| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > difprsn1 | Structured version Visualization version GIF version | ||
| Description: Removal of a singleton from an unordered pair. (Contributed by Thierry Arnoux, 4-Feb-2017.) |
| Ref | Expression |
|---|---|
| difprsn1 | ⊢ (𝐴 ≠ 𝐵 → ({𝐴, 𝐵} ∖ {𝐴}) = {𝐵}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necom 2981 | . 2 ⊢ (𝐵 ≠ 𝐴 ↔ 𝐴 ≠ 𝐵) | |
| 2 | df-pr 4579 | . . . . . 6 ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | |
| 3 | 2 | equncomi 4110 | . . . . 5 ⊢ {𝐴, 𝐵} = ({𝐵} ∪ {𝐴}) |
| 4 | 3 | difeq1i 4072 | . . . 4 ⊢ ({𝐴, 𝐵} ∖ {𝐴}) = (({𝐵} ∪ {𝐴}) ∖ {𝐴}) |
| 5 | difun2 4431 | . . . 4 ⊢ (({𝐵} ∪ {𝐴}) ∖ {𝐴}) = ({𝐵} ∖ {𝐴}) | |
| 6 | 4, 5 | eqtri 2754 | . . 3 ⊢ ({𝐴, 𝐵} ∖ {𝐴}) = ({𝐵} ∖ {𝐴}) |
| 7 | disjsn2 4665 | . . . 4 ⊢ (𝐵 ≠ 𝐴 → ({𝐵} ∩ {𝐴}) = ∅) | |
| 8 | disj3 4404 | . . . 4 ⊢ (({𝐵} ∩ {𝐴}) = ∅ ↔ {𝐵} = ({𝐵} ∖ {𝐴})) | |
| 9 | 7, 8 | sylib 218 | . . 3 ⊢ (𝐵 ≠ 𝐴 → {𝐵} = ({𝐵} ∖ {𝐴})) |
| 10 | 6, 9 | eqtr4id 2785 | . 2 ⊢ (𝐵 ≠ 𝐴 → ({𝐴, 𝐵} ∖ {𝐴}) = {𝐵}) |
| 11 | 1, 10 | sylbir 235 | 1 ⊢ (𝐴 ≠ 𝐵 → ({𝐴, 𝐵} ∖ {𝐴}) = {𝐵}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ≠ wne 2928 ∖ cdif 3899 ∪ cun 3900 ∩ cin 3901 ∅c0 4283 {csn 4576 {cpr 4578 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-nul 4284 df-sn 4577 df-pr 4579 |
| This theorem is referenced by: difprsn2 4753 f12dfv 7207 pmtrprfval 19397 nbgr2vtx1edg 29326 nbuhgr2vtx1edgb 29328 nfrgr2v 30247 mptprop 32674 indfsid 32845 cycpm2tr 33083 eulerpartlemgf 34387 coinflippvt 34493 ldepsnlinc 48539 |
| Copyright terms: Public domain | W3C validator |