![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > difprsnss | Structured version Visualization version GIF version |
Description: Removal of a singleton from an unordered pair. (Contributed by NM, 16-Mar-2006.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
Ref | Expression |
---|---|
difprsnss | ⊢ ({𝐴, 𝐵} ∖ {𝐴}) ⊆ {𝐵} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3411 | . . . . 5 ⊢ 𝑥 ∈ V | |
2 | 1 | elpr 4458 | . . . 4 ⊢ (𝑥 ∈ {𝐴, 𝐵} ↔ (𝑥 = 𝐴 ∨ 𝑥 = 𝐵)) |
3 | velsn 4451 | . . . . 5 ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) | |
4 | 3 | notbii 312 | . . . 4 ⊢ (¬ 𝑥 ∈ {𝐴} ↔ ¬ 𝑥 = 𝐴) |
5 | biorf 921 | . . . . 5 ⊢ (¬ 𝑥 = 𝐴 → (𝑥 = 𝐵 ↔ (𝑥 = 𝐴 ∨ 𝑥 = 𝐵))) | |
6 | 5 | biimparc 472 | . . . 4 ⊢ (((𝑥 = 𝐴 ∨ 𝑥 = 𝐵) ∧ ¬ 𝑥 = 𝐴) → 𝑥 = 𝐵) |
7 | 2, 4, 6 | syl2anb 589 | . . 3 ⊢ ((𝑥 ∈ {𝐴, 𝐵} ∧ ¬ 𝑥 ∈ {𝐴}) → 𝑥 = 𝐵) |
8 | eldif 3832 | . . 3 ⊢ (𝑥 ∈ ({𝐴, 𝐵} ∖ {𝐴}) ↔ (𝑥 ∈ {𝐴, 𝐵} ∧ ¬ 𝑥 ∈ {𝐴})) | |
9 | velsn 4451 | . . 3 ⊢ (𝑥 ∈ {𝐵} ↔ 𝑥 = 𝐵) | |
10 | 7, 8, 9 | 3imtr4i 284 | . 2 ⊢ (𝑥 ∈ ({𝐴, 𝐵} ∖ {𝐴}) → 𝑥 ∈ {𝐵}) |
11 | 10 | ssriv 3855 | 1 ⊢ ({𝐴, 𝐵} ∖ {𝐴}) ⊆ {𝐵} |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 387 ∨ wo 834 = wceq 1508 ∈ wcel 2051 ∖ cdif 3819 ⊆ wss 3822 {csn 4435 {cpr 4437 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-ext 2743 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-clab 2752 df-cleq 2764 df-clel 2839 df-nfc 2911 df-v 3410 df-dif 3825 df-un 3827 df-in 3829 df-ss 3836 df-sn 4436 df-pr 4438 |
This theorem is referenced by: en2other2 9227 pmtrprfv 18354 itg11 24010 |
Copyright terms: Public domain | W3C validator |