![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > difprsnss | Structured version Visualization version GIF version |
Description: Removal of a singleton from an unordered pair. (Contributed by NM, 16-Mar-2006.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
Ref | Expression |
---|---|
difprsnss | ⊢ ({𝐴, 𝐵} ∖ {𝐴}) ⊆ {𝐵} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3492 | . . . . 5 ⊢ 𝑥 ∈ V | |
2 | 1 | elpr 4672 | . . . 4 ⊢ (𝑥 ∈ {𝐴, 𝐵} ↔ (𝑥 = 𝐴 ∨ 𝑥 = 𝐵)) |
3 | velsn 4664 | . . . . 5 ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) | |
4 | 3 | notbii 320 | . . . 4 ⊢ (¬ 𝑥 ∈ {𝐴} ↔ ¬ 𝑥 = 𝐴) |
5 | biorf 935 | . . . . 5 ⊢ (¬ 𝑥 = 𝐴 → (𝑥 = 𝐵 ↔ (𝑥 = 𝐴 ∨ 𝑥 = 𝐵))) | |
6 | 5 | biimparc 479 | . . . 4 ⊢ (((𝑥 = 𝐴 ∨ 𝑥 = 𝐵) ∧ ¬ 𝑥 = 𝐴) → 𝑥 = 𝐵) |
7 | 2, 4, 6 | syl2anb 597 | . . 3 ⊢ ((𝑥 ∈ {𝐴, 𝐵} ∧ ¬ 𝑥 ∈ {𝐴}) → 𝑥 = 𝐵) |
8 | eldif 3986 | . . 3 ⊢ (𝑥 ∈ ({𝐴, 𝐵} ∖ {𝐴}) ↔ (𝑥 ∈ {𝐴, 𝐵} ∧ ¬ 𝑥 ∈ {𝐴})) | |
9 | velsn 4664 | . . 3 ⊢ (𝑥 ∈ {𝐵} ↔ 𝑥 = 𝐵) | |
10 | 7, 8, 9 | 3imtr4i 292 | . 2 ⊢ (𝑥 ∈ ({𝐴, 𝐵} ∖ {𝐴}) → 𝑥 ∈ {𝐵}) |
11 | 10 | ssriv 4012 | 1 ⊢ ({𝐴, 𝐵} ∖ {𝐴}) ⊆ {𝐵} |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 395 ∨ wo 846 = wceq 1537 ∈ wcel 2108 ∖ cdif 3973 ⊆ wss 3976 {csn 4648 {cpr 4650 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-sn 4649 df-pr 4651 |
This theorem is referenced by: en2other2 10078 pmtrprfv 19495 itg11 25745 |
Copyright terms: Public domain | W3C validator |