Step | Hyp | Ref
| Expression |
1 | | nbgr2vtx1edg.v |
. . . . 5
⊢ 𝑉 = (Vtx‘𝐺) |
2 | 1 | fvexi 6788 |
. . . 4
⊢ 𝑉 ∈ V |
3 | | hash2prb 14186 |
. . . 4
⊢ (𝑉 ∈ V →
((♯‘𝑉) = 2
↔ ∃𝑎 ∈
𝑉 ∃𝑏 ∈ 𝑉 (𝑎 ≠ 𝑏 ∧ 𝑉 = {𝑎, 𝑏}))) |
4 | 2, 3 | ax-mp 5 |
. . 3
⊢
((♯‘𝑉) =
2 ↔ ∃𝑎 ∈
𝑉 ∃𝑏 ∈ 𝑉 (𝑎 ≠ 𝑏 ∧ 𝑉 = {𝑎, 𝑏})) |
5 | | simpll 764 |
. . . . . . . . . 10
⊢ ((((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑎 ≠ 𝑏 ∧ 𝑉 = {𝑎, 𝑏})) ∧ {𝑎, 𝑏} ∈ 𝐸) → (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) |
6 | 5 | ancomd 462 |
. . . . . . . . 9
⊢ ((((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑎 ≠ 𝑏 ∧ 𝑉 = {𝑎, 𝑏})) ∧ {𝑎, 𝑏} ∈ 𝐸) → (𝑏 ∈ 𝑉 ∧ 𝑎 ∈ 𝑉)) |
7 | | simpl 483 |
. . . . . . . . . . 11
⊢ ((𝑎 ≠ 𝑏 ∧ 𝑉 = {𝑎, 𝑏}) → 𝑎 ≠ 𝑏) |
8 | 7 | necomd 2999 |
. . . . . . . . . 10
⊢ ((𝑎 ≠ 𝑏 ∧ 𝑉 = {𝑎, 𝑏}) → 𝑏 ≠ 𝑎) |
9 | 8 | ad2antlr 724 |
. . . . . . . . 9
⊢ ((((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑎 ≠ 𝑏 ∧ 𝑉 = {𝑎, 𝑏})) ∧ {𝑎, 𝑏} ∈ 𝐸) → 𝑏 ≠ 𝑎) |
10 | | id 22 |
. . . . . . . . . . 11
⊢ ({𝑎, 𝑏} ∈ 𝐸 → {𝑎, 𝑏} ∈ 𝐸) |
11 | | sseq2 3947 |
. . . . . . . . . . . 12
⊢ (𝑒 = {𝑎, 𝑏} → ({𝑎, 𝑏} ⊆ 𝑒 ↔ {𝑎, 𝑏} ⊆ {𝑎, 𝑏})) |
12 | 11 | adantl 482 |
. . . . . . . . . . 11
⊢ (({𝑎, 𝑏} ∈ 𝐸 ∧ 𝑒 = {𝑎, 𝑏}) → ({𝑎, 𝑏} ⊆ 𝑒 ↔ {𝑎, 𝑏} ⊆ {𝑎, 𝑏})) |
13 | | ssidd 3944 |
. . . . . . . . . . 11
⊢ ({𝑎, 𝑏} ∈ 𝐸 → {𝑎, 𝑏} ⊆ {𝑎, 𝑏}) |
14 | 10, 12, 13 | rspcedvd 3563 |
. . . . . . . . . 10
⊢ ({𝑎, 𝑏} ∈ 𝐸 → ∃𝑒 ∈ 𝐸 {𝑎, 𝑏} ⊆ 𝑒) |
15 | 14 | adantl 482 |
. . . . . . . . 9
⊢ ((((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑎 ≠ 𝑏 ∧ 𝑉 = {𝑎, 𝑏})) ∧ {𝑎, 𝑏} ∈ 𝐸) → ∃𝑒 ∈ 𝐸 {𝑎, 𝑏} ⊆ 𝑒) |
16 | | nbgr2vtx1edg.e |
. . . . . . . . . 10
⊢ 𝐸 = (Edg‘𝐺) |
17 | 1, 16 | nbgrel 27707 |
. . . . . . . . 9
⊢ (𝑏 ∈ (𝐺 NeighbVtx 𝑎) ↔ ((𝑏 ∈ 𝑉 ∧ 𝑎 ∈ 𝑉) ∧ 𝑏 ≠ 𝑎 ∧ ∃𝑒 ∈ 𝐸 {𝑎, 𝑏} ⊆ 𝑒)) |
18 | 6, 9, 15, 17 | syl3anbrc 1342 |
. . . . . . . 8
⊢ ((((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑎 ≠ 𝑏 ∧ 𝑉 = {𝑎, 𝑏})) ∧ {𝑎, 𝑏} ∈ 𝐸) → 𝑏 ∈ (𝐺 NeighbVtx 𝑎)) |
19 | 7 | ad2antlr 724 |
. . . . . . . . 9
⊢ ((((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑎 ≠ 𝑏 ∧ 𝑉 = {𝑎, 𝑏})) ∧ {𝑎, 𝑏} ∈ 𝐸) → 𝑎 ≠ 𝑏) |
20 | | sseq2 3947 |
. . . . . . . . . . . 12
⊢ (𝑒 = {𝑎, 𝑏} → ({𝑏, 𝑎} ⊆ 𝑒 ↔ {𝑏, 𝑎} ⊆ {𝑎, 𝑏})) |
21 | 20 | adantl 482 |
. . . . . . . . . . 11
⊢ (({𝑎, 𝑏} ∈ 𝐸 ∧ 𝑒 = {𝑎, 𝑏}) → ({𝑏, 𝑎} ⊆ 𝑒 ↔ {𝑏, 𝑎} ⊆ {𝑎, 𝑏})) |
22 | | prcom 4668 |
. . . . . . . . . . . . 13
⊢ {𝑏, 𝑎} = {𝑎, 𝑏} |
23 | 22 | eqimssi 3979 |
. . . . . . . . . . . 12
⊢ {𝑏, 𝑎} ⊆ {𝑎, 𝑏} |
24 | 23 | a1i 11 |
. . . . . . . . . . 11
⊢ ({𝑎, 𝑏} ∈ 𝐸 → {𝑏, 𝑎} ⊆ {𝑎, 𝑏}) |
25 | 10, 21, 24 | rspcedvd 3563 |
. . . . . . . . . 10
⊢ ({𝑎, 𝑏} ∈ 𝐸 → ∃𝑒 ∈ 𝐸 {𝑏, 𝑎} ⊆ 𝑒) |
26 | 25 | adantl 482 |
. . . . . . . . 9
⊢ ((((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑎 ≠ 𝑏 ∧ 𝑉 = {𝑎, 𝑏})) ∧ {𝑎, 𝑏} ∈ 𝐸) → ∃𝑒 ∈ 𝐸 {𝑏, 𝑎} ⊆ 𝑒) |
27 | 1, 16 | nbgrel 27707 |
. . . . . . . . 9
⊢ (𝑎 ∈ (𝐺 NeighbVtx 𝑏) ↔ ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ 𝑎 ≠ 𝑏 ∧ ∃𝑒 ∈ 𝐸 {𝑏, 𝑎} ⊆ 𝑒)) |
28 | 5, 19, 26, 27 | syl3anbrc 1342 |
. . . . . . . 8
⊢ ((((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑎 ≠ 𝑏 ∧ 𝑉 = {𝑎, 𝑏})) ∧ {𝑎, 𝑏} ∈ 𝐸) → 𝑎 ∈ (𝐺 NeighbVtx 𝑏)) |
29 | | difprsn1 4733 |
. . . . . . . . . . . . 13
⊢ (𝑎 ≠ 𝑏 → ({𝑎, 𝑏} ∖ {𝑎}) = {𝑏}) |
30 | 29 | raleqdv 3348 |
. . . . . . . . . . . 12
⊢ (𝑎 ≠ 𝑏 → (∀𝑛 ∈ ({𝑎, 𝑏} ∖ {𝑎})𝑛 ∈ (𝐺 NeighbVtx 𝑎) ↔ ∀𝑛 ∈ {𝑏}𝑛 ∈ (𝐺 NeighbVtx 𝑎))) |
31 | | vex 3436 |
. . . . . . . . . . . . 13
⊢ 𝑏 ∈ V |
32 | | eleq1 2826 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 𝑏 → (𝑛 ∈ (𝐺 NeighbVtx 𝑎) ↔ 𝑏 ∈ (𝐺 NeighbVtx 𝑎))) |
33 | 31, 32 | ralsn 4617 |
. . . . . . . . . . . 12
⊢
(∀𝑛 ∈
{𝑏}𝑛 ∈ (𝐺 NeighbVtx 𝑎) ↔ 𝑏 ∈ (𝐺 NeighbVtx 𝑎)) |
34 | 30, 33 | bitrdi 287 |
. . . . . . . . . . 11
⊢ (𝑎 ≠ 𝑏 → (∀𝑛 ∈ ({𝑎, 𝑏} ∖ {𝑎})𝑛 ∈ (𝐺 NeighbVtx 𝑎) ↔ 𝑏 ∈ (𝐺 NeighbVtx 𝑎))) |
35 | | difprsn2 4734 |
. . . . . . . . . . . . 13
⊢ (𝑎 ≠ 𝑏 → ({𝑎, 𝑏} ∖ {𝑏}) = {𝑎}) |
36 | 35 | raleqdv 3348 |
. . . . . . . . . . . 12
⊢ (𝑎 ≠ 𝑏 → (∀𝑛 ∈ ({𝑎, 𝑏} ∖ {𝑏})𝑛 ∈ (𝐺 NeighbVtx 𝑏) ↔ ∀𝑛 ∈ {𝑎}𝑛 ∈ (𝐺 NeighbVtx 𝑏))) |
37 | | vex 3436 |
. . . . . . . . . . . . 13
⊢ 𝑎 ∈ V |
38 | | eleq1 2826 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 𝑎 → (𝑛 ∈ (𝐺 NeighbVtx 𝑏) ↔ 𝑎 ∈ (𝐺 NeighbVtx 𝑏))) |
39 | 37, 38 | ralsn 4617 |
. . . . . . . . . . . 12
⊢
(∀𝑛 ∈
{𝑎}𝑛 ∈ (𝐺 NeighbVtx 𝑏) ↔ 𝑎 ∈ (𝐺 NeighbVtx 𝑏)) |
40 | 36, 39 | bitrdi 287 |
. . . . . . . . . . 11
⊢ (𝑎 ≠ 𝑏 → (∀𝑛 ∈ ({𝑎, 𝑏} ∖ {𝑏})𝑛 ∈ (𝐺 NeighbVtx 𝑏) ↔ 𝑎 ∈ (𝐺 NeighbVtx 𝑏))) |
41 | 34, 40 | anbi12d 631 |
. . . . . . . . . 10
⊢ (𝑎 ≠ 𝑏 → ((∀𝑛 ∈ ({𝑎, 𝑏} ∖ {𝑎})𝑛 ∈ (𝐺 NeighbVtx 𝑎) ∧ ∀𝑛 ∈ ({𝑎, 𝑏} ∖ {𝑏})𝑛 ∈ (𝐺 NeighbVtx 𝑏)) ↔ (𝑏 ∈ (𝐺 NeighbVtx 𝑎) ∧ 𝑎 ∈ (𝐺 NeighbVtx 𝑏)))) |
42 | 41 | adantr 481 |
. . . . . . . . 9
⊢ ((𝑎 ≠ 𝑏 ∧ 𝑉 = {𝑎, 𝑏}) → ((∀𝑛 ∈ ({𝑎, 𝑏} ∖ {𝑎})𝑛 ∈ (𝐺 NeighbVtx 𝑎) ∧ ∀𝑛 ∈ ({𝑎, 𝑏} ∖ {𝑏})𝑛 ∈ (𝐺 NeighbVtx 𝑏)) ↔ (𝑏 ∈ (𝐺 NeighbVtx 𝑎) ∧ 𝑎 ∈ (𝐺 NeighbVtx 𝑏)))) |
43 | 42 | ad2antlr 724 |
. . . . . . . 8
⊢ ((((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑎 ≠ 𝑏 ∧ 𝑉 = {𝑎, 𝑏})) ∧ {𝑎, 𝑏} ∈ 𝐸) → ((∀𝑛 ∈ ({𝑎, 𝑏} ∖ {𝑎})𝑛 ∈ (𝐺 NeighbVtx 𝑎) ∧ ∀𝑛 ∈ ({𝑎, 𝑏} ∖ {𝑏})𝑛 ∈ (𝐺 NeighbVtx 𝑏)) ↔ (𝑏 ∈ (𝐺 NeighbVtx 𝑎) ∧ 𝑎 ∈ (𝐺 NeighbVtx 𝑏)))) |
44 | 18, 28, 43 | mpbir2and 710 |
. . . . . . 7
⊢ ((((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑎 ≠ 𝑏 ∧ 𝑉 = {𝑎, 𝑏})) ∧ {𝑎, 𝑏} ∈ 𝐸) → (∀𝑛 ∈ ({𝑎, 𝑏} ∖ {𝑎})𝑛 ∈ (𝐺 NeighbVtx 𝑎) ∧ ∀𝑛 ∈ ({𝑎, 𝑏} ∖ {𝑏})𝑛 ∈ (𝐺 NeighbVtx 𝑏))) |
45 | 44 | ex 413 |
. . . . . 6
⊢ (((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑎 ≠ 𝑏 ∧ 𝑉 = {𝑎, 𝑏})) → ({𝑎, 𝑏} ∈ 𝐸 → (∀𝑛 ∈ ({𝑎, 𝑏} ∖ {𝑎})𝑛 ∈ (𝐺 NeighbVtx 𝑎) ∧ ∀𝑛 ∈ ({𝑎, 𝑏} ∖ {𝑏})𝑛 ∈ (𝐺 NeighbVtx 𝑏)))) |
46 | | eleq1 2826 |
. . . . . . . . 9
⊢ (𝑉 = {𝑎, 𝑏} → (𝑉 ∈ 𝐸 ↔ {𝑎, 𝑏} ∈ 𝐸)) |
47 | | id 22 |
. . . . . . . . . . 11
⊢ (𝑉 = {𝑎, 𝑏} → 𝑉 = {𝑎, 𝑏}) |
48 | | difeq1 4050 |
. . . . . . . . . . . 12
⊢ (𝑉 = {𝑎, 𝑏} → (𝑉 ∖ {𝑣}) = ({𝑎, 𝑏} ∖ {𝑣})) |
49 | 48 | raleqdv 3348 |
. . . . . . . . . . 11
⊢ (𝑉 = {𝑎, 𝑏} → (∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ ∀𝑛 ∈ ({𝑎, 𝑏} ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣))) |
50 | 47, 49 | raleqbidv 3336 |
. . . . . . . . . 10
⊢ (𝑉 = {𝑎, 𝑏} → (∀𝑣 ∈ 𝑉 ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ ∀𝑣 ∈ {𝑎, 𝑏}∀𝑛 ∈ ({𝑎, 𝑏} ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣))) |
51 | | sneq 4571 |
. . . . . . . . . . . . 13
⊢ (𝑣 = 𝑎 → {𝑣} = {𝑎}) |
52 | 51 | difeq2d 4057 |
. . . . . . . . . . . 12
⊢ (𝑣 = 𝑎 → ({𝑎, 𝑏} ∖ {𝑣}) = ({𝑎, 𝑏} ∖ {𝑎})) |
53 | | oveq2 7283 |
. . . . . . . . . . . . 13
⊢ (𝑣 = 𝑎 → (𝐺 NeighbVtx 𝑣) = (𝐺 NeighbVtx 𝑎)) |
54 | 53 | eleq2d 2824 |
. . . . . . . . . . . 12
⊢ (𝑣 = 𝑎 → (𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ 𝑛 ∈ (𝐺 NeighbVtx 𝑎))) |
55 | 52, 54 | raleqbidv 3336 |
. . . . . . . . . . 11
⊢ (𝑣 = 𝑎 → (∀𝑛 ∈ ({𝑎, 𝑏} ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ ∀𝑛 ∈ ({𝑎, 𝑏} ∖ {𝑎})𝑛 ∈ (𝐺 NeighbVtx 𝑎))) |
56 | | sneq 4571 |
. . . . . . . . . . . . 13
⊢ (𝑣 = 𝑏 → {𝑣} = {𝑏}) |
57 | 56 | difeq2d 4057 |
. . . . . . . . . . . 12
⊢ (𝑣 = 𝑏 → ({𝑎, 𝑏} ∖ {𝑣}) = ({𝑎, 𝑏} ∖ {𝑏})) |
58 | | oveq2 7283 |
. . . . . . . . . . . . 13
⊢ (𝑣 = 𝑏 → (𝐺 NeighbVtx 𝑣) = (𝐺 NeighbVtx 𝑏)) |
59 | 58 | eleq2d 2824 |
. . . . . . . . . . . 12
⊢ (𝑣 = 𝑏 → (𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ 𝑛 ∈ (𝐺 NeighbVtx 𝑏))) |
60 | 57, 59 | raleqbidv 3336 |
. . . . . . . . . . 11
⊢ (𝑣 = 𝑏 → (∀𝑛 ∈ ({𝑎, 𝑏} ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ ∀𝑛 ∈ ({𝑎, 𝑏} ∖ {𝑏})𝑛 ∈ (𝐺 NeighbVtx 𝑏))) |
61 | 37, 31, 55, 60 | ralpr 4636 |
. . . . . . . . . 10
⊢
(∀𝑣 ∈
{𝑎, 𝑏}∀𝑛 ∈ ({𝑎, 𝑏} ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ (∀𝑛 ∈ ({𝑎, 𝑏} ∖ {𝑎})𝑛 ∈ (𝐺 NeighbVtx 𝑎) ∧ ∀𝑛 ∈ ({𝑎, 𝑏} ∖ {𝑏})𝑛 ∈ (𝐺 NeighbVtx 𝑏))) |
62 | 50, 61 | bitrdi 287 |
. . . . . . . . 9
⊢ (𝑉 = {𝑎, 𝑏} → (∀𝑣 ∈ 𝑉 ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ (∀𝑛 ∈ ({𝑎, 𝑏} ∖ {𝑎})𝑛 ∈ (𝐺 NeighbVtx 𝑎) ∧ ∀𝑛 ∈ ({𝑎, 𝑏} ∖ {𝑏})𝑛 ∈ (𝐺 NeighbVtx 𝑏)))) |
63 | 46, 62 | imbi12d 345 |
. . . . . . . 8
⊢ (𝑉 = {𝑎, 𝑏} → ((𝑉 ∈ 𝐸 → ∀𝑣 ∈ 𝑉 ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)) ↔ ({𝑎, 𝑏} ∈ 𝐸 → (∀𝑛 ∈ ({𝑎, 𝑏} ∖ {𝑎})𝑛 ∈ (𝐺 NeighbVtx 𝑎) ∧ ∀𝑛 ∈ ({𝑎, 𝑏} ∖ {𝑏})𝑛 ∈ (𝐺 NeighbVtx 𝑏))))) |
64 | 63 | adantl 482 |
. . . . . . 7
⊢ ((𝑎 ≠ 𝑏 ∧ 𝑉 = {𝑎, 𝑏}) → ((𝑉 ∈ 𝐸 → ∀𝑣 ∈ 𝑉 ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)) ↔ ({𝑎, 𝑏} ∈ 𝐸 → (∀𝑛 ∈ ({𝑎, 𝑏} ∖ {𝑎})𝑛 ∈ (𝐺 NeighbVtx 𝑎) ∧ ∀𝑛 ∈ ({𝑎, 𝑏} ∖ {𝑏})𝑛 ∈ (𝐺 NeighbVtx 𝑏))))) |
65 | 64 | adantl 482 |
. . . . . 6
⊢ (((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑎 ≠ 𝑏 ∧ 𝑉 = {𝑎, 𝑏})) → ((𝑉 ∈ 𝐸 → ∀𝑣 ∈ 𝑉 ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)) ↔ ({𝑎, 𝑏} ∈ 𝐸 → (∀𝑛 ∈ ({𝑎, 𝑏} ∖ {𝑎})𝑛 ∈ (𝐺 NeighbVtx 𝑎) ∧ ∀𝑛 ∈ ({𝑎, 𝑏} ∖ {𝑏})𝑛 ∈ (𝐺 NeighbVtx 𝑏))))) |
66 | 45, 65 | mpbird 256 |
. . . . 5
⊢ (((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑎 ≠ 𝑏 ∧ 𝑉 = {𝑎, 𝑏})) → (𝑉 ∈ 𝐸 → ∀𝑣 ∈ 𝑉 ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣))) |
67 | 66 | ex 413 |
. . . 4
⊢ ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → ((𝑎 ≠ 𝑏 ∧ 𝑉 = {𝑎, 𝑏}) → (𝑉 ∈ 𝐸 → ∀𝑣 ∈ 𝑉 ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)))) |
68 | 67 | rexlimivv 3221 |
. . 3
⊢
(∃𝑎 ∈
𝑉 ∃𝑏 ∈ 𝑉 (𝑎 ≠ 𝑏 ∧ 𝑉 = {𝑎, 𝑏}) → (𝑉 ∈ 𝐸 → ∀𝑣 ∈ 𝑉 ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣))) |
69 | 4, 68 | sylbi 216 |
. 2
⊢
((♯‘𝑉) =
2 → (𝑉 ∈ 𝐸 → ∀𝑣 ∈ 𝑉 ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣))) |
70 | 69 | imp 407 |
1
⊢
(((♯‘𝑉)
= 2 ∧ 𝑉 ∈ 𝐸) → ∀𝑣 ∈ 𝑉 ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)) |