MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg11 Structured version   Visualization version   GIF version

Theorem itg11 25726
Description: The integral of an indicator function is the volume of the set. (Contributed by Mario Carneiro, 18-Jun-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Hypothesis
Ref Expression
i1f1.1 𝐹 = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 1, 0))
Assertion
Ref Expression
itg11 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) → (∫1𝐹) = (vol‘𝐴))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem itg11
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovol0 25528 . . . . 5 (vol*‘∅) = 0
2 0mbl 25574 . . . . . 6 ∅ ∈ dom vol
3 mblvol 25565 . . . . . 6 (∅ ∈ dom vol → (vol‘∅) = (vol*‘∅))
42, 3ax-mp 5 . . . . 5 (vol‘∅) = (vol*‘∅)
5 itg10 25723 . . . . 5 (∫1‘(ℝ × {0})) = 0
61, 4, 53eqtr4ri 2776 . . . 4 (∫1‘(ℝ × {0})) = (vol‘∅)
7 noel 4338 . . . . . . . . 9 ¬ 𝑥 ∈ ∅
8 eleq2 2830 . . . . . . . . 9 (𝐴 = ∅ → (𝑥𝐴𝑥 ∈ ∅))
97, 8mtbiri 327 . . . . . . . 8 (𝐴 = ∅ → ¬ 𝑥𝐴)
109iffalsed 4536 . . . . . . 7 (𝐴 = ∅ → if(𝑥𝐴, 1, 0) = 0)
1110mpteq2dv 5244 . . . . . 6 (𝐴 = ∅ → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 1, 0)) = (𝑥 ∈ ℝ ↦ 0))
12 i1f1.1 . . . . . 6 𝐹 = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 1, 0))
13 fconstmpt 5747 . . . . . 6 (ℝ × {0}) = (𝑥 ∈ ℝ ↦ 0)
1411, 12, 133eqtr4g 2802 . . . . 5 (𝐴 = ∅ → 𝐹 = (ℝ × {0}))
1514fveq2d 6910 . . . 4 (𝐴 = ∅ → (∫1𝐹) = (∫1‘(ℝ × {0})))
16 fveq2 6906 . . . 4 (𝐴 = ∅ → (vol‘𝐴) = (vol‘∅))
176, 15, 163eqtr4a 2803 . . 3 (𝐴 = ∅ → (∫1𝐹) = (vol‘𝐴))
1817a1i 11 . 2 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) → (𝐴 = ∅ → (∫1𝐹) = (vol‘𝐴)))
19 n0 4353 . . 3 (𝐴 ≠ ∅ ↔ ∃𝑦 𝑦𝐴)
2012i1f1 25725 . . . . . . . 8 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) → 𝐹 ∈ dom ∫1)
2120adantr 480 . . . . . . 7 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦𝐴) → 𝐹 ∈ dom ∫1)
22 itg1val 25718 . . . . . . 7 (𝐹 ∈ dom ∫1 → (∫1𝐹) = Σ𝑧 ∈ (ran 𝐹 ∖ {0})(𝑧 · (vol‘(𝐹 “ {𝑧}))))
2321, 22syl 17 . . . . . 6 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦𝐴) → (∫1𝐹) = Σ𝑧 ∈ (ran 𝐹 ∖ {0})(𝑧 · (vol‘(𝐹 “ {𝑧}))))
2412i1f1lem 25724 . . . . . . . . . . . . . 14 (𝐹:ℝ⟶{0, 1} ∧ (𝐴 ∈ dom vol → (𝐹 “ {1}) = 𝐴))
2524simpli 483 . . . . . . . . . . . . 13 𝐹:ℝ⟶{0, 1}
26 frn 6743 . . . . . . . . . . . . 13 (𝐹:ℝ⟶{0, 1} → ran 𝐹 ⊆ {0, 1})
2725, 26ax-mp 5 . . . . . . . . . . . 12 ran 𝐹 ⊆ {0, 1}
28 ssdif 4144 . . . . . . . . . . . 12 (ran 𝐹 ⊆ {0, 1} → (ran 𝐹 ∖ {0}) ⊆ ({0, 1} ∖ {0}))
2927, 28ax-mp 5 . . . . . . . . . . 11 (ran 𝐹 ∖ {0}) ⊆ ({0, 1} ∖ {0})
30 difprsnss 4799 . . . . . . . . . . 11 ({0, 1} ∖ {0}) ⊆ {1}
3129, 30sstri 3993 . . . . . . . . . 10 (ran 𝐹 ∖ {0}) ⊆ {1}
3231a1i 11 . . . . . . . . 9 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦𝐴) → (ran 𝐹 ∖ {0}) ⊆ {1})
33 mblss 25566 . . . . . . . . . . . . . . . 16 (𝐴 ∈ dom vol → 𝐴 ⊆ ℝ)
3433adantr 480 . . . . . . . . . . . . . . 15 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) → 𝐴 ⊆ ℝ)
3534sselda 3983 . . . . . . . . . . . . . 14 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦𝐴) → 𝑦 ∈ ℝ)
36 eleq1w 2824 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
3736ifbid 4549 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → if(𝑥𝐴, 1, 0) = if(𝑦𝐴, 1, 0))
38 1ex 11257 . . . . . . . . . . . . . . . 16 1 ∈ V
39 c0ex 11255 . . . . . . . . . . . . . . . 16 0 ∈ V
4038, 39ifex 4576 . . . . . . . . . . . . . . 15 if(𝑦𝐴, 1, 0) ∈ V
4137, 12, 40fvmpt 7016 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ → (𝐹𝑦) = if(𝑦𝐴, 1, 0))
4235, 41syl 17 . . . . . . . . . . . . 13 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦𝐴) → (𝐹𝑦) = if(𝑦𝐴, 1, 0))
43 iftrue 4531 . . . . . . . . . . . . . 14 (𝑦𝐴 → if(𝑦𝐴, 1, 0) = 1)
4443adantl 481 . . . . . . . . . . . . 13 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦𝐴) → if(𝑦𝐴, 1, 0) = 1)
4542, 44eqtrd 2777 . . . . . . . . . . . 12 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦𝐴) → (𝐹𝑦) = 1)
46 ffn 6736 . . . . . . . . . . . . . 14 (𝐹:ℝ⟶{0, 1} → 𝐹 Fn ℝ)
4725, 46ax-mp 5 . . . . . . . . . . . . 13 𝐹 Fn ℝ
48 fnfvelrn 7100 . . . . . . . . . . . . 13 ((𝐹 Fn ℝ ∧ 𝑦 ∈ ℝ) → (𝐹𝑦) ∈ ran 𝐹)
4947, 35, 48sylancr 587 . . . . . . . . . . . 12 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦𝐴) → (𝐹𝑦) ∈ ran 𝐹)
5045, 49eqeltrrd 2842 . . . . . . . . . . 11 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦𝐴) → 1 ∈ ran 𝐹)
51 ax-1ne0 11224 . . . . . . . . . . 11 1 ≠ 0
52 eldifsn 4786 . . . . . . . . . . 11 (1 ∈ (ran 𝐹 ∖ {0}) ↔ (1 ∈ ran 𝐹 ∧ 1 ≠ 0))
5350, 51, 52sylanblrc 590 . . . . . . . . . 10 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦𝐴) → 1 ∈ (ran 𝐹 ∖ {0}))
5453snssd 4809 . . . . . . . . 9 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦𝐴) → {1} ⊆ (ran 𝐹 ∖ {0}))
5532, 54eqssd 4001 . . . . . . . 8 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦𝐴) → (ran 𝐹 ∖ {0}) = {1})
5655sumeq1d 15736 . . . . . . 7 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦𝐴) → Σ𝑧 ∈ (ran 𝐹 ∖ {0})(𝑧 · (vol‘(𝐹 “ {𝑧}))) = Σ𝑧 ∈ {1} (𝑧 · (vol‘(𝐹 “ {𝑧}))))
57 1re 11261 . . . . . . . . 9 1 ∈ ℝ
5824simpri 485 . . . . . . . . . . . . . 14 (𝐴 ∈ dom vol → (𝐹 “ {1}) = 𝐴)
5958ad2antrr 726 . . . . . . . . . . . . 13 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦𝐴) → (𝐹 “ {1}) = 𝐴)
6059fveq2d 6910 . . . . . . . . . . . 12 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦𝐴) → (vol‘(𝐹 “ {1})) = (vol‘𝐴))
6160oveq2d 7447 . . . . . . . . . . 11 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦𝐴) → (1 · (vol‘(𝐹 “ {1}))) = (1 · (vol‘𝐴)))
62 simplr 769 . . . . . . . . . . . . 13 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦𝐴) → (vol‘𝐴) ∈ ℝ)
6362recnd 11289 . . . . . . . . . . . 12 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦𝐴) → (vol‘𝐴) ∈ ℂ)
6463mullidd 11279 . . . . . . . . . . 11 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦𝐴) → (1 · (vol‘𝐴)) = (vol‘𝐴))
6561, 64eqtrd 2777 . . . . . . . . . 10 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦𝐴) → (1 · (vol‘(𝐹 “ {1}))) = (vol‘𝐴))
6665, 63eqeltrd 2841 . . . . . . . . 9 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦𝐴) → (1 · (vol‘(𝐹 “ {1}))) ∈ ℂ)
67 id 22 . . . . . . . . . . 11 (𝑧 = 1 → 𝑧 = 1)
68 sneq 4636 . . . . . . . . . . . . 13 (𝑧 = 1 → {𝑧} = {1})
6968imaeq2d 6078 . . . . . . . . . . . 12 (𝑧 = 1 → (𝐹 “ {𝑧}) = (𝐹 “ {1}))
7069fveq2d 6910 . . . . . . . . . . 11 (𝑧 = 1 → (vol‘(𝐹 “ {𝑧})) = (vol‘(𝐹 “ {1})))
7167, 70oveq12d 7449 . . . . . . . . . 10 (𝑧 = 1 → (𝑧 · (vol‘(𝐹 “ {𝑧}))) = (1 · (vol‘(𝐹 “ {1}))))
7271sumsn 15782 . . . . . . . . 9 ((1 ∈ ℝ ∧ (1 · (vol‘(𝐹 “ {1}))) ∈ ℂ) → Σ𝑧 ∈ {1} (𝑧 · (vol‘(𝐹 “ {𝑧}))) = (1 · (vol‘(𝐹 “ {1}))))
7357, 66, 72sylancr 587 . . . . . . . 8 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦𝐴) → Σ𝑧 ∈ {1} (𝑧 · (vol‘(𝐹 “ {𝑧}))) = (1 · (vol‘(𝐹 “ {1}))))
7473, 65eqtrd 2777 . . . . . . 7 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦𝐴) → Σ𝑧 ∈ {1} (𝑧 · (vol‘(𝐹 “ {𝑧}))) = (vol‘𝐴))
7556, 74eqtrd 2777 . . . . . 6 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦𝐴) → Σ𝑧 ∈ (ran 𝐹 ∖ {0})(𝑧 · (vol‘(𝐹 “ {𝑧}))) = (vol‘𝐴))
7623, 75eqtrd 2777 . . . . 5 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦𝐴) → (∫1𝐹) = (vol‘𝐴))
7776ex 412 . . . 4 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) → (𝑦𝐴 → (∫1𝐹) = (vol‘𝐴)))
7877exlimdv 1933 . . 3 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) → (∃𝑦 𝑦𝐴 → (∫1𝐹) = (vol‘𝐴)))
7919, 78biimtrid 242 . 2 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) → (𝐴 ≠ ∅ → (∫1𝐹) = (vol‘𝐴)))
8018, 79pm2.61dne 3028 1 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) → (∫1𝐹) = (vol‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2108  wne 2940  cdif 3948  wss 3951  c0 4333  ifcif 4525  {csn 4626  {cpr 4628  cmpt 5225   × cxp 5683  ccnv 5684  dom cdm 5685  ran crn 5686  cima 5688   Fn wfn 6556  wf 6557  cfv 6561  (class class class)co 7431  cc 11153  cr 11154  0cc0 11155  1c1 11156   · cmul 11160  Σcsu 15722  vol*covol 25497  volcvol 25498  1citg1 25650
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-pm 8869  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-inf 9483  df-oi 9550  df-dju 9941  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-q 12991  df-rp 13035  df-xadd 13155  df-ioo 13391  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-fl 13832  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-clim 15524  df-sum 15723  df-xmet 21357  df-met 21358  df-ovol 25499  df-vol 25500  df-mbf 25654  df-itg1 25655
This theorem is referenced by:  itg2const  25775  itg2addnclem  37678
  Copyright terms: Public domain W3C validator