Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfrgr2v Structured version   Visualization version   GIF version

Theorem nfrgr2v 27680
 Description: Any graph with two (different) vertices is not a friendship graph. (Contributed by Alexander van der Vekens, 30-Sep-2017.) (Proof shortened by Alexander van der Vekens, 13-Sep-2018.) (Revised by AV, 29-Mar-2021.)
Assertion
Ref Expression
nfrgr2v (((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (Vtx‘𝐺) = {𝐴, 𝐵}) → 𝐺 ∉ FriendGraph )

Proof of Theorem nfrgr2v
Dummy variables 𝑘 𝑙 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 neirr 2977 . . . . . . . . . . . . . . . . . 18 ¬ 𝐴𝐴
2 eqid 2777 . . . . . . . . . . . . . . . . . . . 20 (Edg‘𝐺) = (Edg‘𝐺)
32usgredgne 26552 . . . . . . . . . . . . . . . . . . 19 ((𝐺 ∈ USGraph ∧ {𝐴, 𝐴} ∈ (Edg‘𝐺)) → 𝐴𝐴)
43ex 403 . . . . . . . . . . . . . . . . . 18 (𝐺 ∈ USGraph → ({𝐴, 𝐴} ∈ (Edg‘𝐺) → 𝐴𝐴))
51, 4mtoi 191 . . . . . . . . . . . . . . . . 17 (𝐺 ∈ USGraph → ¬ {𝐴, 𝐴} ∈ (Edg‘𝐺))
65adantl 475 . . . . . . . . . . . . . . . 16 (((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ 𝐺 ∈ USGraph) → ¬ {𝐴, 𝐴} ∈ (Edg‘𝐺))
76intnanrd 485 . . . . . . . . . . . . . . 15 (((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ 𝐺 ∈ USGraph) → ¬ ({𝐴, 𝐴} ∈ (Edg‘𝐺) ∧ {𝐴, 𝐵} ∈ (Edg‘𝐺)))
8 prex 5141 . . . . . . . . . . . . . . . 16 {𝐴, 𝐴} ∈ V
9 prex 5141 . . . . . . . . . . . . . . . 16 {𝐴, 𝐵} ∈ V
108, 9prss 4582 . . . . . . . . . . . . . . 15 (({𝐴, 𝐴} ∈ (Edg‘𝐺) ∧ {𝐴, 𝐵} ∈ (Edg‘𝐺)) ↔ {{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ (Edg‘𝐺))
117, 10sylnib 320 . . . . . . . . . . . . . 14 (((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ 𝐺 ∈ USGraph) → ¬ {{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ (Edg‘𝐺))
12 neirr 2977 . . . . . . . . . . . . . . . . . 18 ¬ 𝐵𝐵
132usgredgne 26552 . . . . . . . . . . . . . . . . . . 19 ((𝐺 ∈ USGraph ∧ {𝐵, 𝐵} ∈ (Edg‘𝐺)) → 𝐵𝐵)
1413ex 403 . . . . . . . . . . . . . . . . . 18 (𝐺 ∈ USGraph → ({𝐵, 𝐵} ∈ (Edg‘𝐺) → 𝐵𝐵))
1512, 14mtoi 191 . . . . . . . . . . . . . . . . 17 (𝐺 ∈ USGraph → ¬ {𝐵, 𝐵} ∈ (Edg‘𝐺))
1615adantl 475 . . . . . . . . . . . . . . . 16 (((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ 𝐺 ∈ USGraph) → ¬ {𝐵, 𝐵} ∈ (Edg‘𝐺))
1716intnand 484 . . . . . . . . . . . . . . 15 (((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ 𝐺 ∈ USGraph) → ¬ ({𝐵, 𝐴} ∈ (Edg‘𝐺) ∧ {𝐵, 𝐵} ∈ (Edg‘𝐺)))
18 prex 5141 . . . . . . . . . . . . . . . 16 {𝐵, 𝐴} ∈ V
19 prex 5141 . . . . . . . . . . . . . . . 16 {𝐵, 𝐵} ∈ V
2018, 19prss 4582 . . . . . . . . . . . . . . 15 (({𝐵, 𝐴} ∈ (Edg‘𝐺) ∧ {𝐵, 𝐵} ∈ (Edg‘𝐺)) ↔ {{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ (Edg‘𝐺))
2117, 20sylnib 320 . . . . . . . . . . . . . 14 (((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ 𝐺 ∈ USGraph) → ¬ {{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ (Edg‘𝐺))
22 ioran 969 . . . . . . . . . . . . . 14 (¬ ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ (Edg‘𝐺) ∨ {{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ (Edg‘𝐺)) ↔ (¬ {{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ (Edg‘𝐺) ∧ ¬ {{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ (Edg‘𝐺)))
2311, 21, 22sylanbrc 578 . . . . . . . . . . . . 13 (((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ 𝐺 ∈ USGraph) → ¬ ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ (Edg‘𝐺) ∨ {{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ (Edg‘𝐺)))
24 preq1 4499 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝐴 → {𝑥, 𝐴} = {𝐴, 𝐴})
25 preq1 4499 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝐴 → {𝑥, 𝐵} = {𝐴, 𝐵})
2624, 25preq12d 4507 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝐴 → {{𝑥, 𝐴}, {𝑥, 𝐵}} = {{𝐴, 𝐴}, {𝐴, 𝐵}})
2726sseq1d 3850 . . . . . . . . . . . . . . . 16 (𝑥 = 𝐴 → ({{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ (Edg‘𝐺) ↔ {{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ (Edg‘𝐺)))
28 preq1 4499 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝐵 → {𝑥, 𝐴} = {𝐵, 𝐴})
29 preq1 4499 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝐵 → {𝑥, 𝐵} = {𝐵, 𝐵})
3028, 29preq12d 4507 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝐵 → {{𝑥, 𝐴}, {𝑥, 𝐵}} = {{𝐵, 𝐴}, {𝐵, 𝐵}})
3130sseq1d 3850 . . . . . . . . . . . . . . . 16 (𝑥 = 𝐵 → ({{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ (Edg‘𝐺) ↔ {{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ (Edg‘𝐺)))
3227, 31rexprg 4463 . . . . . . . . . . . . . . 15 ((𝐴𝑋𝐵𝑌) → (∃𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ (Edg‘𝐺) ↔ ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ (Edg‘𝐺) ∨ {{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ (Edg‘𝐺))))
33323adant3 1123 . . . . . . . . . . . . . 14 ((𝐴𝑋𝐵𝑌𝐴𝐵) → (∃𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ (Edg‘𝐺) ↔ ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ (Edg‘𝐺) ∨ {{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ (Edg‘𝐺))))
3433adantr 474 . . . . . . . . . . . . 13 (((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ 𝐺 ∈ USGraph) → (∃𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ (Edg‘𝐺) ↔ ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ (Edg‘𝐺) ∨ {{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ (Edg‘𝐺))))
3523, 34mtbird 317 . . . . . . . . . . . 12 (((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ 𝐺 ∈ USGraph) → ¬ ∃𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ (Edg‘𝐺))
36 reurex 3355 . . . . . . . . . . . 12 (∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ (Edg‘𝐺) → ∃𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ (Edg‘𝐺))
3735, 36nsyl 138 . . . . . . . . . . 11 (((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ 𝐺 ∈ USGraph) → ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ (Edg‘𝐺))
3837orcd 862 . . . . . . . . . 10 (((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ 𝐺 ∈ USGraph) → (¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ (Edg‘𝐺) ∨ ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝐴}} ⊆ (Edg‘𝐺)))
39 rexnal 3175 . . . . . . . . . . . . . 14 (∃𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐴}) ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ¬ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐴})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺))
4039bicomi 216 . . . . . . . . . . . . 13 (¬ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐴})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ∃𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐴}) ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺))
4140a1i 11 . . . . . . . . . . . 12 (((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ 𝐺 ∈ USGraph) → (¬ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐴})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ∃𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐴}) ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))
42 difprsn1 4562 . . . . . . . . . . . . . . 15 (𝐴𝐵 → ({𝐴, 𝐵} ∖ {𝐴}) = {𝐵})
43423ad2ant3 1126 . . . . . . . . . . . . . 14 ((𝐴𝑋𝐵𝑌𝐴𝐵) → ({𝐴, 𝐵} ∖ {𝐴}) = {𝐵})
4443adantr 474 . . . . . . . . . . . . 13 (((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ 𝐺 ∈ USGraph) → ({𝐴, 𝐵} ∖ {𝐴}) = {𝐵})
4544rexeqdv 3340 . . . . . . . . . . . 12 (((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ 𝐺 ∈ USGraph) → (∃𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐴}) ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ∃𝑙 ∈ {𝐵} ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))
46 preq2 4500 . . . . . . . . . . . . . . . . . . 19 (𝑙 = 𝐵 → {𝑥, 𝑙} = {𝑥, 𝐵})
4746preq2d 4506 . . . . . . . . . . . . . . . . . 18 (𝑙 = 𝐵 → {{𝑥, 𝐴}, {𝑥, 𝑙}} = {{𝑥, 𝐴}, {𝑥, 𝐵}})
4847sseq1d 3850 . . . . . . . . . . . . . . . . 17 (𝑙 = 𝐵 → ({{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ (Edg‘𝐺)))
4948reubidv 3313 . . . . . . . . . . . . . . . 16 (𝑙 = 𝐵 → (∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ (Edg‘𝐺)))
5049notbid 310 . . . . . . . . . . . . . . 15 (𝑙 = 𝐵 → (¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ (Edg‘𝐺)))
5150rexsng 4444 . . . . . . . . . . . . . 14 (𝐵𝑌 → (∃𝑙 ∈ {𝐵} ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ (Edg‘𝐺)))
52513ad2ant2 1125 . . . . . . . . . . . . 13 ((𝐴𝑋𝐵𝑌𝐴𝐵) → (∃𝑙 ∈ {𝐵} ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ (Edg‘𝐺)))
5352adantr 474 . . . . . . . . . . . 12 (((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ 𝐺 ∈ USGraph) → (∃𝑙 ∈ {𝐵} ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ (Edg‘𝐺)))
5441, 45, 533bitrd 297 . . . . . . . . . . 11 (((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ 𝐺 ∈ USGraph) → (¬ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐴})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ (Edg‘𝐺)))
55 rexnal 3175 . . . . . . . . . . . . . 14 (∃𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐵}) ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ¬ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐵})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺))
5655bicomi 216 . . . . . . . . . . . . 13 (¬ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐵})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ∃𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐵}) ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺))
5756a1i 11 . . . . . . . . . . . 12 (((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ 𝐺 ∈ USGraph) → (¬ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐵})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ∃𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐵}) ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))
58 difprsn2 4563 . . . . . . . . . . . . . . 15 (𝐴𝐵 → ({𝐴, 𝐵} ∖ {𝐵}) = {𝐴})
59583ad2ant3 1126 . . . . . . . . . . . . . 14 ((𝐴𝑋𝐵𝑌𝐴𝐵) → ({𝐴, 𝐵} ∖ {𝐵}) = {𝐴})
6059adantr 474 . . . . . . . . . . . . 13 (((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ 𝐺 ∈ USGraph) → ({𝐴, 𝐵} ∖ {𝐵}) = {𝐴})
6160rexeqdv 3340 . . . . . . . . . . . 12 (((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ 𝐺 ∈ USGraph) → (∃𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐵}) ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ∃𝑙 ∈ {𝐴} ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))
62 preq2 4500 . . . . . . . . . . . . . . . . . . 19 (𝑙 = 𝐴 → {𝑥, 𝑙} = {𝑥, 𝐴})
6362preq2d 4506 . . . . . . . . . . . . . . . . . 18 (𝑙 = 𝐴 → {{𝑥, 𝐵}, {𝑥, 𝑙}} = {{𝑥, 𝐵}, {𝑥, 𝐴}})
6463sseq1d 3850 . . . . . . . . . . . . . . . . 17 (𝑙 = 𝐴 → ({{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ {{𝑥, 𝐵}, {𝑥, 𝐴}} ⊆ (Edg‘𝐺)))
6564reubidv 3313 . . . . . . . . . . . . . . . 16 (𝑙 = 𝐴 → (∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝐴}} ⊆ (Edg‘𝐺)))
6665notbid 310 . . . . . . . . . . . . . . 15 (𝑙 = 𝐴 → (¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝐴}} ⊆ (Edg‘𝐺)))
6766rexsng 4444 . . . . . . . . . . . . . 14 (𝐴𝑋 → (∃𝑙 ∈ {𝐴} ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝐴}} ⊆ (Edg‘𝐺)))
68673ad2ant1 1124 . . . . . . . . . . . . 13 ((𝐴𝑋𝐵𝑌𝐴𝐵) → (∃𝑙 ∈ {𝐴} ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝐴}} ⊆ (Edg‘𝐺)))
6968adantr 474 . . . . . . . . . . . 12 (((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ 𝐺 ∈ USGraph) → (∃𝑙 ∈ {𝐴} ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝐴}} ⊆ (Edg‘𝐺)))
7057, 61, 693bitrd 297 . . . . . . . . . . 11 (((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ 𝐺 ∈ USGraph) → (¬ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐵})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝐴}} ⊆ (Edg‘𝐺)))
7154, 70orbi12d 905 . . . . . . . . . 10 (((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ 𝐺 ∈ USGraph) → ((¬ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐴})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ∨ ¬ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐵})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)) ↔ (¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ (Edg‘𝐺) ∨ ¬ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝐴}} ⊆ (Edg‘𝐺))))
7238, 71mpbird 249 . . . . . . . . 9 (((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ 𝐺 ∈ USGraph) → (¬ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐴})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ∨ ¬ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐵})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))
73 sneq 4407 . . . . . . . . . . . . . . 15 (𝑘 = 𝐴 → {𝑘} = {𝐴})
7473difeq2d 3950 . . . . . . . . . . . . . 14 (𝑘 = 𝐴 → ({𝐴, 𝐵} ∖ {𝑘}) = ({𝐴, 𝐵} ∖ {𝐴}))
75 preq2 4500 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝐴 → {𝑥, 𝑘} = {𝑥, 𝐴})
7675preq1d 4505 . . . . . . . . . . . . . . . 16 (𝑘 = 𝐴 → {{𝑥, 𝑘}, {𝑥, 𝑙}} = {{𝑥, 𝐴}, {𝑥, 𝑙}})
7776sseq1d 3850 . . . . . . . . . . . . . . 15 (𝑘 = 𝐴 → ({{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ {{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))
7877reubidv 3313 . . . . . . . . . . . . . 14 (𝑘 = 𝐴 → (∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))
7974, 78raleqbidv 3325 . . . . . . . . . . . . 13 (𝑘 = 𝐴 → (∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝑘})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐴})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))
8079notbid 310 . . . . . . . . . . . 12 (𝑘 = 𝐴 → (¬ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝑘})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ¬ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐴})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))
81 sneq 4407 . . . . . . . . . . . . . . 15 (𝑘 = 𝐵 → {𝑘} = {𝐵})
8281difeq2d 3950 . . . . . . . . . . . . . 14 (𝑘 = 𝐵 → ({𝐴, 𝐵} ∖ {𝑘}) = ({𝐴, 𝐵} ∖ {𝐵}))
83 preq2 4500 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝐵 → {𝑥, 𝑘} = {𝑥, 𝐵})
8483preq1d 4505 . . . . . . . . . . . . . . . 16 (𝑘 = 𝐵 → {{𝑥, 𝑘}, {𝑥, 𝑙}} = {{𝑥, 𝐵}, {𝑥, 𝑙}})
8584sseq1d 3850 . . . . . . . . . . . . . . 15 (𝑘 = 𝐵 → ({{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))
8685reubidv 3313 . . . . . . . . . . . . . 14 (𝑘 = 𝐵 → (∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))
8782, 86raleqbidv 3325 . . . . . . . . . . . . 13 (𝑘 = 𝐵 → (∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝑘})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐵})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))
8887notbid 310 . . . . . . . . . . . 12 (𝑘 = 𝐵 → (¬ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝑘})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ¬ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐵})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))
8980, 88rexprg 4463 . . . . . . . . . . 11 ((𝐴𝑋𝐵𝑌) → (∃𝑘 ∈ {𝐴, 𝐵} ¬ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝑘})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ (¬ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐴})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ∨ ¬ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐵})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺))))
90893adant3 1123 . . . . . . . . . 10 ((𝐴𝑋𝐵𝑌𝐴𝐵) → (∃𝑘 ∈ {𝐴, 𝐵} ¬ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝑘})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ (¬ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐴})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ∨ ¬ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐵})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺))))
9190adantr 474 . . . . . . . . 9 (((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ 𝐺 ∈ USGraph) → (∃𝑘 ∈ {𝐴, 𝐵} ¬ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝑘})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ (¬ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐴})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐴}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ∨ ¬ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝐵})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝐵}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺))))
9272, 91mpbird 249 . . . . . . . 8 (((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ 𝐺 ∈ USGraph) → ∃𝑘 ∈ {𝐴, 𝐵} ¬ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝑘})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺))
93 rexnal 3175 . . . . . . . 8 (∃𝑘 ∈ {𝐴, 𝐵} ¬ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝑘})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ¬ ∀𝑘 ∈ {𝐴, 𝐵}∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝑘})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺))
9492, 93sylib 210 . . . . . . 7 (((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ 𝐺 ∈ USGraph) → ¬ ∀𝑘 ∈ {𝐴, 𝐵}∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝑘})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺))
9594intnand 484 . . . . . 6 (((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ 𝐺 ∈ USGraph) → ¬ (𝐺 ∈ USGraph ∧ ∀𝑘 ∈ {𝐴, 𝐵}∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝑘})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))
9695adantlr 705 . . . . 5 ((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (Vtx‘𝐺) = {𝐴, 𝐵}) ∧ 𝐺 ∈ USGraph) → ¬ (𝐺 ∈ USGraph ∧ ∀𝑘 ∈ {𝐴, 𝐵}∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝑘})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))
97 id 22 . . . . . . . . . 10 ((Vtx‘𝐺) = {𝐴, 𝐵} → (Vtx‘𝐺) = {𝐴, 𝐵})
98 difeq1 3943 . . . . . . . . . . 11 ((Vtx‘𝐺) = {𝐴, 𝐵} → ((Vtx‘𝐺) ∖ {𝑘}) = ({𝐴, 𝐵} ∖ {𝑘}))
99 reueq1 3331 . . . . . . . . . . 11 ((Vtx‘𝐺) = {𝐴, 𝐵} → (∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))
10098, 99raleqbidv 3325 . . . . . . . . . 10 ((Vtx‘𝐺) = {𝐴, 𝐵} → (∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝑘})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))
10197, 100raleqbidv 3325 . . . . . . . . 9 ((Vtx‘𝐺) = {𝐴, 𝐵} → (∀𝑘 ∈ (Vtx‘𝐺)∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ∀𝑘 ∈ {𝐴, 𝐵}∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝑘})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))
102101anbi2d 622 . . . . . . . 8 ((Vtx‘𝐺) = {𝐴, 𝐵} → ((𝐺 ∈ USGraph ∧ ∀𝑘 ∈ (Vtx‘𝐺)∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)) ↔ (𝐺 ∈ USGraph ∧ ∀𝑘 ∈ {𝐴, 𝐵}∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝑘})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺))))
103102notbid 310 . . . . . . 7 ((Vtx‘𝐺) = {𝐴, 𝐵} → (¬ (𝐺 ∈ USGraph ∧ ∀𝑘 ∈ (Vtx‘𝐺)∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)) ↔ ¬ (𝐺 ∈ USGraph ∧ ∀𝑘 ∈ {𝐴, 𝐵}∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝑘})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺))))
104103adantl 475 . . . . . 6 (((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (Vtx‘𝐺) = {𝐴, 𝐵}) → (¬ (𝐺 ∈ USGraph ∧ ∀𝑘 ∈ (Vtx‘𝐺)∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)) ↔ ¬ (𝐺 ∈ USGraph ∧ ∀𝑘 ∈ {𝐴, 𝐵}∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝑘})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺))))
105104adantr 474 . . . . 5 ((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (Vtx‘𝐺) = {𝐴, 𝐵}) ∧ 𝐺 ∈ USGraph) → (¬ (𝐺 ∈ USGraph ∧ ∀𝑘 ∈ (Vtx‘𝐺)∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)) ↔ ¬ (𝐺 ∈ USGraph ∧ ∀𝑘 ∈ {𝐴, 𝐵}∀𝑙 ∈ ({𝐴, 𝐵} ∖ {𝑘})∃!𝑥 ∈ {𝐴, 𝐵} {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺))))
10696, 105mpbird 249 . . . 4 ((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (Vtx‘𝐺) = {𝐴, 𝐵}) ∧ 𝐺 ∈ USGraph) → ¬ (𝐺 ∈ USGraph ∧ ∀𝑘 ∈ (Vtx‘𝐺)∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))
107 df-nel 3075 . . . . 5 (𝐺 ∉ FriendGraph ↔ ¬ 𝐺 ∈ FriendGraph )
108 eqid 2777 . . . . . 6 (Vtx‘𝐺) = (Vtx‘𝐺)
109108, 2frgrusgrfrcond 27667 . . . . 5 (𝐺 ∈ FriendGraph ↔ (𝐺 ∈ USGraph ∧ ∀𝑘 ∈ (Vtx‘𝐺)∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))
110107, 109xchbinx 326 . . . 4 (𝐺 ∉ FriendGraph ↔ ¬ (𝐺 ∈ USGraph ∧ ∀𝑘 ∈ (Vtx‘𝐺)∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))
111106, 110sylibr 226 . . 3 ((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (Vtx‘𝐺) = {𝐴, 𝐵}) ∧ 𝐺 ∈ USGraph) → 𝐺 ∉ FriendGraph )
112111expcom 404 . 2 (𝐺 ∈ USGraph → (((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (Vtx‘𝐺) = {𝐴, 𝐵}) → 𝐺 ∉ FriendGraph ))
113 frgrusgr 27668 . . . . 5 (𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph)
114113con3i 152 . . . 4 𝐺 ∈ USGraph → ¬ 𝐺 ∈ FriendGraph )
115114, 107sylibr 226 . . 3 𝐺 ∈ USGraph → 𝐺 ∉ FriendGraph )
116115a1d 25 . 2 𝐺 ∈ USGraph → (((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (Vtx‘𝐺) = {𝐴, 𝐵}) → 𝐺 ∉ FriendGraph ))
117112, 116pm2.61i 177 1 (((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (Vtx‘𝐺) = {𝐴, 𝐵}) → 𝐺 ∉ FriendGraph )
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 198   ∧ wa 386   ∨ wo 836   ∧ w3a 1071   = wceq 1601   ∈ wcel 2106   ≠ wne 2968   ∉ wnel 3074  ∀wral 3089  ∃wrex 3090  ∃!wreu 3091   ∖ cdif 3788   ⊆ wss 3791  {csn 4397  {cpr 4399  ‘cfv 6135  Vtxcvtx 26344  Edgcedg 26395  USGraphcusgr 26498   FriendGraph cfrgr 27664 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-8 2108  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2550  df-eu 2586  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ne 2969  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3399  df-sbc 3652  df-csb 3751  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-pss 3807  df-nul 4141  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4672  df-int 4711  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-1st 7445  df-2nd 7446  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-oadd 7847  df-er 8026  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-card 9098  df-cda 9325  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-nn 11375  df-2 11438  df-n0 11643  df-z 11729  df-uz 11993  df-fz 12644  df-hash 13436  df-edg 26396  df-umgr 26431  df-usgr 26500  df-frgr 27665 This theorem is referenced by:  1to2vfriswmgr  27687  frgrregord013  27827
 Copyright terms: Public domain W3C validator