 (𝑉 ∈ V → ((♯‘𝑉) = 2 ↔ ∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑉 = {𝑎, 𝑏})))
42, 3ax-mp 5 . . 3 ((♯‘𝑉) = 2 ↔ ∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑉 = {𝑎, 𝑏}))
5 simpr 488 . . . . . . . . . . . 12 ((𝐺 ∈ UHGraph ∧ (𝑎𝑉𝑏𝑉)) → (𝑎𝑉𝑏𝑉))
65ancomd 465 . . . . . . . . . . 11 ((𝐺 ∈ UHGraph ∧ (𝑎𝑉𝑏𝑉)) → (𝑏𝑉𝑎𝑉))
76ad2antrr 725 . . . . . . . . . 10 ((((𝐺 ∈ UHGraph ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑎𝑏𝑉 = {𝑎, 𝑏})) ∧ {𝑎, 𝑏} ∈ 𝐸) → (𝑏𝑉𝑎𝑉))
8 id 22 . . . . . . . . . . . . 13 (𝑎𝑏𝑎𝑏)
98necomd 3042 . . . . . . . . . . . 12 (𝑎𝑏𝑏𝑎)
109adantr 484 . . . . . . . . . . 11 ((𝑎𝑏𝑉 = {𝑎, 𝑏}) → 𝑏𝑎)
1110ad2antlr 726 . . . . . . . . . 10 ((((𝐺 ∈ UHGraph ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑎𝑏𝑉 = {𝑎, 𝑏})) ∧ {𝑎, 𝑏} ∈ 𝐸) → 𝑏𝑎)
12 prcom 4628 . . . . . . . . . . . . . 14 {𝑎, 𝑏} = {𝑏, 𝑎}
1312eleq1i 2880 . . . . . . . . . . . . 13 ({𝑎, 𝑏} ∈ 𝐸 ↔ {𝑏, 𝑎} ∈ 𝐸)
1413biimpi 219 . . . . . . . . . . . 12 ({𝑎, 𝑏} ∈ 𝐸 → {𝑏, 𝑎} ∈ 𝐸)
15 sseq2 3941 . . . . . . . . . . . . 13 (𝑒 = {𝑏, 𝑎} → ({𝑎, 𝑏} ⊆ 𝑒 ↔ {𝑎, 𝑏} ⊆ {𝑏, 𝑎}))
1615adantl 485 . . . . . . . . . . . 12 (({𝑎, 𝑏} ∈ 𝐸𝑒 = {𝑏, 𝑎}) → ({𝑎, 𝑏} ⊆ 𝑒 ↔ {𝑎, 𝑏} ⊆ {𝑏, 𝑎}))
1712eqimssi 3973 . . . . . . . . . . . . 13 {𝑎, 𝑏} ⊆ {𝑏, 𝑎}
1817a1i 11 . . . . . . . . . . . 12 ({𝑎, 𝑏} ∈ 𝐸 → {𝑎, 𝑏} ⊆ {𝑏, 𝑎})
1914, 16, 18rspcedvd 3574 . . . . . . . . . . 11 ({𝑎, 𝑏} ∈ 𝐸 → ∃𝑒𝐸 {𝑎, 𝑏} ⊆ 𝑒)
2019adantl 485 . . . . . . . . . 10 ((((𝐺 ∈ UHGraph ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑎𝑏𝑉 = {𝑎, 𝑏})) ∧ {𝑎, 𝑏} ∈ 𝐸) → ∃𝑒𝐸 {𝑎, 𝑏} ⊆ 𝑒)
21 nbgr2vtx1edg.e . . . . . . . . . . 11 𝐸 = (Edg‘𝐺)
221, 21nbgrel 27130 . . . . . . . . . 10 (𝑏 ∈ (𝐺 NeighbVtx 𝑎) ↔ ((𝑏𝑉𝑎𝑉) ∧ 𝑏𝑎 ∧ ∃𝑒𝐸 {𝑎, 𝑏} ⊆ 𝑒))
237, 11, 20, 22syl3anbrc 1340 . . . . . . . . 9 ((((𝐺 ∈ UHGraph ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑎𝑏𝑉 = {𝑎, 𝑏})) ∧ {𝑎, 𝑏} ∈ 𝐸) → 𝑏 ∈ (𝐺 NeighbVtx 𝑎))
245ad2antrr 725 . . . . . . . . . 10 ((((𝐺 ∈ UHGraph ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑎𝑏𝑉 = {𝑎, 𝑏})) ∧ {𝑎, 𝑏} ∈ 𝐸) → (𝑎𝑉𝑏𝑉))
25 simplrl 776 . . . . . . . . . 10 ((((𝐺 ∈ UHGraph ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑎𝑏𝑉 = {𝑎, 𝑏})) ∧ {𝑎, 𝑏} ∈ 𝐸) → 𝑎𝑏)
26 id 22 . . . . . . . . . . . 12 ({𝑎, 𝑏} ∈ 𝐸 → {𝑎, 𝑏} ∈ 𝐸)
27 sseq2 3941 . . . . . . . . . . . . 13 (𝑒 = {𝑎, 𝑏} → ({𝑏, 𝑎} ⊆ 𝑒 ↔ {𝑏, 𝑎} ⊆ {𝑎, 𝑏}))
2827adantl 485 . . . . . . . . . . . 12 (({𝑎, 𝑏} ∈ 𝐸𝑒 = {𝑎, 𝑏}) → ({𝑏, 𝑎} ⊆ 𝑒 ↔ {𝑏, 𝑎} ⊆ {𝑎, 𝑏}))
29 prcom 4628 . . . . . . . . . . . . . 14 {𝑏, 𝑎} = {𝑎, 𝑏}
3029eqimssi 3973 . . . . . . . . . . . . 13 {𝑏, 𝑎} ⊆ {𝑎, 𝑏}
3130a1i 11 . . . . . . . . . . . 12 ({𝑎, 𝑏} ∈ 𝐸 → {𝑏, 𝑎} ⊆ {𝑎, 𝑏})
3226, 28, 31rspcedvd 3574 . . . . . . . . . . 11 ({𝑎, 𝑏} ∈ 𝐸 → ∃𝑒𝐸 {𝑏, 𝑎} ⊆ 𝑒)
3332adantl 485 . . . . . . . . . 10 ((((𝐺 ∈ UHGraph ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑎𝑏𝑉 = {𝑎, 𝑏})) ∧ {𝑎, 𝑏} ∈ 𝐸) → ∃𝑒𝐸 {𝑏, 𝑎} ⊆ 𝑒)
341, 21nbgrel 27130 . . . . . . . . . 10 (𝑎 ∈ (𝐺 NeighbVtx 𝑏) ↔ ((𝑎𝑉𝑏𝑉) ∧ 𝑎𝑏 ∧ ∃𝑒𝐸 {𝑏, 𝑎} ⊆ 𝑒))
3524, 25, 33, 34syl3anbrc 1340 . . . . . . . . 9 ((((𝐺 ∈ UHGraph ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑎𝑏𝑉 = {𝑎, 𝑏})) ∧ {𝑎, 𝑏} ∈ 𝐸) → 𝑎 ∈ (𝐺 NeighbVtx 𝑏))
3623, 35jca 515 . . . . . . . 8 ((((𝐺 ∈ UHGraph ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑎𝑏𝑉 = {𝑎, 𝑏})) ∧ {𝑎, 𝑏} ∈ 𝐸) → (𝑏 ∈ (𝐺 NeighbVtx 𝑎) ∧ 𝑎 ∈ (𝐺 NeighbVtx 𝑏)))
3736ex 416 . . . . . . 7 (((𝐺 ∈ UHGraph ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑎𝑏𝑉 = {𝑎, 𝑏})) → ({𝑎, 𝑏} ∈ 𝐸 → (𝑏 ∈ (𝐺 NeighbVtx 𝑎) ∧ 𝑎 ∈ (𝐺 NeighbVtx 𝑏))))
381, 21nbuhgr2vtx1edgblem 27141 . . . . . . . . . . . 12 ((𝐺 ∈ UHGraph ∧ 𝑉 = {𝑎, 𝑏} ∧ 𝑎 ∈ (𝐺 NeighbVtx 𝑏)) → {𝑎, 𝑏} ∈ 𝐸)
39383exp 1116 . . . . . . . . . . 11 (𝐺 ∈ UHGraph → (𝑉 = {𝑎, 𝑏} → (𝑎 ∈ (𝐺 NeighbVtx 𝑏) → {𝑎, 𝑏} ∈ 𝐸)))
4039adantr 484 . . . . . . . . . 10 ((𝐺 ∈ UHGraph ∧ (𝑎𝑉𝑏𝑉)) → (𝑉 = {𝑎, 𝑏} → (𝑎 ∈ (𝐺 NeighbVtx 𝑏) → {𝑎, 𝑏} ∈ 𝐸)))
4140adantld 494 . . . . . . . . 9 ((𝐺 ∈ UHGraph ∧ (𝑎𝑉𝑏𝑉)) → ((𝑎𝑏𝑉 = {𝑎, 𝑏}) → (𝑎 ∈ (𝐺 NeighbVtx 𝑏) → {𝑎, 𝑏} ∈ 𝐸)))
4241imp 410 . . . . . . . 8 (((𝐺 ∈ UHGraph ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑎𝑏𝑉 = {𝑎, 𝑏})) → (𝑎 ∈ (𝐺 NeighbVtx 𝑏) → {𝑎, 𝑏} ∈ 𝐸))
4342adantld 494 . . . . . . 7 (((𝐺 ∈ UHGraph ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑎𝑏𝑉 = {𝑎, 𝑏})) → ((𝑏 ∈ (𝐺 NeighbVtx 𝑎) ∧ 𝑎 ∈ (𝐺 NeighbVtx 𝑏)) → {𝑎, 𝑏} ∈ 𝐸))
4437, 43impbid 215 . . . . . 6 (((𝐺 ∈ UHGraph ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑎𝑏𝑉 = {𝑎, 𝑏})) → ({𝑎, 𝑏} ∈ 𝐸 ↔ (𝑏 ∈ (𝐺 NeighbVtx 𝑎) ∧ 𝑎 ∈ (𝐺 NeighbVtx 𝑏))))
45 eleq1 2877 . . . . . . . . 9 (𝑉 = {𝑎, 𝑏} → (𝑉𝐸 ↔ {𝑎, 𝑏} ∈ 𝐸))
4645adantl 485 . . . . . . . 8 ((𝑎𝑏𝑉 = {𝑎, 𝑏}) → (𝑉𝐸 ↔ {𝑎, 𝑏} ∈ 𝐸))
47 id 22 . . . . . . . . . 10 (𝑉 = {𝑎, 𝑏} → 𝑉 = {𝑎, 𝑏})
48 difeq1 4043 . . . . . . . . . . 11 (𝑉 = {𝑎, 𝑏} → (𝑉 ∖ {𝑣}) = ({𝑎, 𝑏} ∖ {𝑣}))
4948raleqdv 3364 . . . . . . . . . 10 (𝑉 = {𝑎, 𝑏} → (∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ ∀𝑛 ∈ ({𝑎, 𝑏} ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)))
5047, 49raleqbidv 3354 . . . . . . . . 9 (𝑉 = {𝑎, 𝑏} → (∀𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ ∀𝑣 ∈ {𝑎, 𝑏}∀𝑛 ∈ ({𝑎, 𝑏} ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)))
51 vex 3444 . . . . . . . . . . 11 𝑎 ∈ V
52 vex 3444 . . . . . . . . . . 11 𝑏 ∈ V
53 sneq 4535 . . . . . . . . . . . . 13 (𝑣 = 𝑎 → {𝑣} = {𝑎})
5453difeq2d 4050 . . . . . . . . . . . 12 (𝑣 = 𝑎 → ({𝑎, 𝑏} ∖ {𝑣}) = ({𝑎, 𝑏} ∖ {𝑎}))
55 oveq2 7143 . . . . . . . . . . . . 13 (𝑣 = 𝑎 → (𝐺 NeighbVtx 𝑣) = (𝐺 NeighbVtx 𝑎))
5655eleq2d 2875 . . . . . . . . . . . 12 (𝑣 = 𝑎 → (𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ 𝑛 ∈ (𝐺 NeighbVtx 𝑎)))
5754, 56raleqbidv 3354 . . . . . . . . . . 11 (𝑣 = 𝑎 → (∀𝑛 ∈ ({𝑎, 𝑏} ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ ∀𝑛 ∈ ({𝑎, 𝑏} ∖ {𝑎})𝑛 ∈ (𝐺 NeighbVtx 𝑎)))
58 sneq 4535 . . . . . . . . . . . . 13 (𝑣 = 𝑏 → {𝑣} = {𝑏})
5958difeq2d 4050 . . . . . . . . . . . 12 (𝑣 = 𝑏 → ({𝑎, 𝑏} ∖ {𝑣}) = ({𝑎, 𝑏} ∖ {𝑏}))
60 oveq2 7143 . . . . . . . . . . . . 13 (𝑣 = 𝑏 → (𝐺 NeighbVtx 𝑣) = (𝐺 NeighbVtx 𝑏))
6160eleq2d 2875 . . . . . . . . . . . 12 (𝑣 = 𝑏 → (𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ 𝑛 ∈ (𝐺 NeighbVtx 𝑏)))
6259, 61raleqbidv 3354 . . . . . . . . . . 11 (𝑣 = 𝑏 → (∀𝑛 ∈ ({𝑎, 𝑏} ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ ∀𝑛 ∈ ({𝑎, 𝑏} ∖ {𝑏})𝑛 ∈ (𝐺 NeighbVtx 𝑏)))
6351, 52, 57, 62ralpr 4596 . . . . . . . . . 10 (∀𝑣 ∈ {𝑎, 𝑏}∀𝑛 ∈ ({𝑎, 𝑏} ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ (∀𝑛 ∈ ({𝑎, 𝑏} ∖ {𝑎})𝑛 ∈ (𝐺 NeighbVtx 𝑎) ∧ ∀𝑛 ∈ ({𝑎, 𝑏} ∖ {𝑏})𝑛 ∈ (𝐺 NeighbVtx 𝑏)))
64 difprsn1 4693 . . . . . . . . . . . . 13 (𝑎𝑏 → ({𝑎, 𝑏} ∖ {𝑎}) = {𝑏})
6564raleqdv 3364 . . . . . . . . . . . 12 (𝑎𝑏 → (∀𝑛 ∈ ({𝑎, 𝑏} ∖ {𝑎})𝑛 ∈ (𝐺 NeighbVtx 𝑎) ↔ ∀𝑛 ∈ {𝑏}𝑛 ∈ (𝐺 NeighbVtx 𝑎)))
66 eleq1 2877 . . . . . . . . . . . . 13 (𝑛 = 𝑏 → (𝑛 ∈ (𝐺 NeighbVtx 𝑎) ↔ 𝑏 ∈ (𝐺 NeighbVtx 𝑎)))
6752, 66ralsn 4579 . . . . . . . . . . . 12 (∀𝑛 ∈ {𝑏}𝑛 ∈ (𝐺 NeighbVtx 𝑎) ↔ 𝑏 ∈ (𝐺 NeighbVtx 𝑎))
6865, 67syl6bb 290 . . . . . . . . . . 11 (𝑎𝑏 → (∀𝑛 ∈ ({𝑎, 𝑏} ∖ {𝑎})𝑛 ∈ (𝐺 NeighbVtx 𝑎) ↔ 𝑏 ∈ (𝐺 NeighbVtx 𝑎)))
69 difprsn2 4694 . . . . . . . . . . . . 13 (𝑎𝑏 → ({𝑎, 𝑏} ∖ {𝑏}) = {𝑎})
7069raleqdv 3364 . . . . . . . . . . . 12 (𝑎𝑏 → (∀𝑛 ∈ ({𝑎, 𝑏} ∖ {𝑏})𝑛 ∈ (𝐺 NeighbVtx 𝑏) ↔ ∀𝑛 ∈ {𝑎}𝑛 ∈ (𝐺 NeighbVtx 𝑏)))
71 eleq1 2877 . . . . . . . . . . . . 13 (𝑛 = 𝑎 → (𝑛 ∈ (𝐺 NeighbVtx 𝑏) ↔ 𝑎 ∈ (𝐺 NeighbVtx 𝑏)))
7251, 71ralsn 4579 . . . . . . . . . . . 12 (∀𝑛 ∈ {𝑎}𝑛 ∈ (𝐺 NeighbVtx 𝑏) ↔ 𝑎 ∈ (𝐺 NeighbVtx 𝑏))
7370, 72syl6bb 290 . . . . . . . . . . 11 (𝑎𝑏 → (∀𝑛 ∈ ({𝑎, 𝑏} ∖ {𝑏})𝑛 ∈ (𝐺 NeighbVtx 𝑏) ↔ 𝑎 ∈ (𝐺 NeighbVtx 𝑏)))
7468, 73anbi12d 633 . . . . . . . . . 10 (𝑎𝑏 → ((∀𝑛 ∈ ({𝑎, 𝑏} ∖ {𝑎})𝑛 ∈ (𝐺 NeighbVtx 𝑎) ∧ ∀𝑛 ∈ ({𝑎, 𝑏} ∖ {𝑏})𝑛 ∈ (𝐺 NeighbVtx 𝑏)) ↔ (𝑏 ∈ (𝐺 NeighbVtx 𝑎) ∧ 𝑎 ∈ (𝐺 NeighbVtx 𝑏))))
7563, 74syl5bb 286 . . . . . . . . 9 (𝑎𝑏 → (∀𝑣 ∈ {𝑎, 𝑏}∀𝑛 ∈ ({𝑎, 𝑏} ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ (𝑏 ∈ (𝐺 NeighbVtx 𝑎) ∧ 𝑎 ∈ (𝐺 NeighbVtx 𝑏))))
7650, 75sylan9bbr 514 . . . . . . . 8 ((𝑎𝑏𝑉 = {𝑎, 𝑏}) → (∀𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ (𝑏 ∈ (𝐺 NeighbVtx 𝑎) ∧ 𝑎 ∈ (𝐺 NeighbVtx 𝑏))))
7746, 76bibi12d 349 . . . . . . 7 ((𝑎𝑏𝑉 = {𝑎, 𝑏}) → ((𝑉𝐸 ↔ ∀𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)) ↔ ({𝑎, 𝑏} ∈ 𝐸 ↔ (𝑏 ∈ (𝐺 NeighbVtx 𝑎) ∧ 𝑎 ∈ (𝐺 NeighbVtx 𝑏)))))
7877adantl 485 . . . . . 6 (((𝐺 ∈ UHGraph ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑎𝑏𝑉 = {𝑎, 𝑏})) → ((𝑉𝐸 ↔ ∀𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)) ↔ ({𝑎, 𝑏} ∈ 𝐸 ↔ (𝑏 ∈ (𝐺 NeighbVtx 𝑎) ∧ 𝑎 ∈ (𝐺 NeighbVtx 𝑏)))))
7944, 78mpbird 260 . . . . 5 (((𝐺 ∈ UHGraph ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑎𝑏𝑉 = {𝑎, 𝑏})) → (𝑉𝐸 ↔ ∀𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)))
8079ex 416 . . . 4 ((𝐺 ∈ UHGraph ∧ (𝑎𝑉𝑏𝑉)) → ((𝑎𝑏𝑉 = {𝑎, 𝑏}) → (𝑉𝐸 ↔ ∀𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣))))
8180rexlimdvva 3253 . . 3 (𝐺 ∈ UHGraph → (∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑉 = {𝑎, 𝑏}) → (𝑉𝐸 ↔ ∀𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣))))
824, 81syl5bi 245 . 2 (𝐺 ∈ UHGraph → ((♯‘𝑉) = 2 → (𝑉𝐸 ↔ ∀𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣))))
8382imp 410 1 ((𝐺 ∈ UHGraph ∧ (♯‘𝑉) = 2) → (𝑉𝐸 ↔ ∀𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wne 2987  wral 3106  wrex 3107  Vcvv 3441  cdif 3878  wss 3881  {csn 4525  {cpr 4527  cfv 6324  (class class class)co 7135  2c2 11680  chash 13686  Vtxcvtx 26789  Edgcedg 26840  UHGraphcuhgr 26849   NeighbVtx cnbgr 27122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-dju 9314  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886  df-hash 13687  df-edg 26841  df-uhgr 26851  df-nbgr 27123
This theorem is referenced by:  uvtx2vtx1edgb  27189
  Copyright terms: Public domain W3C validator