MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  en2other2 Structured version   Visualization version   GIF version

Theorem en2other2 10049
Description: Taking the other element twice in a pair gets back to the original element. (Contributed by Stefan O'Rear, 22-Aug-2015.)
Assertion
Ref Expression
en2other2 ((𝑋𝑃𝑃 ≈ 2o) → (𝑃 ∖ { (𝑃 ∖ {𝑋})}) = 𝑋)

Proof of Theorem en2other2
StepHypRef Expression
1 en2eleq 10048 . . . . . . 7 ((𝑋𝑃𝑃 ≈ 2o) → 𝑃 = {𝑋, (𝑃 ∖ {𝑋})})
2 prcom 4732 . . . . . . 7 {𝑋, (𝑃 ∖ {𝑋})} = { (𝑃 ∖ {𝑋}), 𝑋}
31, 2eqtrdi 2793 . . . . . 6 ((𝑋𝑃𝑃 ≈ 2o) → 𝑃 = { (𝑃 ∖ {𝑋}), 𝑋})
43difeq1d 4125 . . . . 5 ((𝑋𝑃𝑃 ≈ 2o) → (𝑃 ∖ { (𝑃 ∖ {𝑋})}) = ({ (𝑃 ∖ {𝑋}), 𝑋} ∖ { (𝑃 ∖ {𝑋})}))
5 difprsnss 4799 . . . . 5 ({ (𝑃 ∖ {𝑋}), 𝑋} ∖ { (𝑃 ∖ {𝑋})}) ⊆ {𝑋}
64, 5eqsstrdi 4028 . . . 4 ((𝑋𝑃𝑃 ≈ 2o) → (𝑃 ∖ { (𝑃 ∖ {𝑋})}) ⊆ {𝑋})
7 simpl 482 . . . . . 6 ((𝑋𝑃𝑃 ≈ 2o) → 𝑋𝑃)
8 1onn 8678 . . . . . . . . 9 1o ∈ ω
9 simpr 484 . . . . . . . . . 10 ((𝑋𝑃𝑃 ≈ 2o) → 𝑃 ≈ 2o)
10 df-2o 8507 . . . . . . . . . 10 2o = suc 1o
119, 10breqtrdi 5184 . . . . . . . . 9 ((𝑋𝑃𝑃 ≈ 2o) → 𝑃 ≈ suc 1o)
12 dif1ennn 9201 . . . . . . . . 9 ((1o ∈ ω ∧ 𝑃 ≈ suc 1o𝑋𝑃) → (𝑃 ∖ {𝑋}) ≈ 1o)
138, 11, 7, 12mp3an2i 1468 . . . . . . . 8 ((𝑋𝑃𝑃 ≈ 2o) → (𝑃 ∖ {𝑋}) ≈ 1o)
14 en1uniel 9069 . . . . . . . 8 ((𝑃 ∖ {𝑋}) ≈ 1o (𝑃 ∖ {𝑋}) ∈ (𝑃 ∖ {𝑋}))
15 eldifsni 4790 . . . . . . . 8 ( (𝑃 ∖ {𝑋}) ∈ (𝑃 ∖ {𝑋}) → (𝑃 ∖ {𝑋}) ≠ 𝑋)
1613, 14, 153syl 18 . . . . . . 7 ((𝑋𝑃𝑃 ≈ 2o) → (𝑃 ∖ {𝑋}) ≠ 𝑋)
1716necomd 2996 . . . . . 6 ((𝑋𝑃𝑃 ≈ 2o) → 𝑋 (𝑃 ∖ {𝑋}))
18 eldifsn 4786 . . . . . 6 (𝑋 ∈ (𝑃 ∖ { (𝑃 ∖ {𝑋})}) ↔ (𝑋𝑃𝑋 (𝑃 ∖ {𝑋})))
197, 17, 18sylanbrc 583 . . . . 5 ((𝑋𝑃𝑃 ≈ 2o) → 𝑋 ∈ (𝑃 ∖ { (𝑃 ∖ {𝑋})}))
2019snssd 4809 . . . 4 ((𝑋𝑃𝑃 ≈ 2o) → {𝑋} ⊆ (𝑃 ∖ { (𝑃 ∖ {𝑋})}))
216, 20eqssd 4001 . . 3 ((𝑋𝑃𝑃 ≈ 2o) → (𝑃 ∖ { (𝑃 ∖ {𝑋})}) = {𝑋})
2221unieqd 4920 . 2 ((𝑋𝑃𝑃 ≈ 2o) → (𝑃 ∖ { (𝑃 ∖ {𝑋})}) = {𝑋})
23 unisng 4925 . . 3 (𝑋𝑃 {𝑋} = 𝑋)
2423adantr 480 . 2 ((𝑋𝑃𝑃 ≈ 2o) → {𝑋} = 𝑋)
2522, 24eqtrd 2777 1 ((𝑋𝑃𝑃 ≈ 2o) → (𝑃 ∖ { (𝑃 ∖ {𝑋})}) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wne 2940  cdif 3948  {csn 4626  {cpr 4628   cuni 4907   class class class wbr 5143  suc csuc 6386  ωcom 7887  1oc1o 8499  2oc2o 8500  cen 8982
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-om 7888  df-1o 8506  df-2o 8507  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989
This theorem is referenced by:  pmtrfinv  19479
  Copyright terms: Public domain W3C validator