Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > en2other2 | Structured version Visualization version GIF version |
Description: Taking the other element twice in a pair gets back to the original element. (Contributed by Stefan O'Rear, 22-Aug-2015.) |
Ref | Expression |
---|---|
en2other2 | ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → ∪ (𝑃 ∖ {∪ (𝑃 ∖ {𝑋})}) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | en2eleq 9843 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → 𝑃 = {𝑋, ∪ (𝑃 ∖ {𝑋})}) | |
2 | prcom 4677 | . . . . . . 7 ⊢ {𝑋, ∪ (𝑃 ∖ {𝑋})} = {∪ (𝑃 ∖ {𝑋}), 𝑋} | |
3 | 1, 2 | eqtrdi 2792 | . . . . . 6 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → 𝑃 = {∪ (𝑃 ∖ {𝑋}), 𝑋}) |
4 | 3 | difeq1d 4066 | . . . . 5 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → (𝑃 ∖ {∪ (𝑃 ∖ {𝑋})}) = ({∪ (𝑃 ∖ {𝑋}), 𝑋} ∖ {∪ (𝑃 ∖ {𝑋})})) |
5 | difprsnss 4743 | . . . . 5 ⊢ ({∪ (𝑃 ∖ {𝑋}), 𝑋} ∖ {∪ (𝑃 ∖ {𝑋})}) ⊆ {𝑋} | |
6 | 4, 5 | eqsstrdi 3984 | . . . 4 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → (𝑃 ∖ {∪ (𝑃 ∖ {𝑋})}) ⊆ {𝑋}) |
7 | simpl 483 | . . . . . 6 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → 𝑋 ∈ 𝑃) | |
8 | 1onn 8519 | . . . . . . . . 9 ⊢ 1o ∈ ω | |
9 | simpr 485 | . . . . . . . . . 10 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → 𝑃 ≈ 2o) | |
10 | df-2o 8346 | . . . . . . . . . 10 ⊢ 2o = suc 1o | |
11 | 9, 10 | breqtrdi 5127 | . . . . . . . . 9 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → 𝑃 ≈ suc 1o) |
12 | dif1ennn 9004 | . . . . . . . . 9 ⊢ ((1o ∈ ω ∧ 𝑃 ≈ suc 1o ∧ 𝑋 ∈ 𝑃) → (𝑃 ∖ {𝑋}) ≈ 1o) | |
13 | 8, 11, 7, 12 | mp3an2i 1465 | . . . . . . . 8 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → (𝑃 ∖ {𝑋}) ≈ 1o) |
14 | en1uniel 8871 | . . . . . . . 8 ⊢ ((𝑃 ∖ {𝑋}) ≈ 1o → ∪ (𝑃 ∖ {𝑋}) ∈ (𝑃 ∖ {𝑋})) | |
15 | eldifsni 4734 | . . . . . . . 8 ⊢ (∪ (𝑃 ∖ {𝑋}) ∈ (𝑃 ∖ {𝑋}) → ∪ (𝑃 ∖ {𝑋}) ≠ 𝑋) | |
16 | 13, 14, 15 | 3syl 18 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → ∪ (𝑃 ∖ {𝑋}) ≠ 𝑋) |
17 | 16 | necomd 2996 | . . . . . 6 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → 𝑋 ≠ ∪ (𝑃 ∖ {𝑋})) |
18 | eldifsn 4731 | . . . . . 6 ⊢ (𝑋 ∈ (𝑃 ∖ {∪ (𝑃 ∖ {𝑋})}) ↔ (𝑋 ∈ 𝑃 ∧ 𝑋 ≠ ∪ (𝑃 ∖ {𝑋}))) | |
19 | 7, 17, 18 | sylanbrc 583 | . . . . 5 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → 𝑋 ∈ (𝑃 ∖ {∪ (𝑃 ∖ {𝑋})})) |
20 | 19 | snssd 4753 | . . . 4 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → {𝑋} ⊆ (𝑃 ∖ {∪ (𝑃 ∖ {𝑋})})) |
21 | 6, 20 | eqssd 3947 | . . 3 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → (𝑃 ∖ {∪ (𝑃 ∖ {𝑋})}) = {𝑋}) |
22 | 21 | unieqd 4863 | . 2 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → ∪ (𝑃 ∖ {∪ (𝑃 ∖ {𝑋})}) = ∪ {𝑋}) |
23 | unisng 4870 | . . 3 ⊢ (𝑋 ∈ 𝑃 → ∪ {𝑋} = 𝑋) | |
24 | 23 | adantr 481 | . 2 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → ∪ {𝑋} = 𝑋) |
25 | 22, 24 | eqtrd 2776 | 1 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → ∪ (𝑃 ∖ {∪ (𝑃 ∖ {𝑋})}) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ≠ wne 2940 ∖ cdif 3893 {csn 4570 {cpr 4572 ∪ cuni 4849 class class class wbr 5086 suc csuc 6290 ωcom 7758 1oc1o 8338 2oc2o 8339 ≈ cen 8779 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5237 ax-nul 5244 ax-pow 5302 ax-pr 5366 ax-un 7629 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3442 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-pss 3915 df-nul 4267 df-if 4471 df-pw 4546 df-sn 4571 df-pr 4573 df-op 4577 df-uni 4850 df-br 5087 df-opab 5149 df-mpt 5170 df-tr 5204 df-id 5506 df-eprel 5512 df-po 5520 df-so 5521 df-fr 5562 df-we 5564 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-ord 6291 df-on 6292 df-lim 6293 df-suc 6294 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-om 7759 df-1o 8345 df-2o 8346 df-er 8547 df-en 8783 df-dom 8784 df-sdom 8785 df-fin 8786 |
This theorem is referenced by: pmtrfinv 19142 |
Copyright terms: Public domain | W3C validator |