MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  en2other2 Structured version   Visualization version   GIF version

Theorem en2other2 10023
Description: Taking the other element twice in a pair gets back to the original element. (Contributed by Stefan O'Rear, 22-Aug-2015.)
Assertion
Ref Expression
en2other2 ((𝑋𝑃𝑃 ≈ 2o) → (𝑃 ∖ { (𝑃 ∖ {𝑋})}) = 𝑋)

Proof of Theorem en2other2
StepHypRef Expression
1 en2eleq 10022 . . . . . . 7 ((𝑋𝑃𝑃 ≈ 2o) → 𝑃 = {𝑋, (𝑃 ∖ {𝑋})})
2 prcom 4708 . . . . . . 7 {𝑋, (𝑃 ∖ {𝑋})} = { (𝑃 ∖ {𝑋}), 𝑋}
31, 2eqtrdi 2786 . . . . . 6 ((𝑋𝑃𝑃 ≈ 2o) → 𝑃 = { (𝑃 ∖ {𝑋}), 𝑋})
43difeq1d 4100 . . . . 5 ((𝑋𝑃𝑃 ≈ 2o) → (𝑃 ∖ { (𝑃 ∖ {𝑋})}) = ({ (𝑃 ∖ {𝑋}), 𝑋} ∖ { (𝑃 ∖ {𝑋})}))
5 difprsnss 4775 . . . . 5 ({ (𝑃 ∖ {𝑋}), 𝑋} ∖ { (𝑃 ∖ {𝑋})}) ⊆ {𝑋}
64, 5eqsstrdi 4003 . . . 4 ((𝑋𝑃𝑃 ≈ 2o) → (𝑃 ∖ { (𝑃 ∖ {𝑋})}) ⊆ {𝑋})
7 simpl 482 . . . . . 6 ((𝑋𝑃𝑃 ≈ 2o) → 𝑋𝑃)
8 1onn 8652 . . . . . . . . 9 1o ∈ ω
9 simpr 484 . . . . . . . . . 10 ((𝑋𝑃𝑃 ≈ 2o) → 𝑃 ≈ 2o)
10 df-2o 8481 . . . . . . . . . 10 2o = suc 1o
119, 10breqtrdi 5160 . . . . . . . . 9 ((𝑋𝑃𝑃 ≈ 2o) → 𝑃 ≈ suc 1o)
12 dif1ennn 9175 . . . . . . . . 9 ((1o ∈ ω ∧ 𝑃 ≈ suc 1o𝑋𝑃) → (𝑃 ∖ {𝑋}) ≈ 1o)
138, 11, 7, 12mp3an2i 1468 . . . . . . . 8 ((𝑋𝑃𝑃 ≈ 2o) → (𝑃 ∖ {𝑋}) ≈ 1o)
14 en1uniel 9043 . . . . . . . 8 ((𝑃 ∖ {𝑋}) ≈ 1o (𝑃 ∖ {𝑋}) ∈ (𝑃 ∖ {𝑋}))
15 eldifsni 4766 . . . . . . . 8 ( (𝑃 ∖ {𝑋}) ∈ (𝑃 ∖ {𝑋}) → (𝑃 ∖ {𝑋}) ≠ 𝑋)
1613, 14, 153syl 18 . . . . . . 7 ((𝑋𝑃𝑃 ≈ 2o) → (𝑃 ∖ {𝑋}) ≠ 𝑋)
1716necomd 2987 . . . . . 6 ((𝑋𝑃𝑃 ≈ 2o) → 𝑋 (𝑃 ∖ {𝑋}))
18 eldifsn 4762 . . . . . 6 (𝑋 ∈ (𝑃 ∖ { (𝑃 ∖ {𝑋})}) ↔ (𝑋𝑃𝑋 (𝑃 ∖ {𝑋})))
197, 17, 18sylanbrc 583 . . . . 5 ((𝑋𝑃𝑃 ≈ 2o) → 𝑋 ∈ (𝑃 ∖ { (𝑃 ∖ {𝑋})}))
2019snssd 4785 . . . 4 ((𝑋𝑃𝑃 ≈ 2o) → {𝑋} ⊆ (𝑃 ∖ { (𝑃 ∖ {𝑋})}))
216, 20eqssd 3976 . . 3 ((𝑋𝑃𝑃 ≈ 2o) → (𝑃 ∖ { (𝑃 ∖ {𝑋})}) = {𝑋})
2221unieqd 4896 . 2 ((𝑋𝑃𝑃 ≈ 2o) → (𝑃 ∖ { (𝑃 ∖ {𝑋})}) = {𝑋})
23 unisng 4901 . . 3 (𝑋𝑃 {𝑋} = 𝑋)
2423adantr 480 . 2 ((𝑋𝑃𝑃 ≈ 2o) → {𝑋} = 𝑋)
2522, 24eqtrd 2770 1 ((𝑋𝑃𝑃 ≈ 2o) → (𝑃 ∖ { (𝑃 ∖ {𝑋})}) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wne 2932  cdif 3923  {csn 4601  {cpr 4603   cuni 4883   class class class wbr 5119  suc csuc 6354  ωcom 7861  1oc1o 8473  2oc2o 8474  cen 8956
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-om 7862  df-1o 8480  df-2o 8481  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963
This theorem is referenced by:  pmtrfinv  19442
  Copyright terms: Public domain W3C validator