Step | Hyp | Ref
| Expression |
1 | | neirr 2952 |
. . . . . . . . . . . . . . . . . 18
⊢ ¬
𝐴 ≠ 𝐴 |
2 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(Edg‘𝐺) =
(Edg‘𝐺) |
3 | 2 | usgredgne 27573 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐺 ∈ USGraph ∧ {𝐴, 𝐴} ∈ (Edg‘𝐺)) → 𝐴 ≠ 𝐴) |
4 | 3 | ex 413 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐺 ∈ USGraph → ({𝐴, 𝐴} ∈ (Edg‘𝐺) → 𝐴 ≠ 𝐴)) |
5 | 1, 4 | mtoi 198 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐺 ∈ USGraph → ¬
{𝐴, 𝐴} ∈ (Edg‘𝐺)) |
6 | 5 | adantl 482 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ 𝐺 ∈ USGraph) → ¬ {𝐴, 𝐴} ∈ (Edg‘𝐺)) |
7 | 6 | intnanrd 490 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ 𝐺 ∈ USGraph) → ¬ ({𝐴, 𝐴} ∈ (Edg‘𝐺) ∧ {𝐴, 𝐵} ∈ (Edg‘𝐺))) |
8 | | prex 5355 |
. . . . . . . . . . . . . . . 16
⊢ {𝐴, 𝐴} ∈ V |
9 | | prex 5355 |
. . . . . . . . . . . . . . . 16
⊢ {𝐴, 𝐵} ∈ V |
10 | 8, 9 | prss 4753 |
. . . . . . . . . . . . . . 15
⊢ (({𝐴, 𝐴} ∈ (Edg‘𝐺) ∧ {𝐴, 𝐵} ∈ (Edg‘𝐺)) ↔ {{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ (Edg‘𝐺)) |
11 | 7, 10 | sylnib 328 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ 𝐺 ∈ USGraph) → ¬ {{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ (Edg‘𝐺)) |
12 | | neirr 2952 |
. . . . . . . . . . . . . . . . . 18
⊢ ¬
𝐵 ≠ 𝐵 |
13 | 2 | usgredgne 27573 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐺 ∈ USGraph ∧ {𝐵, 𝐵} ∈ (Edg‘𝐺)) → 𝐵 ≠ 𝐵) |
14 | 13 | ex 413 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐺 ∈ USGraph → ({𝐵, 𝐵} ∈ (Edg‘𝐺) → 𝐵 ≠ 𝐵)) |
15 | 12, 14 | mtoi 198 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐺 ∈ USGraph → ¬
{𝐵, 𝐵} ∈ (Edg‘𝐺)) |
16 | 15 | adantl 482 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ 𝐺 ∈ USGraph) → ¬ {𝐵, 𝐵} ∈ (Edg‘𝐺)) |
17 | 16 | intnand 489 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ 𝐺 ∈ USGraph) → ¬ ({𝐵, 𝐴} ∈ (Edg‘𝐺) ∧ {𝐵, 𝐵} ∈ (Edg‘𝐺))) |
18 | | prex 5355 |
. . . . . . . . . . . . . . . 16
⊢ {𝐵, 𝐴} ∈ V |
19 | | prex 5355 |
. . . . . . . . . . . . . . . 16
⊢ {𝐵, 𝐵} ∈ V |
20 | 18, 19 | prss 4753 |
. . . . . . . . . . . . . . 15
⊢ (({𝐵, 𝐴} ∈ (Edg‘𝐺) ∧ {𝐵, 𝐵} ∈ (Edg‘𝐺)) ↔ {{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ (Edg‘𝐺)) |
21 | 17, 20 | sylnib 328 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ 𝐺 ∈ USGraph) → ¬ {{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ (Edg‘𝐺)) |
22 | | ioran 981 |
. . . . . . . . . . . . . 14
⊢ (¬
({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ (Edg‘𝐺) ∨ {{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ (Edg‘𝐺)) ↔ (¬ {{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ (Edg‘𝐺) ∧ ¬ {{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ (Edg‘𝐺))) |
23 | 11, 21, 22 | sylanbrc 583 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ 𝐺 ∈ USGraph) → ¬ ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ (Edg‘𝐺) ∨ {{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ (Edg‘𝐺))) |
24 | | preq1 4669 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝐴 → {𝑥, 𝐴} = {𝐴, 𝐴}) |
25 | | preq1 4669 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝐴 → {𝑥, 𝐵} = {𝐴, 𝐵}) |
26 | 24, 25 | preq12d 4677 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝐴 → {{𝑥, 𝐴}, {𝑥, 𝐵}} = {{𝐴, 𝐴}, {𝐴, 𝐵}}) |
27 | 26 | sseq1d 3952 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝐴 → ({{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ (Edg‘𝐺) ↔ {{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ (Edg‘𝐺))) |
28 | | preq1 4669 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝐵 → {𝑥, 𝐴} = {𝐵, 𝐴}) |
29 | | preq1 4669 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝐵 → {𝑥, 𝐵} = {𝐵, 𝐵}) |
30 | 28, 29 | preq12d 4677 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝐵 → {{𝑥, 𝐴}, {𝑥, 𝐵}} = {{𝐵, 𝐴}, {𝐵, 𝐵}}) |
31 | 30 | sseq1d 3952 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝐵 → ({{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ (Edg‘𝐺) ↔ {{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ (Edg‘𝐺))) |
32 | 27, 31 | rexprg 4632 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌) → (∃𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ (Edg‘𝐺) ↔ ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ (Edg‘𝐺) ∨ {{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ (Edg‘𝐺)))) |
33 | 32 | 3adant3 1131 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) → (∃𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ (Edg‘𝐺) ↔ ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ (Edg‘𝐺) ∨ {{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ (Edg‘𝐺)))) |
34 | 33 | adantr 481 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ 𝐺 ∈ USGraph) → (∃𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ (Edg‘𝐺) ↔ ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ (Edg‘𝐺) ∨ {{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ (Edg‘𝐺)))) |
35 | 23, 34 | mtbird 325 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ 𝐺 ∈ USGraph) → ¬ ∃𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ (Edg‘𝐺)) |
36 | | reurex 3362 |
. . . . . . . . . . . 12
⊢
(∃!𝑥 ∈
{𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ (Edg‘𝐺) → ∃𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ (Edg‘𝐺)) |
37 | 35, 36 | nsyl 140 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ 𝐺 ∈ USGraph) → ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ (Edg‘𝐺)) |
38 | 37 | orcd 870 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ 𝐺 ∈ USGraph) → (¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ (Edg‘𝐺) ∨ ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝐴}} ⊆ (Edg‘𝐺))) |
39 | | rexnal 3169 |
. . . . . . . . . . . . . 14
⊢
(∃𝑙 ∈
({𝐴, 𝐵} ∖ {𝐴}) ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ¬ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐴})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)) |
40 | 39 | bicomi 223 |
. . . . . . . . . . . . 13
⊢ (¬
∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐴})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ∃𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐴}) ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)) |
41 | 40 | a1i 11 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ 𝐺 ∈ USGraph) → (¬ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐴})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ∃𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐴}) ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺))) |
42 | | difprsn1 4733 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ≠ 𝐵 → ({𝐴, 𝐵} ∖ {𝐴}) = {𝐵}) |
43 | 42 | 3ad2ant3 1134 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) → ({𝐴, 𝐵} ∖ {𝐴}) = {𝐵}) |
44 | 43 | adantr 481 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ 𝐺 ∈ USGraph) → ({𝐴, 𝐵} ∖ {𝐴}) = {𝐵}) |
45 | 44 | rexeqdv 3349 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ 𝐺 ∈ USGraph) → (∃𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐴}) ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ∃𝑙 ∈ {𝐵} ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺))) |
46 | | preq2 4670 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑙 = 𝐵 → {𝑥, 𝑙} = {𝑥, 𝐵}) |
47 | 46 | preq2d 4676 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑙 = 𝐵 → {{𝑥, 𝐴}, {𝑥, 𝑙}} = {{𝑥, 𝐴}, {𝑥, 𝐵}}) |
48 | 47 | sseq1d 3952 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑙 = 𝐵 → ({{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ (Edg‘𝐺))) |
49 | 48 | reubidv 3323 |
. . . . . . . . . . . . . . . 16
⊢ (𝑙 = 𝐵 → (∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ (Edg‘𝐺))) |
50 | 49 | notbid 318 |
. . . . . . . . . . . . . . 15
⊢ (𝑙 = 𝐵 → (¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ (Edg‘𝐺))) |
51 | 50 | rexsng 4610 |
. . . . . . . . . . . . . 14
⊢ (𝐵 ∈ 𝑌 → (∃𝑙 ∈ {𝐵} ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ (Edg‘𝐺))) |
52 | 51 | 3ad2ant2 1133 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) → (∃𝑙 ∈ {𝐵} ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ (Edg‘𝐺))) |
53 | 52 | adantr 481 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ 𝐺 ∈ USGraph) → (∃𝑙 ∈ {𝐵} ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ (Edg‘𝐺))) |
54 | 41, 45, 53 | 3bitrd 305 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ 𝐺 ∈ USGraph) → (¬ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐴})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ (Edg‘𝐺))) |
55 | | rexnal 3169 |
. . . . . . . . . . . . . 14
⊢
(∃𝑙 ∈
({𝐴, 𝐵} ∖ {𝐵}) ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ¬ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐵})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)) |
56 | 55 | bicomi 223 |
. . . . . . . . . . . . 13
⊢ (¬
∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐵})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ∃𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐵}) ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)) |
57 | 56 | a1i 11 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ 𝐺 ∈ USGraph) → (¬ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐵})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ∃𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐵}) ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺))) |
58 | | difprsn2 4734 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ≠ 𝐵 → ({𝐴, 𝐵} ∖ {𝐵}) = {𝐴}) |
59 | 58 | 3ad2ant3 1134 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) → ({𝐴, 𝐵} ∖ {𝐵}) = {𝐴}) |
60 | 59 | adantr 481 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ 𝐺 ∈ USGraph) → ({𝐴, 𝐵} ∖ {𝐵}) = {𝐴}) |
61 | 60 | rexeqdv 3349 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ 𝐺 ∈ USGraph) → (∃𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐵}) ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ∃𝑙 ∈ {𝐴} ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺))) |
62 | | preq2 4670 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑙 = 𝐴 → {𝑥, 𝑙} = {𝑥, 𝐴}) |
63 | 62 | preq2d 4676 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑙 = 𝐴 → {{𝑥, 𝐵}, {𝑥, 𝑙}} = {{𝑥, 𝐵}, {𝑥, 𝐴}}) |
64 | 63 | sseq1d 3952 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑙 = 𝐴 → ({{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ {{𝑥, 𝐵}, {𝑥, 𝐴}} ⊆ (Edg‘𝐺))) |
65 | 64 | reubidv 3323 |
. . . . . . . . . . . . . . . 16
⊢ (𝑙 = 𝐴 → (∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝐴}} ⊆ (Edg‘𝐺))) |
66 | 65 | notbid 318 |
. . . . . . . . . . . . . . 15
⊢ (𝑙 = 𝐴 → (¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝐴}} ⊆ (Edg‘𝐺))) |
67 | 66 | rexsng 4610 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ 𝑋 → (∃𝑙 ∈ {𝐴} ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝐴}} ⊆ (Edg‘𝐺))) |
68 | 67 | 3ad2ant1 1132 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) → (∃𝑙 ∈ {𝐴} ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝐴}} ⊆ (Edg‘𝐺))) |
69 | 68 | adantr 481 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ 𝐺 ∈ USGraph) → (∃𝑙 ∈ {𝐴} ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝐴}} ⊆ (Edg‘𝐺))) |
70 | 57, 61, 69 | 3bitrd 305 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ 𝐺 ∈ USGraph) → (¬ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐵})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝐴}} ⊆ (Edg‘𝐺))) |
71 | 54, 70 | orbi12d 916 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ 𝐺 ∈ USGraph) → ((¬
∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐴})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ∨ ¬ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐵})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)) ↔ (¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ (Edg‘𝐺) ∨ ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝐴}} ⊆ (Edg‘𝐺)))) |
72 | 38, 71 | mpbird 256 |
. . . . . . . . 9
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ 𝐺 ∈ USGraph) → (¬ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐴})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ∨ ¬ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐵})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺))) |
73 | | sneq 4571 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝐴 → {𝑘} = {𝐴}) |
74 | 73 | difeq2d 4057 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝐴 → ({𝐴, 𝐵} ∖ {𝑘}) = ({𝐴, 𝐵} ∖ {𝐴})) |
75 | | preq2 4670 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 𝐴 → {𝑥, 𝑘} = {𝑥, 𝐴}) |
76 | 75 | preq1d 4675 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 𝐴 → {{𝑥, 𝑘}, {𝑥, 𝑙}} = {{𝑥, 𝐴}, {𝑥, 𝑙}}) |
77 | 76 | sseq1d 3952 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝐴 → ({{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ {{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺))) |
78 | 77 | reubidv 3323 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝐴 → (∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺))) |
79 | 74, 78 | raleqbidv 3336 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝐴 → (∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝑘})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐴})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺))) |
80 | 79 | notbid 318 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝐴 → (¬ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝑘})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ¬ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐴})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺))) |
81 | | sneq 4571 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝐵 → {𝑘} = {𝐵}) |
82 | 81 | difeq2d 4057 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝐵 → ({𝐴, 𝐵} ∖ {𝑘}) = ({𝐴, 𝐵} ∖ {𝐵})) |
83 | | preq2 4670 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 𝐵 → {𝑥, 𝑘} = {𝑥, 𝐵}) |
84 | 83 | preq1d 4675 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 𝐵 → {{𝑥, 𝑘}, {𝑥, 𝑙}} = {{𝑥, 𝐵}, {𝑥, 𝑙}}) |
85 | 84 | sseq1d 3952 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝐵 → ({{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺))) |
86 | 85 | reubidv 3323 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝐵 → (∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺))) |
87 | 82, 86 | raleqbidv 3336 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝐵 → (∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝑘})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐵})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺))) |
88 | 87 | notbid 318 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝐵 → (¬ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝑘})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ¬ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐵})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺))) |
89 | 80, 88 | rexprg 4632 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌) → (∃𝑘 ∈ {𝐴, 𝐵} ¬ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝑘})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ (¬ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐴})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ∨ ¬ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐵})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))) |
90 | 89 | 3adant3 1131 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) → (∃𝑘 ∈ {𝐴, 𝐵} ¬ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝑘})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ (¬ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐴})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ∨ ¬ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐵})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))) |
91 | 90 | adantr 481 |
. . . . . . . . 9
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ 𝐺 ∈ USGraph) → (∃𝑘 ∈ {𝐴, 𝐵} ¬ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝑘})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ (¬ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐴})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ∨ ¬ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐵})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))) |
92 | 72, 91 | mpbird 256 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ 𝐺 ∈ USGraph) → ∃𝑘 ∈ {𝐴, 𝐵} ¬ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝑘})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)) |
93 | | rexnal 3169 |
. . . . . . . 8
⊢
(∃𝑘 ∈
{𝐴, 𝐵} ¬ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝑘})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ¬ ∀𝑘 ∈ {𝐴, 𝐵}∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝑘})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)) |
94 | 92, 93 | sylib 217 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ 𝐺 ∈ USGraph) → ¬ ∀𝑘 ∈ {𝐴, 𝐵}∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝑘})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)) |
95 | 94 | intnand 489 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ 𝐺 ∈ USGraph) → ¬ (𝐺 ∈ USGraph ∧
∀𝑘 ∈ {𝐴, 𝐵}∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝑘})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺))) |
96 | 95 | adantlr 712 |
. . . . 5
⊢ ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ (Vtx‘𝐺) = {𝐴, 𝐵}) ∧ 𝐺 ∈ USGraph) → ¬ (𝐺 ∈ USGraph ∧
∀𝑘 ∈ {𝐴, 𝐵}∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝑘})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺))) |
97 | | id 22 |
. . . . . . . . . 10
⊢
((Vtx‘𝐺) =
{𝐴, 𝐵} → (Vtx‘𝐺) = {𝐴, 𝐵}) |
98 | | difeq1 4050 |
. . . . . . . . . . 11
⊢
((Vtx‘𝐺) =
{𝐴, 𝐵} → ((Vtx‘𝐺) ∖ {𝑘}) = ({𝐴, 𝐵} ∖ {𝑘})) |
99 | | reueq1 3344 |
. . . . . . . . . . 11
⊢
((Vtx‘𝐺) =
{𝐴, 𝐵} → (∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺))) |
100 | 98, 99 | raleqbidv 3336 |
. . . . . . . . . 10
⊢
((Vtx‘𝐺) =
{𝐴, 𝐵} → (∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝑘})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺))) |
101 | 97, 100 | raleqbidv 3336 |
. . . . . . . . 9
⊢
((Vtx‘𝐺) =
{𝐴, 𝐵} → (∀𝑘 ∈ (Vtx‘𝐺)∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ∀𝑘 ∈ {𝐴, 𝐵}∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝑘})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺))) |
102 | 101 | anbi2d 629 |
. . . . . . . 8
⊢
((Vtx‘𝐺) =
{𝐴, 𝐵} → ((𝐺 ∈ USGraph ∧ ∀𝑘 ∈ (Vtx‘𝐺)∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)) ↔ (𝐺 ∈ USGraph ∧ ∀𝑘 ∈ {𝐴, 𝐵}∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝑘})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))) |
103 | 102 | notbid 318 |
. . . . . . 7
⊢
((Vtx‘𝐺) =
{𝐴, 𝐵} → (¬ (𝐺 ∈ USGraph ∧ ∀𝑘 ∈ (Vtx‘𝐺)∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)) ↔ ¬ (𝐺 ∈ USGraph ∧ ∀𝑘 ∈ {𝐴, 𝐵}∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝑘})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))) |
104 | 103 | adantl 482 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ (Vtx‘𝐺) = {𝐴, 𝐵}) → (¬ (𝐺 ∈ USGraph ∧ ∀𝑘 ∈ (Vtx‘𝐺)∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)) ↔ ¬ (𝐺 ∈ USGraph ∧ ∀𝑘 ∈ {𝐴, 𝐵}∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝑘})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))) |
105 | 104 | adantr 481 |
. . . . 5
⊢ ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ (Vtx‘𝐺) = {𝐴, 𝐵}) ∧ 𝐺 ∈ USGraph) → (¬ (𝐺 ∈ USGraph ∧
∀𝑘 ∈
(Vtx‘𝐺)∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)) ↔ ¬ (𝐺 ∈ USGraph ∧ ∀𝑘 ∈ {𝐴, 𝐵}∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝑘})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))) |
106 | 96, 105 | mpbird 256 |
. . . 4
⊢ ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ (Vtx‘𝐺) = {𝐴, 𝐵}) ∧ 𝐺 ∈ USGraph) → ¬ (𝐺 ∈ USGraph ∧
∀𝑘 ∈
(Vtx‘𝐺)∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺))) |
107 | | df-nel 3050 |
. . . . 5
⊢ (𝐺 ∉ FriendGraph ↔
¬ 𝐺 ∈ FriendGraph
) |
108 | | eqid 2738 |
. . . . . 6
⊢
(Vtx‘𝐺) =
(Vtx‘𝐺) |
109 | 108, 2 | isfrgr 28624 |
. . . . 5
⊢ (𝐺 ∈ FriendGraph ↔
(𝐺 ∈ USGraph ∧
∀𝑘 ∈
(Vtx‘𝐺)∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺))) |
110 | 107, 109 | xchbinx 334 |
. . . 4
⊢ (𝐺 ∉ FriendGraph ↔
¬ (𝐺 ∈ USGraph
∧ ∀𝑘 ∈
(Vtx‘𝐺)∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺))) |
111 | 106, 110 | sylibr 233 |
. . 3
⊢ ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ (Vtx‘𝐺) = {𝐴, 𝐵}) ∧ 𝐺 ∈ USGraph) → 𝐺 ∉ FriendGraph ) |
112 | 111 | expcom 414 |
. 2
⊢ (𝐺 ∈ USGraph → (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ (Vtx‘𝐺) = {𝐴, 𝐵}) → 𝐺 ∉ FriendGraph )) |
113 | | frgrusgr 28625 |
. . . . 5
⊢ (𝐺 ∈ FriendGraph → 𝐺 ∈
USGraph) |
114 | 113 | con3i 154 |
. . . 4
⊢ (¬
𝐺 ∈ USGraph →
¬ 𝐺 ∈ FriendGraph
) |
115 | 114, 107 | sylibr 233 |
. . 3
⊢ (¬
𝐺 ∈ USGraph →
𝐺 ∉ FriendGraph
) |
116 | 115 | a1d 25 |
. 2
⊢ (¬
𝐺 ∈ USGraph →
(((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ (Vtx‘𝐺) = {𝐴, 𝐵}) → 𝐺 ∉ FriendGraph )) |
117 | 112, 116 | pm2.61i 182 |
1
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐴 ≠ 𝐵) ∧ (Vtx‘𝐺) = {𝐴, 𝐵}) → 𝐺 ∉ FriendGraph ) |