MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nbuhgr2vtx1edgb Structured version   Visualization version   GIF version

Theorem nbuhgr2vtx1edgb 29331
Description: If a hypergraph has two vertices, and there is an edge between the vertices, then each vertex is the neighbor of the other vertex. (Contributed by AV, 2-Nov-2020.) (Proof shortened by AV, 13-Feb-2022.)
Hypotheses
Ref Expression
nbgr2vtx1edg.v 𝑉 = (Vtx‘𝐺)
nbgr2vtx1edg.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
nbuhgr2vtx1edgb ((𝐺 ∈ UHGraph ∧ (♯‘𝑉) = 2) → (𝑉𝐸 ↔ ∀𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)))
Distinct variable groups:   𝑛,𝐸   𝑛,𝐺,𝑣   𝑛,𝑉,𝑣
Allowed substitution hint:   𝐸(𝑣)

Proof of Theorem nbuhgr2vtx1edgb
Dummy variables 𝑎 𝑏 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nbgr2vtx1edg.v . . . . 5 𝑉 = (Vtx‘𝐺)
21fvexi 6890 . . . 4 𝑉 ∈ V
3 hash2prb 14490 . . . 4 (𝑉 ∈ V → ((♯‘𝑉) = 2 ↔ ∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑉 = {𝑎, 𝑏})))
42, 3ax-mp 5 . . 3 ((♯‘𝑉) = 2 ↔ ∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑉 = {𝑎, 𝑏}))
5 simpr 484 . . . . . . . . . . . 12 ((𝐺 ∈ UHGraph ∧ (𝑎𝑉𝑏𝑉)) → (𝑎𝑉𝑏𝑉))
65ancomd 461 . . . . . . . . . . 11 ((𝐺 ∈ UHGraph ∧ (𝑎𝑉𝑏𝑉)) → (𝑏𝑉𝑎𝑉))
76ad2antrr 726 . . . . . . . . . 10 ((((𝐺 ∈ UHGraph ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑎𝑏𝑉 = {𝑎, 𝑏})) ∧ {𝑎, 𝑏} ∈ 𝐸) → (𝑏𝑉𝑎𝑉))
8 id 22 . . . . . . . . . . . . 13 (𝑎𝑏𝑎𝑏)
98necomd 2987 . . . . . . . . . . . 12 (𝑎𝑏𝑏𝑎)
109adantr 480 . . . . . . . . . . 11 ((𝑎𝑏𝑉 = {𝑎, 𝑏}) → 𝑏𝑎)
1110ad2antlr 727 . . . . . . . . . 10 ((((𝐺 ∈ UHGraph ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑎𝑏𝑉 = {𝑎, 𝑏})) ∧ {𝑎, 𝑏} ∈ 𝐸) → 𝑏𝑎)
12 prcom 4708 . . . . . . . . . . . . . 14 {𝑎, 𝑏} = {𝑏, 𝑎}
1312eleq1i 2825 . . . . . . . . . . . . 13 ({𝑎, 𝑏} ∈ 𝐸 ↔ {𝑏, 𝑎} ∈ 𝐸)
1413biimpi 216 . . . . . . . . . . . 12 ({𝑎, 𝑏} ∈ 𝐸 → {𝑏, 𝑎} ∈ 𝐸)
15 sseq2 3985 . . . . . . . . . . . . 13 (𝑒 = {𝑏, 𝑎} → ({𝑎, 𝑏} ⊆ 𝑒 ↔ {𝑎, 𝑏} ⊆ {𝑏, 𝑎}))
1615adantl 481 . . . . . . . . . . . 12 (({𝑎, 𝑏} ∈ 𝐸𝑒 = {𝑏, 𝑎}) → ({𝑎, 𝑏} ⊆ 𝑒 ↔ {𝑎, 𝑏} ⊆ {𝑏, 𝑎}))
1712eqimssi 4019 . . . . . . . . . . . . 13 {𝑎, 𝑏} ⊆ {𝑏, 𝑎}
1817a1i 11 . . . . . . . . . . . 12 ({𝑎, 𝑏} ∈ 𝐸 → {𝑎, 𝑏} ⊆ {𝑏, 𝑎})
1914, 16, 18rspcedvd 3603 . . . . . . . . . . 11 ({𝑎, 𝑏} ∈ 𝐸 → ∃𝑒𝐸 {𝑎, 𝑏} ⊆ 𝑒)
2019adantl 481 . . . . . . . . . 10 ((((𝐺 ∈ UHGraph ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑎𝑏𝑉 = {𝑎, 𝑏})) ∧ {𝑎, 𝑏} ∈ 𝐸) → ∃𝑒𝐸 {𝑎, 𝑏} ⊆ 𝑒)
21 nbgr2vtx1edg.e . . . . . . . . . . 11 𝐸 = (Edg‘𝐺)
221, 21nbgrel 29319 . . . . . . . . . 10 (𝑏 ∈ (𝐺 NeighbVtx 𝑎) ↔ ((𝑏𝑉𝑎𝑉) ∧ 𝑏𝑎 ∧ ∃𝑒𝐸 {𝑎, 𝑏} ⊆ 𝑒))
237, 11, 20, 22syl3anbrc 1344 . . . . . . . . 9 ((((𝐺 ∈ UHGraph ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑎𝑏𝑉 = {𝑎, 𝑏})) ∧ {𝑎, 𝑏} ∈ 𝐸) → 𝑏 ∈ (𝐺 NeighbVtx 𝑎))
245ad2antrr 726 . . . . . . . . . 10 ((((𝐺 ∈ UHGraph ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑎𝑏𝑉 = {𝑎, 𝑏})) ∧ {𝑎, 𝑏} ∈ 𝐸) → (𝑎𝑉𝑏𝑉))
25 simplrl 776 . . . . . . . . . 10 ((((𝐺 ∈ UHGraph ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑎𝑏𝑉 = {𝑎, 𝑏})) ∧ {𝑎, 𝑏} ∈ 𝐸) → 𝑎𝑏)
26 id 22 . . . . . . . . . . . 12 ({𝑎, 𝑏} ∈ 𝐸 → {𝑎, 𝑏} ∈ 𝐸)
27 sseq2 3985 . . . . . . . . . . . . 13 (𝑒 = {𝑎, 𝑏} → ({𝑏, 𝑎} ⊆ 𝑒 ↔ {𝑏, 𝑎} ⊆ {𝑎, 𝑏}))
2827adantl 481 . . . . . . . . . . . 12 (({𝑎, 𝑏} ∈ 𝐸𝑒 = {𝑎, 𝑏}) → ({𝑏, 𝑎} ⊆ 𝑒 ↔ {𝑏, 𝑎} ⊆ {𝑎, 𝑏}))
29 prcom 4708 . . . . . . . . . . . . . 14 {𝑏, 𝑎} = {𝑎, 𝑏}
3029eqimssi 4019 . . . . . . . . . . . . 13 {𝑏, 𝑎} ⊆ {𝑎, 𝑏}
3130a1i 11 . . . . . . . . . . . 12 ({𝑎, 𝑏} ∈ 𝐸 → {𝑏, 𝑎} ⊆ {𝑎, 𝑏})
3226, 28, 31rspcedvd 3603 . . . . . . . . . . 11 ({𝑎, 𝑏} ∈ 𝐸 → ∃𝑒𝐸 {𝑏, 𝑎} ⊆ 𝑒)
3332adantl 481 . . . . . . . . . 10 ((((𝐺 ∈ UHGraph ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑎𝑏𝑉 = {𝑎, 𝑏})) ∧ {𝑎, 𝑏} ∈ 𝐸) → ∃𝑒𝐸 {𝑏, 𝑎} ⊆ 𝑒)
341, 21nbgrel 29319 . . . . . . . . . 10 (𝑎 ∈ (𝐺 NeighbVtx 𝑏) ↔ ((𝑎𝑉𝑏𝑉) ∧ 𝑎𝑏 ∧ ∃𝑒𝐸 {𝑏, 𝑎} ⊆ 𝑒))
3524, 25, 33, 34syl3anbrc 1344 . . . . . . . . 9 ((((𝐺 ∈ UHGraph ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑎𝑏𝑉 = {𝑎, 𝑏})) ∧ {𝑎, 𝑏} ∈ 𝐸) → 𝑎 ∈ (𝐺 NeighbVtx 𝑏))
3623, 35jca 511 . . . . . . . 8 ((((𝐺 ∈ UHGraph ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑎𝑏𝑉 = {𝑎, 𝑏})) ∧ {𝑎, 𝑏} ∈ 𝐸) → (𝑏 ∈ (𝐺 NeighbVtx 𝑎) ∧ 𝑎 ∈ (𝐺 NeighbVtx 𝑏)))
3736ex 412 . . . . . . 7 (((𝐺 ∈ UHGraph ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑎𝑏𝑉 = {𝑎, 𝑏})) → ({𝑎, 𝑏} ∈ 𝐸 → (𝑏 ∈ (𝐺 NeighbVtx 𝑎) ∧ 𝑎 ∈ (𝐺 NeighbVtx 𝑏))))
381, 21nbuhgr2vtx1edgblem 29330 . . . . . . . . . . . 12 ((𝐺 ∈ UHGraph ∧ 𝑉 = {𝑎, 𝑏} ∧ 𝑎 ∈ (𝐺 NeighbVtx 𝑏)) → {𝑎, 𝑏} ∈ 𝐸)
39383exp 1119 . . . . . . . . . . 11 (𝐺 ∈ UHGraph → (𝑉 = {𝑎, 𝑏} → (𝑎 ∈ (𝐺 NeighbVtx 𝑏) → {𝑎, 𝑏} ∈ 𝐸)))
4039adantr 480 . . . . . . . . . 10 ((𝐺 ∈ UHGraph ∧ (𝑎𝑉𝑏𝑉)) → (𝑉 = {𝑎, 𝑏} → (𝑎 ∈ (𝐺 NeighbVtx 𝑏) → {𝑎, 𝑏} ∈ 𝐸)))
4140adantld 490 . . . . . . . . 9 ((𝐺 ∈ UHGraph ∧ (𝑎𝑉𝑏𝑉)) → ((𝑎𝑏𝑉 = {𝑎, 𝑏}) → (𝑎 ∈ (𝐺 NeighbVtx 𝑏) → {𝑎, 𝑏} ∈ 𝐸)))
4241imp 406 . . . . . . . 8 (((𝐺 ∈ UHGraph ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑎𝑏𝑉 = {𝑎, 𝑏})) → (𝑎 ∈ (𝐺 NeighbVtx 𝑏) → {𝑎, 𝑏} ∈ 𝐸))
4342adantld 490 . . . . . . 7 (((𝐺 ∈ UHGraph ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑎𝑏𝑉 = {𝑎, 𝑏})) → ((𝑏 ∈ (𝐺 NeighbVtx 𝑎) ∧ 𝑎 ∈ (𝐺 NeighbVtx 𝑏)) → {𝑎, 𝑏} ∈ 𝐸))
4437, 43impbid 212 . . . . . 6 (((𝐺 ∈ UHGraph ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑎𝑏𝑉 = {𝑎, 𝑏})) → ({𝑎, 𝑏} ∈ 𝐸 ↔ (𝑏 ∈ (𝐺 NeighbVtx 𝑎) ∧ 𝑎 ∈ (𝐺 NeighbVtx 𝑏))))
45 eleq1 2822 . . . . . . . . 9 (𝑉 = {𝑎, 𝑏} → (𝑉𝐸 ↔ {𝑎, 𝑏} ∈ 𝐸))
4645adantl 481 . . . . . . . 8 ((𝑎𝑏𝑉 = {𝑎, 𝑏}) → (𝑉𝐸 ↔ {𝑎, 𝑏} ∈ 𝐸))
47 id 22 . . . . . . . . . 10 (𝑉 = {𝑎, 𝑏} → 𝑉 = {𝑎, 𝑏})
48 difeq1 4094 . . . . . . . . . . 11 (𝑉 = {𝑎, 𝑏} → (𝑉 ∖ {𝑣}) = ({𝑎, 𝑏} ∖ {𝑣}))
4948raleqdv 3305 . . . . . . . . . 10 (𝑉 = {𝑎, 𝑏} → (∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ ∀𝑛 ∈ ({𝑎, 𝑏} ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)))
5047, 49raleqbidv 3325 . . . . . . . . 9 (𝑉 = {𝑎, 𝑏} → (∀𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ ∀𝑣 ∈ {𝑎, 𝑏}∀𝑛 ∈ ({𝑎, 𝑏} ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)))
51 vex 3463 . . . . . . . . . . 11 𝑎 ∈ V
52 vex 3463 . . . . . . . . . . 11 𝑏 ∈ V
53 sneq 4611 . . . . . . . . . . . . 13 (𝑣 = 𝑎 → {𝑣} = {𝑎})
5453difeq2d 4101 . . . . . . . . . . . 12 (𝑣 = 𝑎 → ({𝑎, 𝑏} ∖ {𝑣}) = ({𝑎, 𝑏} ∖ {𝑎}))
55 oveq2 7413 . . . . . . . . . . . . 13 (𝑣 = 𝑎 → (𝐺 NeighbVtx 𝑣) = (𝐺 NeighbVtx 𝑎))
5655eleq2d 2820 . . . . . . . . . . . 12 (𝑣 = 𝑎 → (𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ 𝑛 ∈ (𝐺 NeighbVtx 𝑎)))
5754, 56raleqbidv 3325 . . . . . . . . . . 11 (𝑣 = 𝑎 → (∀𝑛 ∈ ({𝑎, 𝑏} ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ ∀𝑛 ∈ ({𝑎, 𝑏} ∖ {𝑎})𝑛 ∈ (𝐺 NeighbVtx 𝑎)))
58 sneq 4611 . . . . . . . . . . . . 13 (𝑣 = 𝑏 → {𝑣} = {𝑏})
5958difeq2d 4101 . . . . . . . . . . . 12 (𝑣 = 𝑏 → ({𝑎, 𝑏} ∖ {𝑣}) = ({𝑎, 𝑏} ∖ {𝑏}))
60 oveq2 7413 . . . . . . . . . . . . 13 (𝑣 = 𝑏 → (𝐺 NeighbVtx 𝑣) = (𝐺 NeighbVtx 𝑏))
6160eleq2d 2820 . . . . . . . . . . . 12 (𝑣 = 𝑏 → (𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ 𝑛 ∈ (𝐺 NeighbVtx 𝑏)))
6259, 61raleqbidv 3325 . . . . . . . . . . 11 (𝑣 = 𝑏 → (∀𝑛 ∈ ({𝑎, 𝑏} ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ ∀𝑛 ∈ ({𝑎, 𝑏} ∖ {𝑏})𝑛 ∈ (𝐺 NeighbVtx 𝑏)))
6351, 52, 57, 62ralpr 4676 . . . . . . . . . 10 (∀𝑣 ∈ {𝑎, 𝑏}∀𝑛 ∈ ({𝑎, 𝑏} ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ (∀𝑛 ∈ ({𝑎, 𝑏} ∖ {𝑎})𝑛 ∈ (𝐺 NeighbVtx 𝑎) ∧ ∀𝑛 ∈ ({𝑎, 𝑏} ∖ {𝑏})𝑛 ∈ (𝐺 NeighbVtx 𝑏)))
64 difprsn1 4776 . . . . . . . . . . . . 13 (𝑎𝑏 → ({𝑎, 𝑏} ∖ {𝑎}) = {𝑏})
6564raleqdv 3305 . . . . . . . . . . . 12 (𝑎𝑏 → (∀𝑛 ∈ ({𝑎, 𝑏} ∖ {𝑎})𝑛 ∈ (𝐺 NeighbVtx 𝑎) ↔ ∀𝑛 ∈ {𝑏}𝑛 ∈ (𝐺 NeighbVtx 𝑎)))
66 eleq1 2822 . . . . . . . . . . . . 13 (𝑛 = 𝑏 → (𝑛 ∈ (𝐺 NeighbVtx 𝑎) ↔ 𝑏 ∈ (𝐺 NeighbVtx 𝑎)))
6752, 66ralsn 4657 . . . . . . . . . . . 12 (∀𝑛 ∈ {𝑏}𝑛 ∈ (𝐺 NeighbVtx 𝑎) ↔ 𝑏 ∈ (𝐺 NeighbVtx 𝑎))
6865, 67bitrdi 287 . . . . . . . . . . 11 (𝑎𝑏 → (∀𝑛 ∈ ({𝑎, 𝑏} ∖ {𝑎})𝑛 ∈ (𝐺 NeighbVtx 𝑎) ↔ 𝑏 ∈ (𝐺 NeighbVtx 𝑎)))
69 difprsn2 4777 . . . . . . . . . . . . 13 (𝑎𝑏 → ({𝑎, 𝑏} ∖ {𝑏}) = {𝑎})
7069raleqdv 3305 . . . . . . . . . . . 12 (𝑎𝑏 → (∀𝑛 ∈ ({𝑎, 𝑏} ∖ {𝑏})𝑛 ∈ (𝐺 NeighbVtx 𝑏) ↔ ∀𝑛 ∈ {𝑎}𝑛 ∈ (𝐺 NeighbVtx 𝑏)))
71 eleq1 2822 . . . . . . . . . . . . 13 (𝑛 = 𝑎 → (𝑛 ∈ (𝐺 NeighbVtx 𝑏) ↔ 𝑎 ∈ (𝐺 NeighbVtx 𝑏)))
7251, 71ralsn 4657 . . . . . . . . . . . 12 (∀𝑛 ∈ {𝑎}𝑛 ∈ (𝐺 NeighbVtx 𝑏) ↔ 𝑎 ∈ (𝐺 NeighbVtx 𝑏))
7370, 72bitrdi 287 . . . . . . . . . . 11 (𝑎𝑏 → (∀𝑛 ∈ ({𝑎, 𝑏} ∖ {𝑏})𝑛 ∈ (𝐺 NeighbVtx 𝑏) ↔ 𝑎 ∈ (𝐺 NeighbVtx 𝑏)))
7468, 73anbi12d 632 . . . . . . . . . 10 (𝑎𝑏 → ((∀𝑛 ∈ ({𝑎, 𝑏} ∖ {𝑎})𝑛 ∈ (𝐺 NeighbVtx 𝑎) ∧ ∀𝑛 ∈ ({𝑎, 𝑏} ∖ {𝑏})𝑛 ∈ (𝐺 NeighbVtx 𝑏)) ↔ (𝑏 ∈ (𝐺 NeighbVtx 𝑎) ∧ 𝑎 ∈ (𝐺 NeighbVtx 𝑏))))
7563, 74bitrid 283 . . . . . . . . 9 (𝑎𝑏 → (∀𝑣 ∈ {𝑎, 𝑏}∀𝑛 ∈ ({𝑎, 𝑏} ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ (𝑏 ∈ (𝐺 NeighbVtx 𝑎) ∧ 𝑎 ∈ (𝐺 NeighbVtx 𝑏))))
7650, 75sylan9bbr 510 . . . . . . . 8 ((𝑎𝑏𝑉 = {𝑎, 𝑏}) → (∀𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ (𝑏 ∈ (𝐺 NeighbVtx 𝑎) ∧ 𝑎 ∈ (𝐺 NeighbVtx 𝑏))))
7746, 76bibi12d 345 . . . . . . 7 ((𝑎𝑏𝑉 = {𝑎, 𝑏}) → ((𝑉𝐸 ↔ ∀𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)) ↔ ({𝑎, 𝑏} ∈ 𝐸 ↔ (𝑏 ∈ (𝐺 NeighbVtx 𝑎) ∧ 𝑎 ∈ (𝐺 NeighbVtx 𝑏)))))
7877adantl 481 . . . . . 6 (((𝐺 ∈ UHGraph ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑎𝑏𝑉 = {𝑎, 𝑏})) → ((𝑉𝐸 ↔ ∀𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)) ↔ ({𝑎, 𝑏} ∈ 𝐸 ↔ (𝑏 ∈ (𝐺 NeighbVtx 𝑎) ∧ 𝑎 ∈ (𝐺 NeighbVtx 𝑏)))))
7944, 78mpbird 257 . . . . 5 (((𝐺 ∈ UHGraph ∧ (𝑎𝑉𝑏𝑉)) ∧ (𝑎𝑏𝑉 = {𝑎, 𝑏})) → (𝑉𝐸 ↔ ∀𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)))
8079ex 412 . . . 4 ((𝐺 ∈ UHGraph ∧ (𝑎𝑉𝑏𝑉)) → ((𝑎𝑏𝑉 = {𝑎, 𝑏}) → (𝑉𝐸 ↔ ∀𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣))))
8180rexlimdvva 3198 . . 3 (𝐺 ∈ UHGraph → (∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑉 = {𝑎, 𝑏}) → (𝑉𝐸 ↔ ∀𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣))))
824, 81biimtrid 242 . 2 (𝐺 ∈ UHGraph → ((♯‘𝑉) = 2 → (𝑉𝐸 ↔ ∀𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣))))
8382imp 406 1 ((𝐺 ∈ UHGraph ∧ (♯‘𝑉) = 2) → (𝑉𝐸 ↔ ∀𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2932  wral 3051  wrex 3060  Vcvv 3459  cdif 3923  wss 3926  {csn 4601  {cpr 4603  cfv 6531  (class class class)co 7405  2c2 12295  chash 14348  Vtxcvtx 28975  Edgcedg 29026  UHGraphcuhgr 29035   NeighbVtx cnbgr 29311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-dju 9915  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-n0 12502  df-z 12589  df-uz 12853  df-fz 13525  df-hash 14349  df-edg 29027  df-uhgr 29037  df-nbgr 29312
This theorem is referenced by:  uvtx2vtx1edgb  29378
  Copyright terms: Public domain W3C validator