| Step | Hyp | Ref
| Expression |
| 1 | | neirr 2949 |
. . . . . . . . . . . . . . . . . 18
⊢ ¬
𝐴 ≠ 𝐴 |
| 2 | | eqid 2737 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(Edg‘𝐺) =
(Edg‘𝐺) |
| 3 | 2 | usgredgne 29223 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐺 ∈ USGraph ∧ {𝐴, 𝐴} ∈ (Edg‘𝐺)) → 𝐴 ≠ 𝐴) |
| 4 | 3 | ex 412 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐺 ∈ USGraph → ({𝐴, 𝐴} ∈ (Edg‘𝐺) → 𝐴 ≠ 𝐴)) |
| 5 | 1, 4 | mtoi 199 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐺 ∈ USGraph → ¬
{𝐴, 𝐴} ∈ (Edg‘𝐺)) |
| 6 | 5 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ 𝐺 ∈ USGraph) → ¬ {𝐴, 𝐴} ∈ (Edg‘𝐺)) |
| 7 | 6 | intnanrd 489 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ 𝐺 ∈ USGraph) → ¬ ({𝐴, 𝐴} ∈ (Edg‘𝐺) ∧ {𝐴, 𝐵} ∈ (Edg‘𝐺))) |
| 8 | | prex 5437 |
. . . . . . . . . . . . . . . 16
⊢ {𝐴, 𝐴} ∈ V |
| 9 | | prex 5437 |
. . . . . . . . . . . . . . . 16
⊢ {𝐴, 𝐵} ∈ V |
| 10 | 8, 9 | prss 4820 |
. . . . . . . . . . . . . . 15
⊢ (({𝐴, 𝐴} ∈ (Edg‘𝐺) ∧ {𝐴, 𝐵} ∈ (Edg‘𝐺)) ↔ {{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ (Edg‘𝐺)) |
| 11 | 7, 10 | sylnib 328 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ 𝐺 ∈ USGraph) → ¬ {{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ (Edg‘𝐺)) |
| 12 | | neirr 2949 |
. . . . . . . . . . . . . . . . . 18
⊢ ¬
𝐵 ≠ 𝐵 |
| 13 | 2 | usgredgne 29223 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐺 ∈ USGraph ∧ {𝐵, 𝐵} ∈ (Edg‘𝐺)) → 𝐵 ≠ 𝐵) |
| 14 | 13 | ex 412 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐺 ∈ USGraph → ({𝐵, 𝐵} ∈ (Edg‘𝐺) → 𝐵 ≠ 𝐵)) |
| 15 | 12, 14 | mtoi 199 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐺 ∈ USGraph → ¬
{𝐵, 𝐵} ∈ (Edg‘𝐺)) |
| 16 | 15 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ 𝐺 ∈ USGraph) → ¬ {𝐵, 𝐵} ∈ (Edg‘𝐺)) |
| 17 | 16 | intnand 488 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ 𝐺 ∈ USGraph) → ¬ ({𝐵, 𝐴} ∈ (Edg‘𝐺) ∧ {𝐵, 𝐵} ∈ (Edg‘𝐺))) |
| 18 | | prex 5437 |
. . . . . . . . . . . . . . . 16
⊢ {𝐵, 𝐴} ∈ V |
| 19 | | prex 5437 |
. . . . . . . . . . . . . . . 16
⊢ {𝐵, 𝐵} ∈ V |
| 20 | 18, 19 | prss 4820 |
. . . . . . . . . . . . . . 15
⊢ (({𝐵, 𝐴} ∈ (Edg‘𝐺) ∧ {𝐵, 𝐵} ∈ (Edg‘𝐺)) ↔ {{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ (Edg‘𝐺)) |
| 21 | 17, 20 | sylnib 328 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ 𝐺 ∈ USGraph) → ¬ {{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ (Edg‘𝐺)) |
| 22 | | ioran 986 |
. . . . . . . . . . . . . 14
⊢ (¬
({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ (Edg‘𝐺) ∨ {{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ (Edg‘𝐺)) ↔ (¬ {{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ (Edg‘𝐺) ∧ ¬ {{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ (Edg‘𝐺))) |
| 23 | 11, 21, 22 | sylanbrc 583 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ 𝐺 ∈ USGraph) → ¬ ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ (Edg‘𝐺) ∨ {{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ (Edg‘𝐺))) |
| 24 | | preq1 4733 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝐴 → {𝑥, 𝐴} = {𝐴, 𝐴}) |
| 25 | | preq1 4733 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝐴 → {𝑥, 𝐵} = {𝐴, 𝐵}) |
| 26 | 24, 25 | preq12d 4741 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝐴 → {{𝑥, 𝐴}, {𝑥, 𝐵}} = {{𝐴, 𝐴}, {𝐴, 𝐵}}) |
| 27 | 26 | sseq1d 4015 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝐴 → ({{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ (Edg‘𝐺) ↔ {{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ (Edg‘𝐺))) |
| 28 | | preq1 4733 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝐵 → {𝑥, 𝐴} = {𝐵, 𝐴}) |
| 29 | | preq1 4733 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝐵 → {𝑥, 𝐵} = {𝐵, 𝐵}) |
| 30 | 28, 29 | preq12d 4741 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝐵 → {{𝑥, 𝐴}, {𝑥, 𝐵}} = {{𝐵, 𝐴}, {𝐵, 𝐵}}) |
| 31 | 30 | sseq1d 4015 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝐵 → ({{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ (Edg‘𝐺) ↔ {{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ (Edg‘𝐺))) |
| 32 | 27, 31 | rexprg 4697 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌) → (∃𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ (Edg‘𝐺) ↔ ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ (Edg‘𝐺) ∨ {{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ (Edg‘𝐺)))) |
| 33 | 32 | 3adant3 1133 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) → (∃𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ (Edg‘𝐺) ↔ ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ (Edg‘𝐺) ∨ {{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ (Edg‘𝐺)))) |
| 34 | 33 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ 𝐺 ∈ USGraph) → (∃𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ (Edg‘𝐺) ↔ ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ (Edg‘𝐺) ∨ {{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ (Edg‘𝐺)))) |
| 35 | 23, 34 | mtbird 325 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ 𝐺 ∈ USGraph) → ¬ ∃𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ (Edg‘𝐺)) |
| 36 | | reurex 3384 |
. . . . . . . . . . . 12
⊢
(∃!𝑥 ∈
{𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ (Edg‘𝐺) → ∃𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ (Edg‘𝐺)) |
| 37 | 35, 36 | nsyl 140 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ 𝐺 ∈ USGraph) → ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ (Edg‘𝐺)) |
| 38 | 37 | orcd 874 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ 𝐺 ∈ USGraph) → (¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ (Edg‘𝐺) ∨ ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝐴}} ⊆ (Edg‘𝐺))) |
| 39 | | rexnal 3100 |
. . . . . . . . . . . . . 14
⊢
(∃𝑙 ∈
({𝐴, 𝐵} ∖ {𝐴}) ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ¬ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐴})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)) |
| 40 | 39 | bicomi 224 |
. . . . . . . . . . . . 13
⊢ (¬
∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐴})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ∃𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐴}) ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)) |
| 41 | 40 | a1i 11 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ 𝐺 ∈ USGraph) → (¬ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐴})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ∃𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐴}) ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺))) |
| 42 | | difprsn1 4800 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ≠ 𝐵 → ({𝐴, 𝐵} ∖ {𝐴}) = {𝐵}) |
| 43 | 42 | 3ad2ant3 1136 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) → ({𝐴, 𝐵} ∖ {𝐴}) = {𝐵}) |
| 44 | 43 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ 𝐺 ∈ USGraph) → ({𝐴, 𝐵} ∖ {𝐴}) = {𝐵}) |
| 45 | 44 | rexeqdv 3327 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ 𝐺 ∈ USGraph) → (∃𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐴}) ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ∃𝑙 ∈ {𝐵} ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺))) |
| 46 | | preq2 4734 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑙 = 𝐵 → {𝑥, 𝑙} = {𝑥, 𝐵}) |
| 47 | 46 | preq2d 4740 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑙 = 𝐵 → {{𝑥, 𝐴}, {𝑥, 𝑙}} = {{𝑥, 𝐴}, {𝑥, 𝐵}}) |
| 48 | 47 | sseq1d 4015 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑙 = 𝐵 → ({{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ (Edg‘𝐺))) |
| 49 | 48 | reubidv 3398 |
. . . . . . . . . . . . . . . 16
⊢ (𝑙 = 𝐵 → (∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ (Edg‘𝐺))) |
| 50 | 49 | notbid 318 |
. . . . . . . . . . . . . . 15
⊢ (𝑙 = 𝐵 → (¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ (Edg‘𝐺))) |
| 51 | 50 | rexsng 4676 |
. . . . . . . . . . . . . 14
⊢ (𝐵 ∈ 𝑌 → (∃𝑙 ∈ {𝐵} ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ (Edg‘𝐺))) |
| 52 | 51 | 3ad2ant2 1135 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) → (∃𝑙 ∈ {𝐵} ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ (Edg‘𝐺))) |
| 53 | 52 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ 𝐺 ∈ USGraph) → (∃𝑙 ∈ {𝐵} ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ (Edg‘𝐺))) |
| 54 | 41, 45, 53 | 3bitrd 305 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ 𝐺 ∈ USGraph) → (¬ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐴})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ (Edg‘𝐺))) |
| 55 | | rexnal 3100 |
. . . . . . . . . . . . . 14
⊢
(∃𝑙 ∈
({𝐴, 𝐵} ∖ {𝐵}) ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ¬ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐵})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)) |
| 56 | 55 | bicomi 224 |
. . . . . . . . . . . . 13
⊢ (¬
∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐵})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ∃𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐵}) ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)) |
| 57 | 56 | a1i 11 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ 𝐺 ∈ USGraph) → (¬ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐵})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ∃𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐵}) ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺))) |
| 58 | | difprsn2 4801 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ≠ 𝐵 → ({𝐴, 𝐵} ∖ {𝐵}) = {𝐴}) |
| 59 | 58 | 3ad2ant3 1136 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) → ({𝐴, 𝐵} ∖ {𝐵}) = {𝐴}) |
| 60 | 59 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ 𝐺 ∈ USGraph) → ({𝐴, 𝐵} ∖ {𝐵}) = {𝐴}) |
| 61 | 60 | rexeqdv 3327 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ 𝐺 ∈ USGraph) → (∃𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐵}) ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ∃𝑙 ∈ {𝐴} ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺))) |
| 62 | | preq2 4734 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑙 = 𝐴 → {𝑥, 𝑙} = {𝑥, 𝐴}) |
| 63 | 62 | preq2d 4740 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑙 = 𝐴 → {{𝑥, 𝐵}, {𝑥, 𝑙}} = {{𝑥, 𝐵}, {𝑥, 𝐴}}) |
| 64 | 63 | sseq1d 4015 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑙 = 𝐴 → ({{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ {{𝑥, 𝐵}, {𝑥, 𝐴}} ⊆ (Edg‘𝐺))) |
| 65 | 64 | reubidv 3398 |
. . . . . . . . . . . . . . . 16
⊢ (𝑙 = 𝐴 → (∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝐴}} ⊆ (Edg‘𝐺))) |
| 66 | 65 | notbid 318 |
. . . . . . . . . . . . . . 15
⊢ (𝑙 = 𝐴 → (¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝐴}} ⊆ (Edg‘𝐺))) |
| 67 | 66 | rexsng 4676 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ 𝑋 → (∃𝑙 ∈ {𝐴} ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝐴}} ⊆ (Edg‘𝐺))) |
| 68 | 67 | 3ad2ant1 1134 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) → (∃𝑙 ∈ {𝐴} ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝐴}} ⊆ (Edg‘𝐺))) |
| 69 | 68 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ 𝐺 ∈ USGraph) → (∃𝑙 ∈ {𝐴} ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝐴}} ⊆ (Edg‘𝐺))) |
| 70 | 57, 61, 69 | 3bitrd 305 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ 𝐺 ∈ USGraph) → (¬ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐵})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝐴}} ⊆ (Edg‘𝐺))) |
| 71 | 54, 70 | orbi12d 919 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ 𝐺 ∈ USGraph) → ((¬
∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐴})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ∨ ¬ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐵})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)) ↔ (¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ (Edg‘𝐺) ∨ ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝐴}} ⊆ (Edg‘𝐺)))) |
| 72 | 38, 71 | mpbird 257 |
. . . . . . . . 9
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ 𝐺 ∈ USGraph) → (¬ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐴})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ∨ ¬ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐵})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺))) |
| 73 | | sneq 4636 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝐴 → {𝑘} = {𝐴}) |
| 74 | 73 | difeq2d 4126 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝐴 → ({𝐴, 𝐵} ∖ {𝑘}) = ({𝐴, 𝐵} ∖ {𝐴})) |
| 75 | | preq2 4734 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 𝐴 → {𝑥, 𝑘} = {𝑥, 𝐴}) |
| 76 | 75 | preq1d 4739 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 𝐴 → {{𝑥, 𝑘}, {𝑥, 𝑙}} = {{𝑥, 𝐴}, {𝑥, 𝑙}}) |
| 77 | 76 | sseq1d 4015 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝐴 → ({{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ {{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺))) |
| 78 | 77 | reubidv 3398 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝐴 → (∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺))) |
| 79 | 74, 78 | raleqbidv 3346 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝐴 → (∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝑘})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐴})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺))) |
| 80 | 79 | notbid 318 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝐴 → (¬ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝑘})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ¬ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐴})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺))) |
| 81 | | sneq 4636 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝐵 → {𝑘} = {𝐵}) |
| 82 | 81 | difeq2d 4126 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝐵 → ({𝐴, 𝐵} ∖ {𝑘}) = ({𝐴, 𝐵} ∖ {𝐵})) |
| 83 | | preq2 4734 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 𝐵 → {𝑥, 𝑘} = {𝑥, 𝐵}) |
| 84 | 83 | preq1d 4739 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 𝐵 → {{𝑥, 𝑘}, {𝑥, 𝑙}} = {{𝑥, 𝐵}, {𝑥, 𝑙}}) |
| 85 | 84 | sseq1d 4015 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝐵 → ({{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺))) |
| 86 | 85 | reubidv 3398 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝐵 → (∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺))) |
| 87 | 82, 86 | raleqbidv 3346 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝐵 → (∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝑘})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐵})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺))) |
| 88 | 87 | notbid 318 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝐵 → (¬ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝑘})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ¬ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐵})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺))) |
| 89 | 80, 88 | rexprg 4697 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌) → (∃𝑘 ∈ {𝐴, 𝐵} ¬ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝑘})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ (¬ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐴})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ∨ ¬ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐵})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))) |
| 90 | 89 | 3adant3 1133 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) → (∃𝑘 ∈ {𝐴, 𝐵} ¬ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝑘})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ (¬ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐴})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ∨ ¬ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐵})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))) |
| 91 | 90 | adantr 480 |
. . . . . . . . 9
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ 𝐺 ∈ USGraph) → (∃𝑘 ∈ {𝐴, 𝐵} ¬ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝑘})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ (¬ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐴})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ∨ ¬ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐵})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))) |
| 92 | 72, 91 | mpbird 257 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ 𝐺 ∈ USGraph) → ∃𝑘 ∈ {𝐴, 𝐵} ¬ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝑘})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)) |
| 93 | | rexnal 3100 |
. . . . . . . 8
⊢
(∃𝑘 ∈
{𝐴, 𝐵} ¬ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝑘})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ¬ ∀𝑘 ∈ {𝐴, 𝐵}∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝑘})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)) |
| 94 | 92, 93 | sylib 218 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ 𝐺 ∈ USGraph) → ¬ ∀𝑘 ∈ {𝐴, 𝐵}∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝑘})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)) |
| 95 | 94 | intnand 488 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ 𝐺 ∈ USGraph) → ¬ (𝐺 ∈ USGraph ∧
∀𝑘 ∈ {𝐴, 𝐵}∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝑘})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺))) |
| 96 | 95 | adantlr 715 |
. . . . 5
⊢ ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ (Vtx‘𝐺) = {𝐴, 𝐵}) ∧ 𝐺 ∈ USGraph) → ¬ (𝐺 ∈ USGraph ∧
∀𝑘 ∈ {𝐴, 𝐵}∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝑘})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺))) |
| 97 | | id 22 |
. . . . . . . . . 10
⊢
((Vtx‘𝐺) =
{𝐴, 𝐵} → (Vtx‘𝐺) = {𝐴, 𝐵}) |
| 98 | | difeq1 4119 |
. . . . . . . . . . 11
⊢
((Vtx‘𝐺) =
{𝐴, 𝐵} → ((Vtx‘𝐺) ∖ {𝑘}) = ({𝐴, 𝐵} ∖ {𝑘})) |
| 99 | | reueq1 3417 |
. . . . . . . . . . 11
⊢
((Vtx‘𝐺) =
{𝐴, 𝐵} → (∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺))) |
| 100 | 98, 99 | raleqbidv 3346 |
. . . . . . . . . 10
⊢
((Vtx‘𝐺) =
{𝐴, 𝐵} → (∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝑘})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺))) |
| 101 | 97, 100 | raleqbidv 3346 |
. . . . . . . . 9
⊢
((Vtx‘𝐺) =
{𝐴, 𝐵} → (∀𝑘 ∈ (Vtx‘𝐺)∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ∀𝑘 ∈ {𝐴, 𝐵}∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝑘})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺))) |
| 102 | 101 | anbi2d 630 |
. . . . . . . 8
⊢
((Vtx‘𝐺) =
{𝐴, 𝐵} → ((𝐺 ∈ USGraph ∧ ∀𝑘 ∈ (Vtx‘𝐺)∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)) ↔ (𝐺 ∈ USGraph ∧ ∀𝑘 ∈ {𝐴, 𝐵}∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝑘})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))) |
| 103 | 102 | notbid 318 |
. . . . . . 7
⊢
((Vtx‘𝐺) =
{𝐴, 𝐵} → (¬ (𝐺 ∈ USGraph ∧ ∀𝑘 ∈ (Vtx‘𝐺)∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)) ↔ ¬ (𝐺 ∈ USGraph ∧ ∀𝑘 ∈ {𝐴, 𝐵}∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝑘})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))) |
| 104 | 103 | adantl 481 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ (Vtx‘𝐺) = {𝐴, 𝐵}) → (¬ (𝐺 ∈ USGraph ∧ ∀𝑘 ∈ (Vtx‘𝐺)∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)) ↔ ¬ (𝐺 ∈ USGraph ∧ ∀𝑘 ∈ {𝐴, 𝐵}∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝑘})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))) |
| 105 | 104 | adantr 480 |
. . . . 5
⊢ ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ (Vtx‘𝐺) = {𝐴, 𝐵}) ∧ 𝐺 ∈ USGraph) → (¬ (𝐺 ∈ USGraph ∧
∀𝑘 ∈
(Vtx‘𝐺)∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)) ↔ ¬ (𝐺 ∈ USGraph ∧ ∀𝑘 ∈ {𝐴, 𝐵}∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝑘})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))) |
| 106 | 96, 105 | mpbird 257 |
. . . 4
⊢ ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ (Vtx‘𝐺) = {𝐴, 𝐵}) ∧ 𝐺 ∈ USGraph) → ¬ (𝐺 ∈ USGraph ∧
∀𝑘 ∈
(Vtx‘𝐺)∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺))) |
| 107 | | df-nel 3047 |
. . . . 5
⊢ (𝐺 ∉ FriendGraph ↔
¬ 𝐺 ∈ FriendGraph
) |
| 108 | | eqid 2737 |
. . . . . 6
⊢
(Vtx‘𝐺) =
(Vtx‘𝐺) |
| 109 | 108, 2 | isfrgr 30279 |
. . . . 5
⊢ (𝐺 ∈ FriendGraph ↔
(𝐺 ∈ USGraph ∧
∀𝑘 ∈
(Vtx‘𝐺)∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺))) |
| 110 | 107, 109 | xchbinx 334 |
. . . 4
⊢ (𝐺 ∉ FriendGraph ↔
¬ (𝐺 ∈ USGraph
∧ ∀𝑘 ∈
(Vtx‘𝐺)∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺))) |
| 111 | 106, 110 | sylibr 234 |
. . 3
⊢ ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ (Vtx‘𝐺) = {𝐴, 𝐵}) ∧ 𝐺 ∈ USGraph) → 𝐺 ∉ FriendGraph ) |
| 112 | 111 | expcom 413 |
. 2
⊢ (𝐺 ∈ USGraph → (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ (Vtx‘𝐺) = {𝐴, 𝐵}) → 𝐺 ∉ FriendGraph )) |
| 113 | | frgrusgr 30280 |
. . . . 5
⊢ (𝐺 ∈ FriendGraph → 𝐺 ∈
USGraph) |
| 114 | 113 | con3i 154 |
. . . 4
⊢ (¬
𝐺 ∈ USGraph →
¬ 𝐺 ∈ FriendGraph
) |
| 115 | 114, 107 | sylibr 234 |
. . 3
⊢ (¬
𝐺 ∈ USGraph →
𝐺 ∉ FriendGraph
) |
| 116 | 115 | a1d 25 |
. 2
⊢ (¬
𝐺 ∈ USGraph →
(((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ (Vtx‘𝐺) = {𝐴, 𝐵}) → 𝐺 ∉ FriendGraph )) |
| 117 | 112, 116 | pm2.61i 182 |
1
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ (Vtx‘𝐺) = {𝐴, 𝐵}) → 𝐺 ∉ FriendGraph ) |