MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  en2other2 Structured version   Visualization version   GIF version

Theorem en2other2 9969
Description: Taking the other element twice in a pair gets back to the original element. (Contributed by Stefan O'Rear, 22-Aug-2015.)
Assertion
Ref Expression
en2other2 ((𝑋𝑃𝑃 ≈ 2o) → (𝑃 ∖ { (𝑃 ∖ {𝑋})}) = 𝑋)

Proof of Theorem en2other2
StepHypRef Expression
1 en2eleq 9968 . . . . . . 7 ((𝑋𝑃𝑃 ≈ 2o) → 𝑃 = {𝑋, (𝑃 ∖ {𝑋})})
2 prcom 4699 . . . . . . 7 {𝑋, (𝑃 ∖ {𝑋})} = { (𝑃 ∖ {𝑋}), 𝑋}
31, 2eqtrdi 2781 . . . . . 6 ((𝑋𝑃𝑃 ≈ 2o) → 𝑃 = { (𝑃 ∖ {𝑋}), 𝑋})
43difeq1d 4091 . . . . 5 ((𝑋𝑃𝑃 ≈ 2o) → (𝑃 ∖ { (𝑃 ∖ {𝑋})}) = ({ (𝑃 ∖ {𝑋}), 𝑋} ∖ { (𝑃 ∖ {𝑋})}))
5 difprsnss 4766 . . . . 5 ({ (𝑃 ∖ {𝑋}), 𝑋} ∖ { (𝑃 ∖ {𝑋})}) ⊆ {𝑋}
64, 5eqsstrdi 3994 . . . 4 ((𝑋𝑃𝑃 ≈ 2o) → (𝑃 ∖ { (𝑃 ∖ {𝑋})}) ⊆ {𝑋})
7 simpl 482 . . . . . 6 ((𝑋𝑃𝑃 ≈ 2o) → 𝑋𝑃)
8 1onn 8607 . . . . . . . . 9 1o ∈ ω
9 simpr 484 . . . . . . . . . 10 ((𝑋𝑃𝑃 ≈ 2o) → 𝑃 ≈ 2o)
10 df-2o 8438 . . . . . . . . . 10 2o = suc 1o
119, 10breqtrdi 5151 . . . . . . . . 9 ((𝑋𝑃𝑃 ≈ 2o) → 𝑃 ≈ suc 1o)
12 dif1ennn 9131 . . . . . . . . 9 ((1o ∈ ω ∧ 𝑃 ≈ suc 1o𝑋𝑃) → (𝑃 ∖ {𝑋}) ≈ 1o)
138, 11, 7, 12mp3an2i 1468 . . . . . . . 8 ((𝑋𝑃𝑃 ≈ 2o) → (𝑃 ∖ {𝑋}) ≈ 1o)
14 en1uniel 9003 . . . . . . . 8 ((𝑃 ∖ {𝑋}) ≈ 1o (𝑃 ∖ {𝑋}) ∈ (𝑃 ∖ {𝑋}))
15 eldifsni 4757 . . . . . . . 8 ( (𝑃 ∖ {𝑋}) ∈ (𝑃 ∖ {𝑋}) → (𝑃 ∖ {𝑋}) ≠ 𝑋)
1613, 14, 153syl 18 . . . . . . 7 ((𝑋𝑃𝑃 ≈ 2o) → (𝑃 ∖ {𝑋}) ≠ 𝑋)
1716necomd 2981 . . . . . 6 ((𝑋𝑃𝑃 ≈ 2o) → 𝑋 (𝑃 ∖ {𝑋}))
18 eldifsn 4753 . . . . . 6 (𝑋 ∈ (𝑃 ∖ { (𝑃 ∖ {𝑋})}) ↔ (𝑋𝑃𝑋 (𝑃 ∖ {𝑋})))
197, 17, 18sylanbrc 583 . . . . 5 ((𝑋𝑃𝑃 ≈ 2o) → 𝑋 ∈ (𝑃 ∖ { (𝑃 ∖ {𝑋})}))
2019snssd 4776 . . . 4 ((𝑋𝑃𝑃 ≈ 2o) → {𝑋} ⊆ (𝑃 ∖ { (𝑃 ∖ {𝑋})}))
216, 20eqssd 3967 . . 3 ((𝑋𝑃𝑃 ≈ 2o) → (𝑃 ∖ { (𝑃 ∖ {𝑋})}) = {𝑋})
2221unieqd 4887 . 2 ((𝑋𝑃𝑃 ≈ 2o) → (𝑃 ∖ { (𝑃 ∖ {𝑋})}) = {𝑋})
23 unisng 4892 . . 3 (𝑋𝑃 {𝑋} = 𝑋)
2423adantr 480 . 2 ((𝑋𝑃𝑃 ≈ 2o) → {𝑋} = 𝑋)
2522, 24eqtrd 2765 1 ((𝑋𝑃𝑃 ≈ 2o) → (𝑃 ∖ { (𝑃 ∖ {𝑋})}) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2926  cdif 3914  {csn 4592  {cpr 4594   cuni 4874   class class class wbr 5110  suc csuc 6337  ωcom 7845  1oc1o 8430  2oc2o 8431  cen 8918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-om 7846  df-1o 8437  df-2o 8438  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925
This theorem is referenced by:  pmtrfinv  19398
  Copyright terms: Public domain W3C validator