![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > en2other2 | Structured version Visualization version GIF version |
Description: Taking the other element twice in a pair gets back to the original element. (Contributed by Stefan O'Rear, 22-Aug-2015.) |
Ref | Expression |
---|---|
en2other2 | ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → ∪ (𝑃 ∖ {∪ (𝑃 ∖ {𝑋})}) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | en2eleq 10077 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → 𝑃 = {𝑋, ∪ (𝑃 ∖ {𝑋})}) | |
2 | prcom 4757 | . . . . . . 7 ⊢ {𝑋, ∪ (𝑃 ∖ {𝑋})} = {∪ (𝑃 ∖ {𝑋}), 𝑋} | |
3 | 1, 2 | eqtrdi 2796 | . . . . . 6 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → 𝑃 = {∪ (𝑃 ∖ {𝑋}), 𝑋}) |
4 | 3 | difeq1d 4148 | . . . . 5 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → (𝑃 ∖ {∪ (𝑃 ∖ {𝑋})}) = ({∪ (𝑃 ∖ {𝑋}), 𝑋} ∖ {∪ (𝑃 ∖ {𝑋})})) |
5 | difprsnss 4824 | . . . . 5 ⊢ ({∪ (𝑃 ∖ {𝑋}), 𝑋} ∖ {∪ (𝑃 ∖ {𝑋})}) ⊆ {𝑋} | |
6 | 4, 5 | eqsstrdi 4063 | . . . 4 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → (𝑃 ∖ {∪ (𝑃 ∖ {𝑋})}) ⊆ {𝑋}) |
7 | simpl 482 | . . . . . 6 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → 𝑋 ∈ 𝑃) | |
8 | 1onn 8696 | . . . . . . . . 9 ⊢ 1o ∈ ω | |
9 | simpr 484 | . . . . . . . . . 10 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → 𝑃 ≈ 2o) | |
10 | df-2o 8523 | . . . . . . . . . 10 ⊢ 2o = suc 1o | |
11 | 9, 10 | breqtrdi 5207 | . . . . . . . . 9 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → 𝑃 ≈ suc 1o) |
12 | dif1ennn 9227 | . . . . . . . . 9 ⊢ ((1o ∈ ω ∧ 𝑃 ≈ suc 1o ∧ 𝑋 ∈ 𝑃) → (𝑃 ∖ {𝑋}) ≈ 1o) | |
13 | 8, 11, 7, 12 | mp3an2i 1466 | . . . . . . . 8 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → (𝑃 ∖ {𝑋}) ≈ 1o) |
14 | en1uniel 9093 | . . . . . . . 8 ⊢ ((𝑃 ∖ {𝑋}) ≈ 1o → ∪ (𝑃 ∖ {𝑋}) ∈ (𝑃 ∖ {𝑋})) | |
15 | eldifsni 4815 | . . . . . . . 8 ⊢ (∪ (𝑃 ∖ {𝑋}) ∈ (𝑃 ∖ {𝑋}) → ∪ (𝑃 ∖ {𝑋}) ≠ 𝑋) | |
16 | 13, 14, 15 | 3syl 18 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → ∪ (𝑃 ∖ {𝑋}) ≠ 𝑋) |
17 | 16 | necomd 3002 | . . . . . 6 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → 𝑋 ≠ ∪ (𝑃 ∖ {𝑋})) |
18 | eldifsn 4811 | . . . . . 6 ⊢ (𝑋 ∈ (𝑃 ∖ {∪ (𝑃 ∖ {𝑋})}) ↔ (𝑋 ∈ 𝑃 ∧ 𝑋 ≠ ∪ (𝑃 ∖ {𝑋}))) | |
19 | 7, 17, 18 | sylanbrc 582 | . . . . 5 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → 𝑋 ∈ (𝑃 ∖ {∪ (𝑃 ∖ {𝑋})})) |
20 | 19 | snssd 4834 | . . . 4 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → {𝑋} ⊆ (𝑃 ∖ {∪ (𝑃 ∖ {𝑋})})) |
21 | 6, 20 | eqssd 4026 | . . 3 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → (𝑃 ∖ {∪ (𝑃 ∖ {𝑋})}) = {𝑋}) |
22 | 21 | unieqd 4944 | . 2 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → ∪ (𝑃 ∖ {∪ (𝑃 ∖ {𝑋})}) = ∪ {𝑋}) |
23 | unisng 4949 | . . 3 ⊢ (𝑋 ∈ 𝑃 → ∪ {𝑋} = 𝑋) | |
24 | 23 | adantr 480 | . 2 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → ∪ {𝑋} = 𝑋) |
25 | 22, 24 | eqtrd 2780 | 1 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → ∪ (𝑃 ∖ {∪ (𝑃 ∖ {𝑋})}) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∖ cdif 3973 {csn 4648 {cpr 4650 ∪ cuni 4931 class class class wbr 5166 suc csuc 6397 ωcom 7903 1oc1o 8515 2oc2o 8516 ≈ cen 9000 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-om 7904 df-1o 8522 df-2o 8523 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 |
This theorem is referenced by: pmtrfinv 19503 |
Copyright terms: Public domain | W3C validator |