Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  en2other2 Structured version   Visualization version   GIF version

Theorem en2other2 9424
 Description: Taking the other element twice in a pair gets back to the original element. (Contributed by Stefan O'Rear, 22-Aug-2015.)
Assertion
Ref Expression
en2other2 ((𝑋𝑃𝑃 ≈ 2o) → (𝑃 ∖ { (𝑃 ∖ {𝑋})}) = 𝑋)

Proof of Theorem en2other2
StepHypRef Expression
1 en2eleq 9423 . . . . . . 7 ((𝑋𝑃𝑃 ≈ 2o) → 𝑃 = {𝑋, (𝑃 ∖ {𝑋})})
2 prcom 4631 . . . . . . 7 {𝑋, (𝑃 ∖ {𝑋})} = { (𝑃 ∖ {𝑋}), 𝑋}
31, 2eqtrdi 2852 . . . . . 6 ((𝑋𝑃𝑃 ≈ 2o) → 𝑃 = { (𝑃 ∖ {𝑋}), 𝑋})
43difeq1d 4052 . . . . 5 ((𝑋𝑃𝑃 ≈ 2o) → (𝑃 ∖ { (𝑃 ∖ {𝑋})}) = ({ (𝑃 ∖ {𝑋}), 𝑋} ∖ { (𝑃 ∖ {𝑋})}))
5 difprsnss 4695 . . . . 5 ({ (𝑃 ∖ {𝑋}), 𝑋} ∖ { (𝑃 ∖ {𝑋})}) ⊆ {𝑋}
64, 5eqsstrdi 3972 . . . 4 ((𝑋𝑃𝑃 ≈ 2o) → (𝑃 ∖ { (𝑃 ∖ {𝑋})}) ⊆ {𝑋})
7 simpl 486 . . . . . 6 ((𝑋𝑃𝑃 ≈ 2o) → 𝑋𝑃)
8 1onn 8252 . . . . . . . . 9 1o ∈ ω
9 simpr 488 . . . . . . . . . 10 ((𝑋𝑃𝑃 ≈ 2o) → 𝑃 ≈ 2o)
10 df-2o 8090 . . . . . . . . . 10 2o = suc 1o
119, 10breqtrdi 5074 . . . . . . . . 9 ((𝑋𝑃𝑃 ≈ 2o) → 𝑃 ≈ suc 1o)
12 dif1en 8739 . . . . . . . . 9 ((1o ∈ ω ∧ 𝑃 ≈ suc 1o𝑋𝑃) → (𝑃 ∖ {𝑋}) ≈ 1o)
138, 11, 7, 12mp3an2i 1463 . . . . . . . 8 ((𝑋𝑃𝑃 ≈ 2o) → (𝑃 ∖ {𝑋}) ≈ 1o)
14 en1uniel 8568 . . . . . . . 8 ((𝑃 ∖ {𝑋}) ≈ 1o (𝑃 ∖ {𝑋}) ∈ (𝑃 ∖ {𝑋}))
15 eldifsni 4686 . . . . . . . 8 ( (𝑃 ∖ {𝑋}) ∈ (𝑃 ∖ {𝑋}) → (𝑃 ∖ {𝑋}) ≠ 𝑋)
1613, 14, 153syl 18 . . . . . . 7 ((𝑋𝑃𝑃 ≈ 2o) → (𝑃 ∖ {𝑋}) ≠ 𝑋)
1716necomd 3045 . . . . . 6 ((𝑋𝑃𝑃 ≈ 2o) → 𝑋 (𝑃 ∖ {𝑋}))
18 eldifsn 4683 . . . . . 6 (𝑋 ∈ (𝑃 ∖ { (𝑃 ∖ {𝑋})}) ↔ (𝑋𝑃𝑋 (𝑃 ∖ {𝑋})))
197, 17, 18sylanbrc 586 . . . . 5 ((𝑋𝑃𝑃 ≈ 2o) → 𝑋 ∈ (𝑃 ∖ { (𝑃 ∖ {𝑋})}))
2019snssd 4705 . . . 4 ((𝑋𝑃𝑃 ≈ 2o) → {𝑋} ⊆ (𝑃 ∖ { (𝑃 ∖ {𝑋})}))
216, 20eqssd 3935 . . 3 ((𝑋𝑃𝑃 ≈ 2o) → (𝑃 ∖ { (𝑃 ∖ {𝑋})}) = {𝑋})
2221unieqd 4817 . 2 ((𝑋𝑃𝑃 ≈ 2o) → (𝑃 ∖ { (𝑃 ∖ {𝑋})}) = {𝑋})
23 unisng 4822 . . 3 (𝑋𝑃 {𝑋} = 𝑋)
2423adantr 484 . 2 ((𝑋𝑃𝑃 ≈ 2o) → {𝑋} = 𝑋)
2522, 24eqtrd 2836 1 ((𝑋𝑃𝑃 ≈ 2o) → (𝑃 ∖ { (𝑃 ∖ {𝑋})}) = 𝑋)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2112   ≠ wne 2990   ∖ cdif 3881  {csn 4528  {cpr 4530  ∪ cuni 4803   class class class wbr 5033  suc csuc 6165  ωcom 7564  1oc1o 8082  2oc2o 8083   ≈ cen 8493 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-ral 3114  df-rex 3115  df-reu 3116  df-rab 3118  df-v 3446  df-sbc 3724  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-br 5034  df-opab 5096  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-om 7565  df-1o 8089  df-2o 8090  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500 This theorem is referenced by:  pmtrfinv  18585
 Copyright terms: Public domain W3C validator