MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfrgr2v Structured version   Visualization version   GIF version

Theorem nfrgr2v 30081
Description: Any graph with two (different) vertices is not a friendship graph. (Contributed by Alexander van der Vekens, 30-Sep-2017.) (Proof shortened by Alexander van der Vekens, 13-Sep-2018.) (Revised by AV, 29-Mar-2021.)
Assertion
Ref Expression
nfrgr2v (((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (Vtx‘𝐺) = {𝐴, 𝐵}) → 𝐺 ∉ FriendGraph )

Proof of Theorem nfrgr2v
Dummy variables 𝑘 𝑙 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 neirr 2946 . . . . . . . . . . . . . . . . . 18 ¬ 𝐴𝐴
2 eqid 2728 . . . . . . . . . . . . . . . . . . . 20 (Edg‘𝐺) = (Edg‘𝐺)
32usgredgne 29018 . . . . . . . . . . . . . . . . . . 19 ((𝐺 ∈ USGraph ∧ {𝐴, 𝐴} ∈ (Edg‘𝐺)) → 𝐴𝐴)
43ex 412 . . . . . . . . . . . . . . . . . 18 (𝐺 ∈ USGraph → ({𝐴, 𝐴} ∈ (Edg‘𝐺) → 𝐴𝐴))
51, 4mtoi 198 . . . . . . . . . . . . . . . . 17 (𝐺 ∈ USGraph → ¬ {𝐴, 𝐴} ∈ (Edg‘𝐺))
65adantl 481 . . . . . . . . . . . . . . . 16 (((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ 𝐺 ∈ USGraph) → ¬ {𝐴, 𝐴} ∈ (Edg‘𝐺))
76intnanrd 489 . . . . . . . . . . . . . . 15 (((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ 𝐺 ∈ USGraph) → ¬ ({𝐴, 𝐴} ∈ (Edg‘𝐺) ∧ {𝐴, 𝐵} ∈ (Edg‘𝐺)))
8 prex 5434 . . . . . . . . . . . . . . . 16 {𝐴, 𝐴} ∈ V
9 prex 5434 . . . . . . . . . . . . . . . 16 {𝐴, 𝐵} ∈ V
108, 9prss 4824 . . . . . . . . . . . . . . 15 (({𝐴, 𝐴} ∈ (Edg‘𝐺) ∧ {𝐴, 𝐵} ∈ (Edg‘𝐺)) ↔ {{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ (Edg‘𝐺))
117, 10sylnib 328 . . . . . . . . . . . . . 14 (((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ 𝐺 ∈ USGraph) → ¬ {{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ (Edg‘𝐺))
12 neirr 2946 . . . . . . . . . . . . . . . . . 18 ¬ 𝐵𝐵
132usgredgne 29018 . . . . . . . . . . . . . . . . . . 19 ((𝐺 ∈ USGraph ∧ {𝐵, 𝐵} ∈ (Edg‘𝐺)) → 𝐵𝐵)
1413ex 412 . . . . . . . . . . . . . . . . . 18 (𝐺 ∈ USGraph → ({𝐵, 𝐵} ∈ (Edg‘𝐺) → 𝐵𝐵))
1512, 14mtoi 198 . . . . . . . . . . . . . . . . 17 (𝐺 ∈ USGraph → ¬ {𝐵, 𝐵} ∈ (Edg‘𝐺))
1615adantl 481 . . . . . . . . . . . . . . . 16 (((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ 𝐺 ∈ USGraph) → ¬ {𝐵, 𝐵} ∈ (Edg‘𝐺))
1716intnand 488 . . . . . . . . . . . . . . 15 (((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ 𝐺 ∈ USGraph) → ¬ ({𝐵, 𝐴} ∈ (Edg‘𝐺) ∧ {𝐵, 𝐵} ∈ (Edg‘𝐺)))
18 prex 5434 . . . . . . . . . . . . . . . 16 {𝐵, 𝐴} ∈ V
19 prex 5434 . . . . . . . . . . . . . . . 16 {𝐵, 𝐵} ∈ V
2018, 19prss 4824 . . . . . . . . . . . . . . 15 (({𝐵, 𝐴} ∈ (Edg‘𝐺) ∧ {𝐵, 𝐵} ∈ (Edg‘𝐺)) ↔ {{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ (Edg‘𝐺))
2117, 20sylnib 328 . . . . . . . . . . . . . 14 (((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ 𝐺 ∈ USGraph) → ¬ {{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ (Edg‘𝐺))
22 ioran 982 . . . . . . . . . . . . . 14 (¬ ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ (Edg‘𝐺) ∨ {{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ (Edg‘𝐺)) ↔ (¬ {{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ (Edg‘𝐺) ∧ ¬ {{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ (Edg‘𝐺)))
2311, 21, 22sylanbrc 582 . . . . . . . . . . . . 13 (((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ 𝐺 ∈ USGraph) → ¬ ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ (Edg‘𝐺) ∨ {{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ (Edg‘𝐺)))
24 preq1 4738 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝐴 → {𝑥, 𝐴} = {𝐴, 𝐴})
25 preq1 4738 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝐴 → {𝑥, 𝐵} = {𝐴, 𝐵})
2624, 25preq12d 4746 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝐴 → {{𝑥, 𝐴}, {𝑥, 𝐵}} = {{𝐴, 𝐴}, {𝐴, 𝐵}})
2726sseq1d 4011 . . . . . . . . . . . . . . . 16 (𝑥 = 𝐴 → ({{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ (Edg‘𝐺) ↔ {{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ (Edg‘𝐺)))
28 preq1 4738 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝐵 → {𝑥, 𝐴} = {𝐵, 𝐴})
29 preq1 4738 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝐵 → {𝑥, 𝐵} = {𝐵, 𝐵})
3028, 29preq12d 4746 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝐵 → {{𝑥, 𝐴}, {𝑥, 𝐵}} = {{𝐵, 𝐴}, {𝐵, 𝐵}})
3130sseq1d 4011 . . . . . . . . . . . . . . . 16 (𝑥 = 𝐵 → ({{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ (Edg‘𝐺) ↔ {{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ (Edg‘𝐺)))
3227, 31rexprg 4701 . . . . . . . . . . . . . . 15 ((𝐴𝑋𝐵𝑌) → (∃𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ (Edg‘𝐺) ↔ ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ (Edg‘𝐺) ∨ {{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ (Edg‘𝐺))))
33323adant3 1130 . . . . . . . . . . . . . 14 ((𝐴𝑋𝐵𝑌𝐴𝐵) → (∃𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ (Edg‘𝐺) ↔ ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ (Edg‘𝐺) ∨ {{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ (Edg‘𝐺))))
3433adantr 480 . . . . . . . . . . . . 13 (((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ 𝐺 ∈ USGraph) → (∃𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ (Edg‘𝐺) ↔ ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ (Edg‘𝐺) ∨ {{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ (Edg‘𝐺))))
3523, 34mtbird 325 . . . . . . . . . . . 12 (((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ 𝐺 ∈ USGraph) → ¬ ∃𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ (Edg‘𝐺))
36 reurex 3377 . . . . . . . . . . . 12 (∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ (Edg‘𝐺) → ∃𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ (Edg‘𝐺))
3735, 36nsyl 140 . . . . . . . . . . 11 (((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ 𝐺 ∈ USGraph) → ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ (Edg‘𝐺))
3837orcd 872 . . . . . . . . . 10 (((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ 𝐺 ∈ USGraph) → (¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ (Edg‘𝐺) ∨ ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝐴}} ⊆ (Edg‘𝐺)))
39 rexnal 3097 . . . . . . . . . . . . . 14 (∃𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐴}) ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ¬ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐴})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺))
4039bicomi 223 . . . . . . . . . . . . 13 (¬ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐴})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ∃𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐴}) ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺))
4140a1i 11 . . . . . . . . . . . 12 (((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ 𝐺 ∈ USGraph) → (¬ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐴})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ∃𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐴}) ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))
42 difprsn1 4804 . . . . . . . . . . . . . . 15 (𝐴𝐵 → ({𝐴, 𝐵} ∖ {𝐴}) = {𝐵})
43423ad2ant3 1133 . . . . . . . . . . . . . 14 ((𝐴𝑋𝐵𝑌𝐴𝐵) → ({𝐴, 𝐵} ∖ {𝐴}) = {𝐵})
4443adantr 480 . . . . . . . . . . . . 13 (((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ 𝐺 ∈ USGraph) → ({𝐴, 𝐵} ∖ {𝐴}) = {𝐵})
4544rexeqdv 3323 . . . . . . . . . . . 12 (((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ 𝐺 ∈ USGraph) → (∃𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐴}) ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ∃𝑙 ∈ {𝐵} ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))
46 preq2 4739 . . . . . . . . . . . . . . . . . . 19 (𝑙 = 𝐵 → {𝑥, 𝑙} = {𝑥, 𝐵})
4746preq2d 4745 . . . . . . . . . . . . . . . . . 18 (𝑙 = 𝐵 → {{𝑥, 𝐴}, {𝑥, 𝑙}} = {{𝑥, 𝐴}, {𝑥, 𝐵}})
4847sseq1d 4011 . . . . . . . . . . . . . . . . 17 (𝑙 = 𝐵 → ({{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ (Edg‘𝐺)))
4948reubidv 3391 . . . . . . . . . . . . . . . 16 (𝑙 = 𝐵 → (∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ (Edg‘𝐺)))
5049notbid 318 . . . . . . . . . . . . . . 15 (𝑙 = 𝐵 → (¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ (Edg‘𝐺)))
5150rexsng 4679 . . . . . . . . . . . . . 14 (𝐵𝑌 → (∃𝑙 ∈ {𝐵} ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ (Edg‘𝐺)))
52513ad2ant2 1132 . . . . . . . . . . . . 13 ((𝐴𝑋𝐵𝑌𝐴𝐵) → (∃𝑙 ∈ {𝐵} ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ (Edg‘𝐺)))
5352adantr 480 . . . . . . . . . . . 12 (((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ 𝐺 ∈ USGraph) → (∃𝑙 ∈ {𝐵} ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ (Edg‘𝐺)))
5441, 45, 533bitrd 305 . . . . . . . . . . 11 (((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ 𝐺 ∈ USGraph) → (¬ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐴})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ (Edg‘𝐺)))
55 rexnal 3097 . . . . . . . . . . . . . 14 (∃𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐵}) ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ¬ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐵})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺))
5655bicomi 223 . . . . . . . . . . . . 13 (¬ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐵})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ∃𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐵}) ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺))
5756a1i 11 . . . . . . . . . . . 12 (((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ 𝐺 ∈ USGraph) → (¬ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐵})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ∃𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐵}) ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))
58 difprsn2 4805 . . . . . . . . . . . . . . 15 (𝐴𝐵 → ({𝐴, 𝐵} ∖ {𝐵}) = {𝐴})
59583ad2ant3 1133 . . . . . . . . . . . . . 14 ((𝐴𝑋𝐵𝑌𝐴𝐵) → ({𝐴, 𝐵} ∖ {𝐵}) = {𝐴})
6059adantr 480 . . . . . . . . . . . . 13 (((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ 𝐺 ∈ USGraph) → ({𝐴, 𝐵} ∖ {𝐵}) = {𝐴})
6160rexeqdv 3323 . . . . . . . . . . . 12 (((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ 𝐺 ∈ USGraph) → (∃𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐵}) ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ∃𝑙 ∈ {𝐴} ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))
62 preq2 4739 . . . . . . . . . . . . . . . . . . 19 (𝑙 = 𝐴 → {𝑥, 𝑙} = {𝑥, 𝐴})
6362preq2d 4745 . . . . . . . . . . . . . . . . . 18 (𝑙 = 𝐴 → {{𝑥, 𝐵}, {𝑥, 𝑙}} = {{𝑥, 𝐵}, {𝑥, 𝐴}})
6463sseq1d 4011 . . . . . . . . . . . . . . . . 17 (𝑙 = 𝐴 → ({{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ {{𝑥, 𝐵}, {𝑥, 𝐴}} ⊆ (Edg‘𝐺)))
6564reubidv 3391 . . . . . . . . . . . . . . . 16 (𝑙 = 𝐴 → (∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝐴}} ⊆ (Edg‘𝐺)))
6665notbid 318 . . . . . . . . . . . . . . 15 (𝑙 = 𝐴 → (¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝐴}} ⊆ (Edg‘𝐺)))
6766rexsng 4679 . . . . . . . . . . . . . 14 (𝐴𝑋 → (∃𝑙 ∈ {𝐴} ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝐴}} ⊆ (Edg‘𝐺)))
68673ad2ant1 1131 . . . . . . . . . . . . 13 ((𝐴𝑋𝐵𝑌𝐴𝐵) → (∃𝑙 ∈ {𝐴} ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝐴}} ⊆ (Edg‘𝐺)))
6968adantr 480 . . . . . . . . . . . 12 (((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ 𝐺 ∈ USGraph) → (∃𝑙 ∈ {𝐴} ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝐴}} ⊆ (Edg‘𝐺)))
7057, 61, 693bitrd 305 . . . . . . . . . . 11 (((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ 𝐺 ∈ USGraph) → (¬ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐵})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝐴}} ⊆ (Edg‘𝐺)))
7154, 70orbi12d 917 . . . . . . . . . 10 (((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ 𝐺 ∈ USGraph) → ((¬ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐴})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ∨ ¬ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐵})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)) ↔ (¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ (Edg‘𝐺) ∨ ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝐴}} ⊆ (Edg‘𝐺))))
7238, 71mpbird 257 . . . . . . . . 9 (((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ 𝐺 ∈ USGraph) → (¬ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐴})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ∨ ¬ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐵})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))
73 sneq 4639 . . . . . . . . . . . . . . 15 (𝑘 = 𝐴 → {𝑘} = {𝐴})
7473difeq2d 4120 . . . . . . . . . . . . . 14 (𝑘 = 𝐴 → ({𝐴, 𝐵} ∖ {𝑘}) = ({𝐴, 𝐵} ∖ {𝐴}))
75 preq2 4739 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝐴 → {𝑥, 𝑘} = {𝑥, 𝐴})
7675preq1d 4744 . . . . . . . . . . . . . . . 16 (𝑘 = 𝐴 → {{𝑥, 𝑘}, {𝑥, 𝑙}} = {{𝑥, 𝐴}, {𝑥, 𝑙}})
7776sseq1d 4011 . . . . . . . . . . . . . . 15 (𝑘 = 𝐴 → ({{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ {{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))
7877reubidv 3391 . . . . . . . . . . . . . 14 (𝑘 = 𝐴 → (∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))
7974, 78raleqbidv 3339 . . . . . . . . . . . . 13 (𝑘 = 𝐴 → (∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝑘})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐴})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))
8079notbid 318 . . . . . . . . . . . 12 (𝑘 = 𝐴 → (¬ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝑘})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ¬ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐴})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))
81 sneq 4639 . . . . . . . . . . . . . . 15 (𝑘 = 𝐵 → {𝑘} = {𝐵})
8281difeq2d 4120 . . . . . . . . . . . . . 14 (𝑘 = 𝐵 → ({𝐴, 𝐵} ∖ {𝑘}) = ({𝐴, 𝐵} ∖ {𝐵}))
83 preq2 4739 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝐵 → {𝑥, 𝑘} = {𝑥, 𝐵})
8483preq1d 4744 . . . . . . . . . . . . . . . 16 (𝑘 = 𝐵 → {{𝑥, 𝑘}, {𝑥, 𝑙}} = {{𝑥, 𝐵}, {𝑥, 𝑙}})
8584sseq1d 4011 . . . . . . . . . . . . . . 15 (𝑘 = 𝐵 → ({{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))
8685reubidv 3391 . . . . . . . . . . . . . 14 (𝑘 = 𝐵 → (∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))
8782, 86raleqbidv 3339 . . . . . . . . . . . . 13 (𝑘 = 𝐵 → (∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝑘})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐵})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))
8887notbid 318 . . . . . . . . . . . 12 (𝑘 = 𝐵 → (¬ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝑘})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ¬ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐵})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))
8980, 88rexprg 4701 . . . . . . . . . . 11 ((𝐴𝑋𝐵𝑌) → (∃𝑘 ∈ {𝐴, 𝐵} ¬ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝑘})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ (¬ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐴})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ∨ ¬ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐵})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺))))
90893adant3 1130 . . . . . . . . . 10 ((𝐴𝑋𝐵𝑌𝐴𝐵) → (∃𝑘 ∈ {𝐴, 𝐵} ¬ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝑘})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ (¬ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐴})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ∨ ¬ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐵})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺))))
9190adantr 480 . . . . . . . . 9 (((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ 𝐺 ∈ USGraph) → (∃𝑘 ∈ {𝐴, 𝐵} ¬ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝑘})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ (¬ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐴})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ∨ ¬ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐵})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺))))
9272, 91mpbird 257 . . . . . . . 8 (((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ 𝐺 ∈ USGraph) → ∃𝑘 ∈ {𝐴, 𝐵} ¬ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝑘})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺))
93 rexnal 3097 . . . . . . . 8 (∃𝑘 ∈ {𝐴, 𝐵} ¬ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝑘})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ¬ ∀𝑘 ∈ {𝐴, 𝐵}∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝑘})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺))
9492, 93sylib 217 . . . . . . 7 (((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ 𝐺 ∈ USGraph) → ¬ ∀𝑘 ∈ {𝐴, 𝐵}∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝑘})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺))
9594intnand 488 . . . . . 6 (((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ 𝐺 ∈ USGraph) → ¬ (𝐺 ∈ USGraph ∧ ∀𝑘 ∈ {𝐴, 𝐵}∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝑘})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))
9695adantlr 714 . . . . 5 ((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (Vtx‘𝐺) = {𝐴, 𝐵}) ∧ 𝐺 ∈ USGraph) → ¬ (𝐺 ∈ USGraph ∧ ∀𝑘 ∈ {𝐴, 𝐵}∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝑘})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))
97 id 22 . . . . . . . . . 10 ((Vtx‘𝐺) = {𝐴, 𝐵} → (Vtx‘𝐺) = {𝐴, 𝐵})
98 difeq1 4113 . . . . . . . . . . 11 ((Vtx‘𝐺) = {𝐴, 𝐵} → ((Vtx‘𝐺) ∖ {𝑘}) = ({𝐴, 𝐵} ∖ {𝑘}))
99 reueq1 3412 . . . . . . . . . . 11 ((Vtx‘𝐺) = {𝐴, 𝐵} → (∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))
10098, 99raleqbidv 3339 . . . . . . . . . 10 ((Vtx‘𝐺) = {𝐴, 𝐵} → (∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝑘})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))
10197, 100raleqbidv 3339 . . . . . . . . 9 ((Vtx‘𝐺) = {𝐴, 𝐵} → (∀𝑘 ∈ (Vtx‘𝐺)∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ∀𝑘 ∈ {𝐴, 𝐵}∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝑘})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))
102101anbi2d 629 . . . . . . . 8 ((Vtx‘𝐺) = {𝐴, 𝐵} → ((𝐺 ∈ USGraph ∧ ∀𝑘 ∈ (Vtx‘𝐺)∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)) ↔ (𝐺 ∈ USGraph ∧ ∀𝑘 ∈ {𝐴, 𝐵}∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝑘})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺))))
103102notbid 318 . . . . . . 7 ((Vtx‘𝐺) = {𝐴, 𝐵} → (¬ (𝐺 ∈ USGraph ∧ ∀𝑘 ∈ (Vtx‘𝐺)∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)) ↔ ¬ (𝐺 ∈ USGraph ∧ ∀𝑘 ∈ {𝐴, 𝐵}∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝑘})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺))))
104103adantl 481 . . . . . 6 (((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (Vtx‘𝐺) = {𝐴, 𝐵}) → (¬ (𝐺 ∈ USGraph ∧ ∀𝑘 ∈ (Vtx‘𝐺)∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)) ↔ ¬ (𝐺 ∈ USGraph ∧ ∀𝑘 ∈ {𝐴, 𝐵}∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝑘})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺))))
105104adantr 480 . . . . 5 ((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (Vtx‘𝐺) = {𝐴, 𝐵}) ∧ 𝐺 ∈ USGraph) → (¬ (𝐺 ∈ USGraph ∧ ∀𝑘 ∈ (Vtx‘𝐺)∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)) ↔ ¬ (𝐺 ∈ USGraph ∧ ∀𝑘 ∈ {𝐴, 𝐵}∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝑘})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺))))
10696, 105mpbird 257 . . . 4 ((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (Vtx‘𝐺) = {𝐴, 𝐵}) ∧ 𝐺 ∈ USGraph) → ¬ (𝐺 ∈ USGraph ∧ ∀𝑘 ∈ (Vtx‘𝐺)∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))
107 df-nel 3044 . . . . 5 (𝐺 ∉ FriendGraph ↔ ¬ 𝐺 ∈ FriendGraph )
108 eqid 2728 . . . . . 6 (Vtx‘𝐺) = (Vtx‘𝐺)
109108, 2isfrgr 30069 . . . . 5 (𝐺 ∈ FriendGraph ↔ (𝐺 ∈ USGraph ∧ ∀𝑘 ∈ (Vtx‘𝐺)∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))
110107, 109xchbinx 334 . . . 4 (𝐺 ∉ FriendGraph ↔ ¬ (𝐺 ∈ USGraph ∧ ∀𝑘 ∈ (Vtx‘𝐺)∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))
111106, 110sylibr 233 . . 3 ((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (Vtx‘𝐺) = {𝐴, 𝐵}) ∧ 𝐺 ∈ USGraph) → 𝐺 ∉ FriendGraph )
112111expcom 413 . 2 (𝐺 ∈ USGraph → (((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (Vtx‘𝐺) = {𝐴, 𝐵}) → 𝐺 ∉ FriendGraph ))
113 frgrusgr 30070 . . . . 5 (𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph)
114113con3i 154 . . . 4 𝐺 ∈ USGraph → ¬ 𝐺 ∈ FriendGraph )
115114, 107sylibr 233 . . 3 𝐺 ∈ USGraph → 𝐺 ∉ FriendGraph )
116115a1d 25 . 2 𝐺 ∈ USGraph → (((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (Vtx‘𝐺) = {𝐴, 𝐵}) → 𝐺 ∉ FriendGraph ))
117112, 116pm2.61i 182 1 (((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (Vtx‘𝐺) = {𝐴, 𝐵}) → 𝐺 ∉ FriendGraph )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 846  w3a 1085   = wceq 1534  wcel 2099  wne 2937  wnel 3043  wral 3058  wrex 3067  ∃!wreu 3371  cdif 3944  wss 3947  {csn 4629  {cpr 4631  cfv 6548  Vtxcvtx 28808  Edgcedg 28859  USGraphcusgr 28961   FriendGraph cfrgr 30067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-int 4950  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-om 7871  df-1st 7993  df-2nd 7994  df-frecs 8286  df-wrecs 8317  df-recs 8391  df-rdg 8430  df-1o 8486  df-oadd 8490  df-er 8724  df-en 8964  df-dom 8965  df-sdom 8966  df-fin 8967  df-dju 9924  df-card 9962  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-nn 12243  df-2 12305  df-n0 12503  df-z 12589  df-uz 12853  df-fz 13517  df-hash 14322  df-edg 28860  df-umgr 28895  df-usgr 28963  df-frgr 30068
This theorem is referenced by:  1to2vfriswmgr  30088  frgrregord013  30204
  Copyright terms: Public domain W3C validator