MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difprsn1 Structured version   Visualization version   GIF version

Theorem difprsn1 4733
Description: Removal of a singleton from an unordered pair. (Contributed by Thierry Arnoux, 4-Feb-2017.)
Assertion
Ref Expression
difprsn1 (𝐴𝐵 → ({𝐴, 𝐵} ∖ {𝐴}) = {𝐵})

Proof of Theorem difprsn1
StepHypRef Expression
1 necom 2997 . 2 (𝐵𝐴𝐴𝐵)
2 df-pr 4564 . . . . . 6 {𝐴, 𝐵} = ({𝐴} ∪ {𝐵})
32equncomi 4089 . . . . 5 {𝐴, 𝐵} = ({𝐵} ∪ {𝐴})
43difeq1i 4053 . . . 4 ({𝐴, 𝐵} ∖ {𝐴}) = (({𝐵} ∪ {𝐴}) ∖ {𝐴})
5 difun2 4414 . . . 4 (({𝐵} ∪ {𝐴}) ∖ {𝐴}) = ({𝐵} ∖ {𝐴})
64, 5eqtri 2766 . . 3 ({𝐴, 𝐵} ∖ {𝐴}) = ({𝐵} ∖ {𝐴})
7 disjsn2 4648 . . . 4 (𝐵𝐴 → ({𝐵} ∩ {𝐴}) = ∅)
8 disj3 4387 . . . 4 (({𝐵} ∩ {𝐴}) = ∅ ↔ {𝐵} = ({𝐵} ∖ {𝐴}))
97, 8sylib 217 . . 3 (𝐵𝐴 → {𝐵} = ({𝐵} ∖ {𝐴}))
106, 9eqtr4id 2797 . 2 (𝐵𝐴 → ({𝐴, 𝐵} ∖ {𝐴}) = {𝐵})
111, 10sylbir 234 1 (𝐴𝐵 → ({𝐴, 𝐵} ∖ {𝐴}) = {𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wne 2943  cdif 3884  cun 3885  cin 3886  c0 4256  {csn 4561  {cpr 4563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ne 2944  df-ral 3069  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-nul 4257  df-sn 4562  df-pr 4564
This theorem is referenced by:  difprsn2  4734  f12dfv  7145  pmtrprfval  19095  nbgr2vtx1edg  27717  nbuhgr2vtx1edgb  27719  nfrgr2v  28636  mptprop  31031  cycpm2tr  31386  eulerpartlemgf  32346  coinflippvt  32451  ldepsnlinc  45849
  Copyright terms: Public domain W3C validator