Step | Hyp | Ref
| Expression |
1 | | nbgr2vtx1edg.v |
. . . . 5
⊢ 𝑉 = (Vtx‘𝐺) |
2 | 1 | fvexi 6770 |
. . . 4
⊢ 𝑉 ∈ V |
3 | | hash2prb 14114 |
. . . 4
⊢ (𝑉 ∈ V →
((♯‘𝑉) = 2
↔ ∃𝑎 ∈
𝑉 ∃𝑏 ∈ 𝑉 (𝑎 ≠ 𝑏 ∧ 𝑉 = {𝑎, 𝑏}))) |
4 | 2, 3 | ax-mp 5 |
. . 3
⊢
((♯‘𝑉) =
2 ↔ ∃𝑎 ∈
𝑉 ∃𝑏 ∈ 𝑉 (𝑎 ≠ 𝑏 ∧ 𝑉 = {𝑎, 𝑏})) |
5 | | simpr 484 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ UHGraph ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) |
6 | 5 | ancomd 461 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ UHGraph ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → (𝑏 ∈ 𝑉 ∧ 𝑎 ∈ 𝑉)) |
7 | 6 | ad2antrr 722 |
. . . . . . . . . 10
⊢ ((((𝐺 ∈ UHGraph ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) ∧ (𝑎 ≠ 𝑏 ∧ 𝑉 = {𝑎, 𝑏})) ∧ {𝑎, 𝑏} ∈ 𝐸) → (𝑏 ∈ 𝑉 ∧ 𝑎 ∈ 𝑉)) |
8 | | id 22 |
. . . . . . . . . . . . 13
⊢ (𝑎 ≠ 𝑏 → 𝑎 ≠ 𝑏) |
9 | 8 | necomd 2998 |
. . . . . . . . . . . 12
⊢ (𝑎 ≠ 𝑏 → 𝑏 ≠ 𝑎) |
10 | 9 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝑎 ≠ 𝑏 ∧ 𝑉 = {𝑎, 𝑏}) → 𝑏 ≠ 𝑎) |
11 | 10 | ad2antlr 723 |
. . . . . . . . . 10
⊢ ((((𝐺 ∈ UHGraph ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) ∧ (𝑎 ≠ 𝑏 ∧ 𝑉 = {𝑎, 𝑏})) ∧ {𝑎, 𝑏} ∈ 𝐸) → 𝑏 ≠ 𝑎) |
12 | | prcom 4665 |
. . . . . . . . . . . . . 14
⊢ {𝑎, 𝑏} = {𝑏, 𝑎} |
13 | 12 | eleq1i 2829 |
. . . . . . . . . . . . 13
⊢ ({𝑎, 𝑏} ∈ 𝐸 ↔ {𝑏, 𝑎} ∈ 𝐸) |
14 | 13 | biimpi 215 |
. . . . . . . . . . . 12
⊢ ({𝑎, 𝑏} ∈ 𝐸 → {𝑏, 𝑎} ∈ 𝐸) |
15 | | sseq2 3943 |
. . . . . . . . . . . . 13
⊢ (𝑒 = {𝑏, 𝑎} → ({𝑎, 𝑏} ⊆ 𝑒 ↔ {𝑎, 𝑏} ⊆ {𝑏, 𝑎})) |
16 | 15 | adantl 481 |
. . . . . . . . . . . 12
⊢ (({𝑎, 𝑏} ∈ 𝐸 ∧ 𝑒 = {𝑏, 𝑎}) → ({𝑎, 𝑏} ⊆ 𝑒 ↔ {𝑎, 𝑏} ⊆ {𝑏, 𝑎})) |
17 | 12 | eqimssi 3975 |
. . . . . . . . . . . . 13
⊢ {𝑎, 𝑏} ⊆ {𝑏, 𝑎} |
18 | 17 | a1i 11 |
. . . . . . . . . . . 12
⊢ ({𝑎, 𝑏} ∈ 𝐸 → {𝑎, 𝑏} ⊆ {𝑏, 𝑎}) |
19 | 14, 16, 18 | rspcedvd 3555 |
. . . . . . . . . . 11
⊢ ({𝑎, 𝑏} ∈ 𝐸 → ∃𝑒 ∈ 𝐸 {𝑎, 𝑏} ⊆ 𝑒) |
20 | 19 | adantl 481 |
. . . . . . . . . 10
⊢ ((((𝐺 ∈ UHGraph ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) ∧ (𝑎 ≠ 𝑏 ∧ 𝑉 = {𝑎, 𝑏})) ∧ {𝑎, 𝑏} ∈ 𝐸) → ∃𝑒 ∈ 𝐸 {𝑎, 𝑏} ⊆ 𝑒) |
21 | | nbgr2vtx1edg.e |
. . . . . . . . . . 11
⊢ 𝐸 = (Edg‘𝐺) |
22 | 1, 21 | nbgrel 27610 |
. . . . . . . . . 10
⊢ (𝑏 ∈ (𝐺 NeighbVtx 𝑎) ↔ ((𝑏 ∈ 𝑉 ∧ 𝑎 ∈ 𝑉) ∧ 𝑏 ≠ 𝑎 ∧ ∃𝑒 ∈ 𝐸 {𝑎, 𝑏} ⊆ 𝑒)) |
23 | 7, 11, 20, 22 | syl3anbrc 1341 |
. . . . . . . . 9
⊢ ((((𝐺 ∈ UHGraph ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) ∧ (𝑎 ≠ 𝑏 ∧ 𝑉 = {𝑎, 𝑏})) ∧ {𝑎, 𝑏} ∈ 𝐸) → 𝑏 ∈ (𝐺 NeighbVtx 𝑎)) |
24 | 5 | ad2antrr 722 |
. . . . . . . . . 10
⊢ ((((𝐺 ∈ UHGraph ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) ∧ (𝑎 ≠ 𝑏 ∧ 𝑉 = {𝑎, 𝑏})) ∧ {𝑎, 𝑏} ∈ 𝐸) → (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) |
25 | | simplrl 773 |
. . . . . . . . . 10
⊢ ((((𝐺 ∈ UHGraph ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) ∧ (𝑎 ≠ 𝑏 ∧ 𝑉 = {𝑎, 𝑏})) ∧ {𝑎, 𝑏} ∈ 𝐸) → 𝑎 ≠ 𝑏) |
26 | | id 22 |
. . . . . . . . . . . 12
⊢ ({𝑎, 𝑏} ∈ 𝐸 → {𝑎, 𝑏} ∈ 𝐸) |
27 | | sseq2 3943 |
. . . . . . . . . . . . 13
⊢ (𝑒 = {𝑎, 𝑏} → ({𝑏, 𝑎} ⊆ 𝑒 ↔ {𝑏, 𝑎} ⊆ {𝑎, 𝑏})) |
28 | 27 | adantl 481 |
. . . . . . . . . . . 12
⊢ (({𝑎, 𝑏} ∈ 𝐸 ∧ 𝑒 = {𝑎, 𝑏}) → ({𝑏, 𝑎} ⊆ 𝑒 ↔ {𝑏, 𝑎} ⊆ {𝑎, 𝑏})) |
29 | | prcom 4665 |
. . . . . . . . . . . . . 14
⊢ {𝑏, 𝑎} = {𝑎, 𝑏} |
30 | 29 | eqimssi 3975 |
. . . . . . . . . . . . 13
⊢ {𝑏, 𝑎} ⊆ {𝑎, 𝑏} |
31 | 30 | a1i 11 |
. . . . . . . . . . . 12
⊢ ({𝑎, 𝑏} ∈ 𝐸 → {𝑏, 𝑎} ⊆ {𝑎, 𝑏}) |
32 | 26, 28, 31 | rspcedvd 3555 |
. . . . . . . . . . 11
⊢ ({𝑎, 𝑏} ∈ 𝐸 → ∃𝑒 ∈ 𝐸 {𝑏, 𝑎} ⊆ 𝑒) |
33 | 32 | adantl 481 |
. . . . . . . . . 10
⊢ ((((𝐺 ∈ UHGraph ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) ∧ (𝑎 ≠ 𝑏 ∧ 𝑉 = {𝑎, 𝑏})) ∧ {𝑎, 𝑏} ∈ 𝐸) → ∃𝑒 ∈ 𝐸 {𝑏, 𝑎} ⊆ 𝑒) |
34 | 1, 21 | nbgrel 27610 |
. . . . . . . . . 10
⊢ (𝑎 ∈ (𝐺 NeighbVtx 𝑏) ↔ ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ 𝑎 ≠ 𝑏 ∧ ∃𝑒 ∈ 𝐸 {𝑏, 𝑎} ⊆ 𝑒)) |
35 | 24, 25, 33, 34 | syl3anbrc 1341 |
. . . . . . . . 9
⊢ ((((𝐺 ∈ UHGraph ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) ∧ (𝑎 ≠ 𝑏 ∧ 𝑉 = {𝑎, 𝑏})) ∧ {𝑎, 𝑏} ∈ 𝐸) → 𝑎 ∈ (𝐺 NeighbVtx 𝑏)) |
36 | 23, 35 | jca 511 |
. . . . . . . 8
⊢ ((((𝐺 ∈ UHGraph ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) ∧ (𝑎 ≠ 𝑏 ∧ 𝑉 = {𝑎, 𝑏})) ∧ {𝑎, 𝑏} ∈ 𝐸) → (𝑏 ∈ (𝐺 NeighbVtx 𝑎) ∧ 𝑎 ∈ (𝐺 NeighbVtx 𝑏))) |
37 | 36 | ex 412 |
. . . . . . 7
⊢ (((𝐺 ∈ UHGraph ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) ∧ (𝑎 ≠ 𝑏 ∧ 𝑉 = {𝑎, 𝑏})) → ({𝑎, 𝑏} ∈ 𝐸 → (𝑏 ∈ (𝐺 NeighbVtx 𝑎) ∧ 𝑎 ∈ (𝐺 NeighbVtx 𝑏)))) |
38 | 1, 21 | nbuhgr2vtx1edgblem 27621 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ UHGraph ∧ 𝑉 = {𝑎, 𝑏} ∧ 𝑎 ∈ (𝐺 NeighbVtx 𝑏)) → {𝑎, 𝑏} ∈ 𝐸) |
39 | 38 | 3exp 1117 |
. . . . . . . . . . 11
⊢ (𝐺 ∈ UHGraph → (𝑉 = {𝑎, 𝑏} → (𝑎 ∈ (𝐺 NeighbVtx 𝑏) → {𝑎, 𝑏} ∈ 𝐸))) |
40 | 39 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ UHGraph ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → (𝑉 = {𝑎, 𝑏} → (𝑎 ∈ (𝐺 NeighbVtx 𝑏) → {𝑎, 𝑏} ∈ 𝐸))) |
41 | 40 | adantld 490 |
. . . . . . . . 9
⊢ ((𝐺 ∈ UHGraph ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → ((𝑎 ≠ 𝑏 ∧ 𝑉 = {𝑎, 𝑏}) → (𝑎 ∈ (𝐺 NeighbVtx 𝑏) → {𝑎, 𝑏} ∈ 𝐸))) |
42 | 41 | imp 406 |
. . . . . . . 8
⊢ (((𝐺 ∈ UHGraph ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) ∧ (𝑎 ≠ 𝑏 ∧ 𝑉 = {𝑎, 𝑏})) → (𝑎 ∈ (𝐺 NeighbVtx 𝑏) → {𝑎, 𝑏} ∈ 𝐸)) |
43 | 42 | adantld 490 |
. . . . . . 7
⊢ (((𝐺 ∈ UHGraph ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) ∧ (𝑎 ≠ 𝑏 ∧ 𝑉 = {𝑎, 𝑏})) → ((𝑏 ∈ (𝐺 NeighbVtx 𝑎) ∧ 𝑎 ∈ (𝐺 NeighbVtx 𝑏)) → {𝑎, 𝑏} ∈ 𝐸)) |
44 | 37, 43 | impbid 211 |
. . . . . 6
⊢ (((𝐺 ∈ UHGraph ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) ∧ (𝑎 ≠ 𝑏 ∧ 𝑉 = {𝑎, 𝑏})) → ({𝑎, 𝑏} ∈ 𝐸 ↔ (𝑏 ∈ (𝐺 NeighbVtx 𝑎) ∧ 𝑎 ∈ (𝐺 NeighbVtx 𝑏)))) |
45 | | eleq1 2826 |
. . . . . . . . 9
⊢ (𝑉 = {𝑎, 𝑏} → (𝑉 ∈ 𝐸 ↔ {𝑎, 𝑏} ∈ 𝐸)) |
46 | 45 | adantl 481 |
. . . . . . . 8
⊢ ((𝑎 ≠ 𝑏 ∧ 𝑉 = {𝑎, 𝑏}) → (𝑉 ∈ 𝐸 ↔ {𝑎, 𝑏} ∈ 𝐸)) |
47 | | id 22 |
. . . . . . . . . 10
⊢ (𝑉 = {𝑎, 𝑏} → 𝑉 = {𝑎, 𝑏}) |
48 | | difeq1 4046 |
. . . . . . . . . . 11
⊢ (𝑉 = {𝑎, 𝑏} → (𝑉 ∖ {𝑣}) = ({𝑎, 𝑏} ∖ {𝑣})) |
49 | 48 | raleqdv 3339 |
. . . . . . . . . 10
⊢ (𝑉 = {𝑎, 𝑏} → (∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ ∀𝑛 ∈ ({𝑎, 𝑏} ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣))) |
50 | 47, 49 | raleqbidv 3327 |
. . . . . . . . 9
⊢ (𝑉 = {𝑎, 𝑏} → (∀𝑣 ∈ 𝑉 ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ ∀𝑣 ∈ {𝑎, 𝑏}∀𝑛 ∈ ({𝑎, 𝑏} ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣))) |
51 | | vex 3426 |
. . . . . . . . . . 11
⊢ 𝑎 ∈ V |
52 | | vex 3426 |
. . . . . . . . . . 11
⊢ 𝑏 ∈ V |
53 | | sneq 4568 |
. . . . . . . . . . . . 13
⊢ (𝑣 = 𝑎 → {𝑣} = {𝑎}) |
54 | 53 | difeq2d 4053 |
. . . . . . . . . . . 12
⊢ (𝑣 = 𝑎 → ({𝑎, 𝑏} ∖ {𝑣}) = ({𝑎, 𝑏} ∖ {𝑎})) |
55 | | oveq2 7263 |
. . . . . . . . . . . . 13
⊢ (𝑣 = 𝑎 → (𝐺 NeighbVtx 𝑣) = (𝐺 NeighbVtx 𝑎)) |
56 | 55 | eleq2d 2824 |
. . . . . . . . . . . 12
⊢ (𝑣 = 𝑎 → (𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ 𝑛 ∈ (𝐺 NeighbVtx 𝑎))) |
57 | 54, 56 | raleqbidv 3327 |
. . . . . . . . . . 11
⊢ (𝑣 = 𝑎 → (∀𝑛 ∈ ({𝑎, 𝑏} ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ ∀𝑛 ∈ ({𝑎, 𝑏} ∖ {𝑎})𝑛 ∈ (𝐺 NeighbVtx 𝑎))) |
58 | | sneq 4568 |
. . . . . . . . . . . . 13
⊢ (𝑣 = 𝑏 → {𝑣} = {𝑏}) |
59 | 58 | difeq2d 4053 |
. . . . . . . . . . . 12
⊢ (𝑣 = 𝑏 → ({𝑎, 𝑏} ∖ {𝑣}) = ({𝑎, 𝑏} ∖ {𝑏})) |
60 | | oveq2 7263 |
. . . . . . . . . . . . 13
⊢ (𝑣 = 𝑏 → (𝐺 NeighbVtx 𝑣) = (𝐺 NeighbVtx 𝑏)) |
61 | 60 | eleq2d 2824 |
. . . . . . . . . . . 12
⊢ (𝑣 = 𝑏 → (𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ 𝑛 ∈ (𝐺 NeighbVtx 𝑏))) |
62 | 59, 61 | raleqbidv 3327 |
. . . . . . . . . . 11
⊢ (𝑣 = 𝑏 → (∀𝑛 ∈ ({𝑎, 𝑏} ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ ∀𝑛 ∈ ({𝑎, 𝑏} ∖ {𝑏})𝑛 ∈ (𝐺 NeighbVtx 𝑏))) |
63 | 51, 52, 57, 62 | ralpr 4633 |
. . . . . . . . . 10
⊢
(∀𝑣 ∈
{𝑎, 𝑏}∀𝑛 ∈ ({𝑎, 𝑏} ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ (∀𝑛 ∈ ({𝑎, 𝑏} ∖ {𝑎})𝑛 ∈ (𝐺 NeighbVtx 𝑎) ∧ ∀𝑛 ∈ ({𝑎, 𝑏} ∖ {𝑏})𝑛 ∈ (𝐺 NeighbVtx 𝑏))) |
64 | | difprsn1 4730 |
. . . . . . . . . . . . 13
⊢ (𝑎 ≠ 𝑏 → ({𝑎, 𝑏} ∖ {𝑎}) = {𝑏}) |
65 | 64 | raleqdv 3339 |
. . . . . . . . . . . 12
⊢ (𝑎 ≠ 𝑏 → (∀𝑛 ∈ ({𝑎, 𝑏} ∖ {𝑎})𝑛 ∈ (𝐺 NeighbVtx 𝑎) ↔ ∀𝑛 ∈ {𝑏}𝑛 ∈ (𝐺 NeighbVtx 𝑎))) |
66 | | eleq1 2826 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 𝑏 → (𝑛 ∈ (𝐺 NeighbVtx 𝑎) ↔ 𝑏 ∈ (𝐺 NeighbVtx 𝑎))) |
67 | 52, 66 | ralsn 4614 |
. . . . . . . . . . . 12
⊢
(∀𝑛 ∈
{𝑏}𝑛 ∈ (𝐺 NeighbVtx 𝑎) ↔ 𝑏 ∈ (𝐺 NeighbVtx 𝑎)) |
68 | 65, 67 | bitrdi 286 |
. . . . . . . . . . 11
⊢ (𝑎 ≠ 𝑏 → (∀𝑛 ∈ ({𝑎, 𝑏} ∖ {𝑎})𝑛 ∈ (𝐺 NeighbVtx 𝑎) ↔ 𝑏 ∈ (𝐺 NeighbVtx 𝑎))) |
69 | | difprsn2 4731 |
. . . . . . . . . . . . 13
⊢ (𝑎 ≠ 𝑏 → ({𝑎, 𝑏} ∖ {𝑏}) = {𝑎}) |
70 | 69 | raleqdv 3339 |
. . . . . . . . . . . 12
⊢ (𝑎 ≠ 𝑏 → (∀𝑛 ∈ ({𝑎, 𝑏} ∖ {𝑏})𝑛 ∈ (𝐺 NeighbVtx 𝑏) ↔ ∀𝑛 ∈ {𝑎}𝑛 ∈ (𝐺 NeighbVtx 𝑏))) |
71 | | eleq1 2826 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 𝑎 → (𝑛 ∈ (𝐺 NeighbVtx 𝑏) ↔ 𝑎 ∈ (𝐺 NeighbVtx 𝑏))) |
72 | 51, 71 | ralsn 4614 |
. . . . . . . . . . . 12
⊢
(∀𝑛 ∈
{𝑎}𝑛 ∈ (𝐺 NeighbVtx 𝑏) ↔ 𝑎 ∈ (𝐺 NeighbVtx 𝑏)) |
73 | 70, 72 | bitrdi 286 |
. . . . . . . . . . 11
⊢ (𝑎 ≠ 𝑏 → (∀𝑛 ∈ ({𝑎, 𝑏} ∖ {𝑏})𝑛 ∈ (𝐺 NeighbVtx 𝑏) ↔ 𝑎 ∈ (𝐺 NeighbVtx 𝑏))) |
74 | 68, 73 | anbi12d 630 |
. . . . . . . . . 10
⊢ (𝑎 ≠ 𝑏 → ((∀𝑛 ∈ ({𝑎, 𝑏} ∖ {𝑎})𝑛 ∈ (𝐺 NeighbVtx 𝑎) ∧ ∀𝑛 ∈ ({𝑎, 𝑏} ∖ {𝑏})𝑛 ∈ (𝐺 NeighbVtx 𝑏)) ↔ (𝑏 ∈ (𝐺 NeighbVtx 𝑎) ∧ 𝑎 ∈ (𝐺 NeighbVtx 𝑏)))) |
75 | 63, 74 | syl5bb 282 |
. . . . . . . . 9
⊢ (𝑎 ≠ 𝑏 → (∀𝑣 ∈ {𝑎, 𝑏}∀𝑛 ∈ ({𝑎, 𝑏} ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ (𝑏 ∈ (𝐺 NeighbVtx 𝑎) ∧ 𝑎 ∈ (𝐺 NeighbVtx 𝑏)))) |
76 | 50, 75 | sylan9bbr 510 |
. . . . . . . 8
⊢ ((𝑎 ≠ 𝑏 ∧ 𝑉 = {𝑎, 𝑏}) → (∀𝑣 ∈ 𝑉 ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ (𝑏 ∈ (𝐺 NeighbVtx 𝑎) ∧ 𝑎 ∈ (𝐺 NeighbVtx 𝑏)))) |
77 | 46, 76 | bibi12d 345 |
. . . . . . 7
⊢ ((𝑎 ≠ 𝑏 ∧ 𝑉 = {𝑎, 𝑏}) → ((𝑉 ∈ 𝐸 ↔ ∀𝑣 ∈ 𝑉 ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)) ↔ ({𝑎, 𝑏} ∈ 𝐸 ↔ (𝑏 ∈ (𝐺 NeighbVtx 𝑎) ∧ 𝑎 ∈ (𝐺 NeighbVtx 𝑏))))) |
78 | 77 | adantl 481 |
. . . . . 6
⊢ (((𝐺 ∈ UHGraph ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) ∧ (𝑎 ≠ 𝑏 ∧ 𝑉 = {𝑎, 𝑏})) → ((𝑉 ∈ 𝐸 ↔ ∀𝑣 ∈ 𝑉 ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)) ↔ ({𝑎, 𝑏} ∈ 𝐸 ↔ (𝑏 ∈ (𝐺 NeighbVtx 𝑎) ∧ 𝑎 ∈ (𝐺 NeighbVtx 𝑏))))) |
79 | 44, 78 | mpbird 256 |
. . . . 5
⊢ (((𝐺 ∈ UHGraph ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) ∧ (𝑎 ≠ 𝑏 ∧ 𝑉 = {𝑎, 𝑏})) → (𝑉 ∈ 𝐸 ↔ ∀𝑣 ∈ 𝑉 ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣))) |
80 | 79 | ex 412 |
. . . 4
⊢ ((𝐺 ∈ UHGraph ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → ((𝑎 ≠ 𝑏 ∧ 𝑉 = {𝑎, 𝑏}) → (𝑉 ∈ 𝐸 ↔ ∀𝑣 ∈ 𝑉 ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)))) |
81 | 80 | rexlimdvva 3222 |
. . 3
⊢ (𝐺 ∈ UHGraph →
(∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑎 ≠ 𝑏 ∧ 𝑉 = {𝑎, 𝑏}) → (𝑉 ∈ 𝐸 ↔ ∀𝑣 ∈ 𝑉 ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)))) |
82 | 4, 81 | syl5bi 241 |
. 2
⊢ (𝐺 ∈ UHGraph →
((♯‘𝑉) = 2
→ (𝑉 ∈ 𝐸 ↔ ∀𝑣 ∈ 𝑉 ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)))) |
83 | 82 | imp 406 |
1
⊢ ((𝐺 ∈ UHGraph ∧
(♯‘𝑉) = 2)
→ (𝑉 ∈ 𝐸 ↔ ∀𝑣 ∈ 𝑉 ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣))) |