MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg11 Structured version   Visualization version   GIF version

Theorem itg11 25139
Description: The integral of an indicator function is the volume of the set. (Contributed by Mario Carneiro, 18-Jun-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Hypothesis
Ref Expression
i1f1.1 𝐹 = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 1, 0))
Assertion
Ref Expression
itg11 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) → (∫1𝐹) = (vol‘𝐴))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem itg11
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovol0 24941 . . . . 5 (vol*‘∅) = 0
2 0mbl 24987 . . . . . 6 ∅ ∈ dom vol
3 mblvol 24978 . . . . . 6 (∅ ∈ dom vol → (vol‘∅) = (vol*‘∅))
42, 3ax-mp 5 . . . . 5 (vol‘∅) = (vol*‘∅)
5 itg10 25136 . . . . 5 (∫1‘(ℝ × {0})) = 0
61, 4, 53eqtr4ri 2771 . . . 4 (∫1‘(ℝ × {0})) = (vol‘∅)
7 noel 4327 . . . . . . . . 9 ¬ 𝑥 ∈ ∅
8 eleq2 2822 . . . . . . . . 9 (𝐴 = ∅ → (𝑥𝐴𝑥 ∈ ∅))
97, 8mtbiri 326 . . . . . . . 8 (𝐴 = ∅ → ¬ 𝑥𝐴)
109iffalsed 4534 . . . . . . 7 (𝐴 = ∅ → if(𝑥𝐴, 1, 0) = 0)
1110mpteq2dv 5244 . . . . . 6 (𝐴 = ∅ → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 1, 0)) = (𝑥 ∈ ℝ ↦ 0))
12 i1f1.1 . . . . . 6 𝐹 = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 1, 0))
13 fconstmpt 5731 . . . . . 6 (ℝ × {0}) = (𝑥 ∈ ℝ ↦ 0)
1411, 12, 133eqtr4g 2797 . . . . 5 (𝐴 = ∅ → 𝐹 = (ℝ × {0}))
1514fveq2d 6883 . . . 4 (𝐴 = ∅ → (∫1𝐹) = (∫1‘(ℝ × {0})))
16 fveq2 6879 . . . 4 (𝐴 = ∅ → (vol‘𝐴) = (vol‘∅))
176, 15, 163eqtr4a 2798 . . 3 (𝐴 = ∅ → (∫1𝐹) = (vol‘𝐴))
1817a1i 11 . 2 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) → (𝐴 = ∅ → (∫1𝐹) = (vol‘𝐴)))
19 n0 4343 . . 3 (𝐴 ≠ ∅ ↔ ∃𝑦 𝑦𝐴)
2012i1f1 25138 . . . . . . . 8 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) → 𝐹 ∈ dom ∫1)
2120adantr 481 . . . . . . 7 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦𝐴) → 𝐹 ∈ dom ∫1)
22 itg1val 25131 . . . . . . 7 (𝐹 ∈ dom ∫1 → (∫1𝐹) = Σ𝑧 ∈ (ran 𝐹 ∖ {0})(𝑧 · (vol‘(𝐹 “ {𝑧}))))
2321, 22syl 17 . . . . . 6 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦𝐴) → (∫1𝐹) = Σ𝑧 ∈ (ran 𝐹 ∖ {0})(𝑧 · (vol‘(𝐹 “ {𝑧}))))
2412i1f1lem 25137 . . . . . . . . . . . . . 14 (𝐹:ℝ⟶{0, 1} ∧ (𝐴 ∈ dom vol → (𝐹 “ {1}) = 𝐴))
2524simpli 484 . . . . . . . . . . . . 13 𝐹:ℝ⟶{0, 1}
26 frn 6712 . . . . . . . . . . . . 13 (𝐹:ℝ⟶{0, 1} → ran 𝐹 ⊆ {0, 1})
2725, 26ax-mp 5 . . . . . . . . . . . 12 ran 𝐹 ⊆ {0, 1}
28 ssdif 4136 . . . . . . . . . . . 12 (ran 𝐹 ⊆ {0, 1} → (ran 𝐹 ∖ {0}) ⊆ ({0, 1} ∖ {0}))
2927, 28ax-mp 5 . . . . . . . . . . 11 (ran 𝐹 ∖ {0}) ⊆ ({0, 1} ∖ {0})
30 difprsnss 4796 . . . . . . . . . . 11 ({0, 1} ∖ {0}) ⊆ {1}
3129, 30sstri 3988 . . . . . . . . . 10 (ran 𝐹 ∖ {0}) ⊆ {1}
3231a1i 11 . . . . . . . . 9 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦𝐴) → (ran 𝐹 ∖ {0}) ⊆ {1})
33 mblss 24979 . . . . . . . . . . . . . . . 16 (𝐴 ∈ dom vol → 𝐴 ⊆ ℝ)
3433adantr 481 . . . . . . . . . . . . . . 15 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) → 𝐴 ⊆ ℝ)
3534sselda 3979 . . . . . . . . . . . . . 14 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦𝐴) → 𝑦 ∈ ℝ)
36 eleq1w 2816 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
3736ifbid 4546 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → if(𝑥𝐴, 1, 0) = if(𝑦𝐴, 1, 0))
38 1ex 11194 . . . . . . . . . . . . . . . 16 1 ∈ V
39 c0ex 11192 . . . . . . . . . . . . . . . 16 0 ∈ V
4038, 39ifex 4573 . . . . . . . . . . . . . . 15 if(𝑦𝐴, 1, 0) ∈ V
4137, 12, 40fvmpt 6985 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ → (𝐹𝑦) = if(𝑦𝐴, 1, 0))
4235, 41syl 17 . . . . . . . . . . . . 13 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦𝐴) → (𝐹𝑦) = if(𝑦𝐴, 1, 0))
43 iftrue 4529 . . . . . . . . . . . . . 14 (𝑦𝐴 → if(𝑦𝐴, 1, 0) = 1)
4443adantl 482 . . . . . . . . . . . . 13 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦𝐴) → if(𝑦𝐴, 1, 0) = 1)
4542, 44eqtrd 2772 . . . . . . . . . . . 12 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦𝐴) → (𝐹𝑦) = 1)
46 ffn 6705 . . . . . . . . . . . . . 14 (𝐹:ℝ⟶{0, 1} → 𝐹 Fn ℝ)
4725, 46ax-mp 5 . . . . . . . . . . . . 13 𝐹 Fn ℝ
48 fnfvelrn 7068 . . . . . . . . . . . . 13 ((𝐹 Fn ℝ ∧ 𝑦 ∈ ℝ) → (𝐹𝑦) ∈ ran 𝐹)
4947, 35, 48sylancr 587 . . . . . . . . . . . 12 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦𝐴) → (𝐹𝑦) ∈ ran 𝐹)
5045, 49eqeltrrd 2834 . . . . . . . . . . 11 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦𝐴) → 1 ∈ ran 𝐹)
51 ax-1ne0 11163 . . . . . . . . . . 11 1 ≠ 0
52 eldifsn 4784 . . . . . . . . . . 11 (1 ∈ (ran 𝐹 ∖ {0}) ↔ (1 ∈ ran 𝐹 ∧ 1 ≠ 0))
5350, 51, 52sylanblrc 590 . . . . . . . . . 10 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦𝐴) → 1 ∈ (ran 𝐹 ∖ {0}))
5453snssd 4806 . . . . . . . . 9 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦𝐴) → {1} ⊆ (ran 𝐹 ∖ {0}))
5532, 54eqssd 3996 . . . . . . . 8 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦𝐴) → (ran 𝐹 ∖ {0}) = {1})
5655sumeq1d 15631 . . . . . . 7 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦𝐴) → Σ𝑧 ∈ (ran 𝐹 ∖ {0})(𝑧 · (vol‘(𝐹 “ {𝑧}))) = Σ𝑧 ∈ {1} (𝑧 · (vol‘(𝐹 “ {𝑧}))))
57 1re 11198 . . . . . . . . 9 1 ∈ ℝ
5824simpri 486 . . . . . . . . . . . . . 14 (𝐴 ∈ dom vol → (𝐹 “ {1}) = 𝐴)
5958ad2antrr 724 . . . . . . . . . . . . 13 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦𝐴) → (𝐹 “ {1}) = 𝐴)
6059fveq2d 6883 . . . . . . . . . . . 12 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦𝐴) → (vol‘(𝐹 “ {1})) = (vol‘𝐴))
6160oveq2d 7410 . . . . . . . . . . 11 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦𝐴) → (1 · (vol‘(𝐹 “ {1}))) = (1 · (vol‘𝐴)))
62 simplr 767 . . . . . . . . . . . . 13 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦𝐴) → (vol‘𝐴) ∈ ℝ)
6362recnd 11226 . . . . . . . . . . . 12 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦𝐴) → (vol‘𝐴) ∈ ℂ)
6463mullidd 11216 . . . . . . . . . . 11 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦𝐴) → (1 · (vol‘𝐴)) = (vol‘𝐴))
6561, 64eqtrd 2772 . . . . . . . . . 10 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦𝐴) → (1 · (vol‘(𝐹 “ {1}))) = (vol‘𝐴))
6665, 63eqeltrd 2833 . . . . . . . . 9 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦𝐴) → (1 · (vol‘(𝐹 “ {1}))) ∈ ℂ)
67 id 22 . . . . . . . . . . 11 (𝑧 = 1 → 𝑧 = 1)
68 sneq 4633 . . . . . . . . . . . . 13 (𝑧 = 1 → {𝑧} = {1})
6968imaeq2d 6050 . . . . . . . . . . . 12 (𝑧 = 1 → (𝐹 “ {𝑧}) = (𝐹 “ {1}))
7069fveq2d 6883 . . . . . . . . . . 11 (𝑧 = 1 → (vol‘(𝐹 “ {𝑧})) = (vol‘(𝐹 “ {1})))
7167, 70oveq12d 7412 . . . . . . . . . 10 (𝑧 = 1 → (𝑧 · (vol‘(𝐹 “ {𝑧}))) = (1 · (vol‘(𝐹 “ {1}))))
7271sumsn 15676 . . . . . . . . 9 ((1 ∈ ℝ ∧ (1 · (vol‘(𝐹 “ {1}))) ∈ ℂ) → Σ𝑧 ∈ {1} (𝑧 · (vol‘(𝐹 “ {𝑧}))) = (1 · (vol‘(𝐹 “ {1}))))
7357, 66, 72sylancr 587 . . . . . . . 8 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦𝐴) → Σ𝑧 ∈ {1} (𝑧 · (vol‘(𝐹 “ {𝑧}))) = (1 · (vol‘(𝐹 “ {1}))))
7473, 65eqtrd 2772 . . . . . . 7 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦𝐴) → Σ𝑧 ∈ {1} (𝑧 · (vol‘(𝐹 “ {𝑧}))) = (vol‘𝐴))
7556, 74eqtrd 2772 . . . . . 6 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦𝐴) → Σ𝑧 ∈ (ran 𝐹 ∖ {0})(𝑧 · (vol‘(𝐹 “ {𝑧}))) = (vol‘𝐴))
7623, 75eqtrd 2772 . . . . 5 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦𝐴) → (∫1𝐹) = (vol‘𝐴))
7776ex 413 . . . 4 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) → (𝑦𝐴 → (∫1𝐹) = (vol‘𝐴)))
7877exlimdv 1936 . . 3 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) → (∃𝑦 𝑦𝐴 → (∫1𝐹) = (vol‘𝐴)))
7919, 78biimtrid 241 . 2 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) → (𝐴 ≠ ∅ → (∫1𝐹) = (vol‘𝐴)))
8018, 79pm2.61dne 3028 1 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) → (∫1𝐹) = (vol‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wex 1781  wcel 2106  wne 2940  cdif 3942  wss 3945  c0 4319  ifcif 4523  {csn 4623  {cpr 4625  cmpt 5225   × cxp 5668  ccnv 5669  dom cdm 5670  ran crn 5671  cima 5673   Fn wfn 6528  wf 6529  cfv 6533  (class class class)co 7394  cc 11092  cr 11093  0cc0 11094  1c1 11095   · cmul 11099  Σcsu 15616  vol*covol 24910  volcvol 24911  1citg1 25063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5357  ax-pr 5421  ax-un 7709  ax-inf2 9620  ax-cnex 11150  ax-resscn 11151  ax-1cn 11152  ax-icn 11153  ax-addcl 11154  ax-addrcl 11155  ax-mulcl 11156  ax-mulrcl 11157  ax-mulcom 11158  ax-addass 11159  ax-mulass 11160  ax-distr 11161  ax-i2m1 11162  ax-1ne0 11163  ax-1rid 11164  ax-rnegex 11165  ax-rrecex 11166  ax-cnre 11167  ax-pre-lttri 11168  ax-pre-lttrn 11169  ax-pre-ltadd 11170  ax-pre-mulgt0 11171  ax-pre-sup 11172
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3775  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4320  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-int 4945  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5568  df-eprel 5574  df-po 5582  df-so 5583  df-fr 5625  df-se 5626  df-we 5627  df-xp 5676  df-rel 5677  df-cnv 5678  df-co 5679  df-dm 5680  df-rn 5681  df-res 5682  df-ima 5683  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-isom 6542  df-riota 7350  df-ov 7397  df-oprab 7398  df-mpo 7399  df-of 7654  df-om 7840  df-1st 7959  df-2nd 7960  df-frecs 8250  df-wrecs 8281  df-recs 8355  df-rdg 8394  df-1o 8450  df-2o 8451  df-er 8688  df-map 8807  df-pm 8808  df-en 8925  df-dom 8926  df-sdom 8927  df-fin 8928  df-sup 9421  df-inf 9422  df-oi 9489  df-dju 9880  df-card 9918  df-pnf 11234  df-mnf 11235  df-xr 11236  df-ltxr 11237  df-le 11238  df-sub 11430  df-neg 11431  df-div 11856  df-nn 12197  df-2 12259  df-3 12260  df-n0 12457  df-z 12543  df-uz 12807  df-q 12917  df-rp 12959  df-xadd 13077  df-ioo 13312  df-ico 13314  df-icc 13315  df-fz 13469  df-fzo 13612  df-fl 13741  df-seq 13951  df-exp 14012  df-hash 14275  df-cj 15030  df-re 15031  df-im 15032  df-sqrt 15166  df-abs 15167  df-clim 15416  df-sum 15617  df-xmet 20873  df-met 20874  df-ovol 24912  df-vol 24913  df-mbf 25067  df-itg1 25068
This theorem is referenced by:  itg2const  25189  itg2addnclem  36407
  Copyright terms: Public domain W3C validator