MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difprsn1 Structured version   Visualization version   GIF version

Theorem difprsn1 4751
Description: Removal of a singleton from an unordered pair. (Contributed by Thierry Arnoux, 4-Feb-2017.)
Assertion
Ref Expression
difprsn1 (𝐴𝐵 → ({𝐴, 𝐵} ∖ {𝐴}) = {𝐵})

Proof of Theorem difprsn1
StepHypRef Expression
1 necom 2982 . 2 (𝐵𝐴𝐴𝐵)
2 df-pr 4578 . . . . . 6 {𝐴, 𝐵} = ({𝐴} ∪ {𝐵})
32equncomi 4109 . . . . 5 {𝐴, 𝐵} = ({𝐵} ∪ {𝐴})
43difeq1i 4071 . . . 4 ({𝐴, 𝐵} ∖ {𝐴}) = (({𝐵} ∪ {𝐴}) ∖ {𝐴})
5 difun2 4430 . . . 4 (({𝐵} ∪ {𝐴}) ∖ {𝐴}) = ({𝐵} ∖ {𝐴})
64, 5eqtri 2756 . . 3 ({𝐴, 𝐵} ∖ {𝐴}) = ({𝐵} ∖ {𝐴})
7 disjsn2 4664 . . . 4 (𝐵𝐴 → ({𝐵} ∩ {𝐴}) = ∅)
8 disj3 4403 . . . 4 (({𝐵} ∩ {𝐴}) = ∅ ↔ {𝐵} = ({𝐵} ∖ {𝐴}))
97, 8sylib 218 . . 3 (𝐵𝐴 → {𝐵} = ({𝐵} ∖ {𝐴}))
106, 9eqtr4id 2787 . 2 (𝐵𝐴 → ({𝐴, 𝐵} ∖ {𝐴}) = {𝐵})
111, 10sylbir 235 1 (𝐴𝐵 → ({𝐴, 𝐵} ∖ {𝐴}) = {𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wne 2929  cdif 3895  cun 3896  cin 3897  c0 4282  {csn 4575  {cpr 4577
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2930  df-ral 3049  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-nul 4283  df-sn 4576  df-pr 4578
This theorem is referenced by:  difprsn2  4752  f12dfv  7213  pmtrprfval  19401  nbgr2vtx1edg  29330  nbuhgr2vtx1edgb  29332  nfrgr2v  30254  mptprop  32683  indfsid  32857  cycpm2tr  33095  eulerpartlemgf  34413  coinflippvt  34519  ldepsnlinc  48633
  Copyright terms: Public domain W3C validator