Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > difprsn1 | Structured version Visualization version GIF version |
Description: Removal of a singleton from an unordered pair. (Contributed by Thierry Arnoux, 4-Feb-2017.) |
Ref | Expression |
---|---|
difprsn1 | ⊢ (𝐴 ≠ 𝐵 → ({𝐴, 𝐵} ∖ {𝐴}) = {𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necom 2997 | . 2 ⊢ (𝐵 ≠ 𝐴 ↔ 𝐴 ≠ 𝐵) | |
2 | df-pr 4564 | . . . . . 6 ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | |
3 | 2 | equncomi 4089 | . . . . 5 ⊢ {𝐴, 𝐵} = ({𝐵} ∪ {𝐴}) |
4 | 3 | difeq1i 4053 | . . . 4 ⊢ ({𝐴, 𝐵} ∖ {𝐴}) = (({𝐵} ∪ {𝐴}) ∖ {𝐴}) |
5 | difun2 4414 | . . . 4 ⊢ (({𝐵} ∪ {𝐴}) ∖ {𝐴}) = ({𝐵} ∖ {𝐴}) | |
6 | 4, 5 | eqtri 2766 | . . 3 ⊢ ({𝐴, 𝐵} ∖ {𝐴}) = ({𝐵} ∖ {𝐴}) |
7 | disjsn2 4648 | . . . 4 ⊢ (𝐵 ≠ 𝐴 → ({𝐵} ∩ {𝐴}) = ∅) | |
8 | disj3 4387 | . . . 4 ⊢ (({𝐵} ∩ {𝐴}) = ∅ ↔ {𝐵} = ({𝐵} ∖ {𝐴})) | |
9 | 7, 8 | sylib 217 | . . 3 ⊢ (𝐵 ≠ 𝐴 → {𝐵} = ({𝐵} ∖ {𝐴})) |
10 | 6, 9 | eqtr4id 2797 | . 2 ⊢ (𝐵 ≠ 𝐴 → ({𝐴, 𝐵} ∖ {𝐴}) = {𝐵}) |
11 | 1, 10 | sylbir 234 | 1 ⊢ (𝐴 ≠ 𝐵 → ({𝐴, 𝐵} ∖ {𝐴}) = {𝐵}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ≠ wne 2943 ∖ cdif 3884 ∪ cun 3885 ∩ cin 3886 ∅c0 4256 {csn 4561 {cpr 4563 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-ral 3069 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-nul 4257 df-sn 4562 df-pr 4564 |
This theorem is referenced by: difprsn2 4734 f12dfv 7145 pmtrprfval 19095 nbgr2vtx1edg 27717 nbuhgr2vtx1edgb 27719 nfrgr2v 28636 mptprop 31031 cycpm2tr 31386 eulerpartlemgf 32346 coinflippvt 32451 ldepsnlinc 45849 |
Copyright terms: Public domain | W3C validator |