MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg11 Structured version   Visualization version   GIF version

Theorem itg11 25642
Description: The integral of an indicator function is the volume of the set. (Contributed by Mario Carneiro, 18-Jun-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Hypothesis
Ref Expression
i1f1.1 𝐹 = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 1, 0))
Assertion
Ref Expression
itg11 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) → (∫1𝐹) = (vol‘𝐴))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem itg11
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovol0 25444 . . . . 5 (vol*‘∅) = 0
2 0mbl 25490 . . . . . 6 ∅ ∈ dom vol
3 mblvol 25481 . . . . . 6 (∅ ∈ dom vol → (vol‘∅) = (vol*‘∅))
42, 3ax-mp 5 . . . . 5 (vol‘∅) = (vol*‘∅)
5 itg10 25639 . . . . 5 (∫1‘(ℝ × {0})) = 0
61, 4, 53eqtr4ri 2769 . . . 4 (∫1‘(ℝ × {0})) = (vol‘∅)
7 noel 4313 . . . . . . . . 9 ¬ 𝑥 ∈ ∅
8 eleq2 2823 . . . . . . . . 9 (𝐴 = ∅ → (𝑥𝐴𝑥 ∈ ∅))
97, 8mtbiri 327 . . . . . . . 8 (𝐴 = ∅ → ¬ 𝑥𝐴)
109iffalsed 4511 . . . . . . 7 (𝐴 = ∅ → if(𝑥𝐴, 1, 0) = 0)
1110mpteq2dv 5215 . . . . . 6 (𝐴 = ∅ → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 1, 0)) = (𝑥 ∈ ℝ ↦ 0))
12 i1f1.1 . . . . . 6 𝐹 = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 1, 0))
13 fconstmpt 5716 . . . . . 6 (ℝ × {0}) = (𝑥 ∈ ℝ ↦ 0)
1411, 12, 133eqtr4g 2795 . . . . 5 (𝐴 = ∅ → 𝐹 = (ℝ × {0}))
1514fveq2d 6879 . . . 4 (𝐴 = ∅ → (∫1𝐹) = (∫1‘(ℝ × {0})))
16 fveq2 6875 . . . 4 (𝐴 = ∅ → (vol‘𝐴) = (vol‘∅))
176, 15, 163eqtr4a 2796 . . 3 (𝐴 = ∅ → (∫1𝐹) = (vol‘𝐴))
1817a1i 11 . 2 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) → (𝐴 = ∅ → (∫1𝐹) = (vol‘𝐴)))
19 n0 4328 . . 3 (𝐴 ≠ ∅ ↔ ∃𝑦 𝑦𝐴)
2012i1f1 25641 . . . . . . . 8 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) → 𝐹 ∈ dom ∫1)
2120adantr 480 . . . . . . 7 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦𝐴) → 𝐹 ∈ dom ∫1)
22 itg1val 25634 . . . . . . 7 (𝐹 ∈ dom ∫1 → (∫1𝐹) = Σ𝑧 ∈ (ran 𝐹 ∖ {0})(𝑧 · (vol‘(𝐹 “ {𝑧}))))
2321, 22syl 17 . . . . . 6 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦𝐴) → (∫1𝐹) = Σ𝑧 ∈ (ran 𝐹 ∖ {0})(𝑧 · (vol‘(𝐹 “ {𝑧}))))
2412i1f1lem 25640 . . . . . . . . . . . . . 14 (𝐹:ℝ⟶{0, 1} ∧ (𝐴 ∈ dom vol → (𝐹 “ {1}) = 𝐴))
2524simpli 483 . . . . . . . . . . . . 13 𝐹:ℝ⟶{0, 1}
26 frn 6712 . . . . . . . . . . . . 13 (𝐹:ℝ⟶{0, 1} → ran 𝐹 ⊆ {0, 1})
2725, 26ax-mp 5 . . . . . . . . . . . 12 ran 𝐹 ⊆ {0, 1}
28 ssdif 4119 . . . . . . . . . . . 12 (ran 𝐹 ⊆ {0, 1} → (ran 𝐹 ∖ {0}) ⊆ ({0, 1} ∖ {0}))
2927, 28ax-mp 5 . . . . . . . . . . 11 (ran 𝐹 ∖ {0}) ⊆ ({0, 1} ∖ {0})
30 difprsnss 4775 . . . . . . . . . . 11 ({0, 1} ∖ {0}) ⊆ {1}
3129, 30sstri 3968 . . . . . . . . . 10 (ran 𝐹 ∖ {0}) ⊆ {1}
3231a1i 11 . . . . . . . . 9 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦𝐴) → (ran 𝐹 ∖ {0}) ⊆ {1})
33 mblss 25482 . . . . . . . . . . . . . . . 16 (𝐴 ∈ dom vol → 𝐴 ⊆ ℝ)
3433adantr 480 . . . . . . . . . . . . . . 15 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) → 𝐴 ⊆ ℝ)
3534sselda 3958 . . . . . . . . . . . . . 14 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦𝐴) → 𝑦 ∈ ℝ)
36 eleq1w 2817 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
3736ifbid 4524 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → if(𝑥𝐴, 1, 0) = if(𝑦𝐴, 1, 0))
38 1ex 11229 . . . . . . . . . . . . . . . 16 1 ∈ V
39 c0ex 11227 . . . . . . . . . . . . . . . 16 0 ∈ V
4038, 39ifex 4551 . . . . . . . . . . . . . . 15 if(𝑦𝐴, 1, 0) ∈ V
4137, 12, 40fvmpt 6985 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ → (𝐹𝑦) = if(𝑦𝐴, 1, 0))
4235, 41syl 17 . . . . . . . . . . . . 13 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦𝐴) → (𝐹𝑦) = if(𝑦𝐴, 1, 0))
43 iftrue 4506 . . . . . . . . . . . . . 14 (𝑦𝐴 → if(𝑦𝐴, 1, 0) = 1)
4443adantl 481 . . . . . . . . . . . . 13 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦𝐴) → if(𝑦𝐴, 1, 0) = 1)
4542, 44eqtrd 2770 . . . . . . . . . . . 12 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦𝐴) → (𝐹𝑦) = 1)
46 ffn 6705 . . . . . . . . . . . . . 14 (𝐹:ℝ⟶{0, 1} → 𝐹 Fn ℝ)
4725, 46ax-mp 5 . . . . . . . . . . . . 13 𝐹 Fn ℝ
48 fnfvelrn 7069 . . . . . . . . . . . . 13 ((𝐹 Fn ℝ ∧ 𝑦 ∈ ℝ) → (𝐹𝑦) ∈ ran 𝐹)
4947, 35, 48sylancr 587 . . . . . . . . . . . 12 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦𝐴) → (𝐹𝑦) ∈ ran 𝐹)
5045, 49eqeltrrd 2835 . . . . . . . . . . 11 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦𝐴) → 1 ∈ ran 𝐹)
51 ax-1ne0 11196 . . . . . . . . . . 11 1 ≠ 0
52 eldifsn 4762 . . . . . . . . . . 11 (1 ∈ (ran 𝐹 ∖ {0}) ↔ (1 ∈ ran 𝐹 ∧ 1 ≠ 0))
5350, 51, 52sylanblrc 590 . . . . . . . . . 10 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦𝐴) → 1 ∈ (ran 𝐹 ∖ {0}))
5453snssd 4785 . . . . . . . . 9 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦𝐴) → {1} ⊆ (ran 𝐹 ∖ {0}))
5532, 54eqssd 3976 . . . . . . . 8 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦𝐴) → (ran 𝐹 ∖ {0}) = {1})
5655sumeq1d 15714 . . . . . . 7 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦𝐴) → Σ𝑧 ∈ (ran 𝐹 ∖ {0})(𝑧 · (vol‘(𝐹 “ {𝑧}))) = Σ𝑧 ∈ {1} (𝑧 · (vol‘(𝐹 “ {𝑧}))))
57 1re 11233 . . . . . . . . 9 1 ∈ ℝ
5824simpri 485 . . . . . . . . . . . . . 14 (𝐴 ∈ dom vol → (𝐹 “ {1}) = 𝐴)
5958ad2antrr 726 . . . . . . . . . . . . 13 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦𝐴) → (𝐹 “ {1}) = 𝐴)
6059fveq2d 6879 . . . . . . . . . . . 12 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦𝐴) → (vol‘(𝐹 “ {1})) = (vol‘𝐴))
6160oveq2d 7419 . . . . . . . . . . 11 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦𝐴) → (1 · (vol‘(𝐹 “ {1}))) = (1 · (vol‘𝐴)))
62 simplr 768 . . . . . . . . . . . . 13 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦𝐴) → (vol‘𝐴) ∈ ℝ)
6362recnd 11261 . . . . . . . . . . . 12 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦𝐴) → (vol‘𝐴) ∈ ℂ)
6463mullidd 11251 . . . . . . . . . . 11 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦𝐴) → (1 · (vol‘𝐴)) = (vol‘𝐴))
6561, 64eqtrd 2770 . . . . . . . . . 10 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦𝐴) → (1 · (vol‘(𝐹 “ {1}))) = (vol‘𝐴))
6665, 63eqeltrd 2834 . . . . . . . . 9 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦𝐴) → (1 · (vol‘(𝐹 “ {1}))) ∈ ℂ)
67 id 22 . . . . . . . . . . 11 (𝑧 = 1 → 𝑧 = 1)
68 sneq 4611 . . . . . . . . . . . . 13 (𝑧 = 1 → {𝑧} = {1})
6968imaeq2d 6047 . . . . . . . . . . . 12 (𝑧 = 1 → (𝐹 “ {𝑧}) = (𝐹 “ {1}))
7069fveq2d 6879 . . . . . . . . . . 11 (𝑧 = 1 → (vol‘(𝐹 “ {𝑧})) = (vol‘(𝐹 “ {1})))
7167, 70oveq12d 7421 . . . . . . . . . 10 (𝑧 = 1 → (𝑧 · (vol‘(𝐹 “ {𝑧}))) = (1 · (vol‘(𝐹 “ {1}))))
7271sumsn 15760 . . . . . . . . 9 ((1 ∈ ℝ ∧ (1 · (vol‘(𝐹 “ {1}))) ∈ ℂ) → Σ𝑧 ∈ {1} (𝑧 · (vol‘(𝐹 “ {𝑧}))) = (1 · (vol‘(𝐹 “ {1}))))
7357, 66, 72sylancr 587 . . . . . . . 8 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦𝐴) → Σ𝑧 ∈ {1} (𝑧 · (vol‘(𝐹 “ {𝑧}))) = (1 · (vol‘(𝐹 “ {1}))))
7473, 65eqtrd 2770 . . . . . . 7 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦𝐴) → Σ𝑧 ∈ {1} (𝑧 · (vol‘(𝐹 “ {𝑧}))) = (vol‘𝐴))
7556, 74eqtrd 2770 . . . . . 6 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦𝐴) → Σ𝑧 ∈ (ran 𝐹 ∖ {0})(𝑧 · (vol‘(𝐹 “ {𝑧}))) = (vol‘𝐴))
7623, 75eqtrd 2770 . . . . 5 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦𝐴) → (∫1𝐹) = (vol‘𝐴))
7776ex 412 . . . 4 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) → (𝑦𝐴 → (∫1𝐹) = (vol‘𝐴)))
7877exlimdv 1933 . . 3 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) → (∃𝑦 𝑦𝐴 → (∫1𝐹) = (vol‘𝐴)))
7919, 78biimtrid 242 . 2 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) → (𝐴 ≠ ∅ → (∫1𝐹) = (vol‘𝐴)))
8018, 79pm2.61dne 3018 1 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) → (∫1𝐹) = (vol‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2108  wne 2932  cdif 3923  wss 3926  c0 4308  ifcif 4500  {csn 4601  {cpr 4603  cmpt 5201   × cxp 5652  ccnv 5653  dom cdm 5654  ran crn 5655  cima 5657   Fn wfn 6525  wf 6526  cfv 6530  (class class class)co 7403  cc 11125  cr 11126  0cc0 11127  1c1 11128   · cmul 11132  Σcsu 15700  vol*covol 25413  volcvol 25414  1citg1 25566
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-inf2 9653  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204  ax-pre-sup 11205
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-isom 6539  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-of 7669  df-om 7860  df-1st 7986  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-2o 8479  df-er 8717  df-map 8840  df-pm 8841  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-sup 9452  df-inf 9453  df-oi 9522  df-dju 9913  df-card 9951  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-div 11893  df-nn 12239  df-2 12301  df-3 12302  df-n0 12500  df-z 12587  df-uz 12851  df-q 12963  df-rp 13007  df-xadd 13127  df-ioo 13364  df-ico 13366  df-icc 13367  df-fz 13523  df-fzo 13670  df-fl 13807  df-seq 14018  df-exp 14078  df-hash 14347  df-cj 15116  df-re 15117  df-im 15118  df-sqrt 15252  df-abs 15253  df-clim 15502  df-sum 15701  df-xmet 21306  df-met 21307  df-ovol 25415  df-vol 25416  df-mbf 25570  df-itg1 25571
This theorem is referenced by:  itg2const  25691  itg2addnclem  37641
  Copyright terms: Public domain W3C validator