MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg11 Structured version   Visualization version   GIF version

Theorem itg11 24760
Description: The integral of an indicator function is the volume of the set. (Contributed by Mario Carneiro, 18-Jun-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Hypothesis
Ref Expression
i1f1.1 𝐹 = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 1, 0))
Assertion
Ref Expression
itg11 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) → (∫1𝐹) = (vol‘𝐴))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem itg11
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovol0 24562 . . . . 5 (vol*‘∅) = 0
2 0mbl 24608 . . . . . 6 ∅ ∈ dom vol
3 mblvol 24599 . . . . . 6 (∅ ∈ dom vol → (vol‘∅) = (vol*‘∅))
42, 3ax-mp 5 . . . . 5 (vol‘∅) = (vol*‘∅)
5 itg10 24757 . . . . 5 (∫1‘(ℝ × {0})) = 0
61, 4, 53eqtr4ri 2777 . . . 4 (∫1‘(ℝ × {0})) = (vol‘∅)
7 noel 4261 . . . . . . . . 9 ¬ 𝑥 ∈ ∅
8 eleq2 2827 . . . . . . . . 9 (𝐴 = ∅ → (𝑥𝐴𝑥 ∈ ∅))
97, 8mtbiri 326 . . . . . . . 8 (𝐴 = ∅ → ¬ 𝑥𝐴)
109iffalsed 4467 . . . . . . 7 (𝐴 = ∅ → if(𝑥𝐴, 1, 0) = 0)
1110mpteq2dv 5172 . . . . . 6 (𝐴 = ∅ → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 1, 0)) = (𝑥 ∈ ℝ ↦ 0))
12 i1f1.1 . . . . . 6 𝐹 = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 1, 0))
13 fconstmpt 5640 . . . . . 6 (ℝ × {0}) = (𝑥 ∈ ℝ ↦ 0)
1411, 12, 133eqtr4g 2804 . . . . 5 (𝐴 = ∅ → 𝐹 = (ℝ × {0}))
1514fveq2d 6760 . . . 4 (𝐴 = ∅ → (∫1𝐹) = (∫1‘(ℝ × {0})))
16 fveq2 6756 . . . 4 (𝐴 = ∅ → (vol‘𝐴) = (vol‘∅))
176, 15, 163eqtr4a 2805 . . 3 (𝐴 = ∅ → (∫1𝐹) = (vol‘𝐴))
1817a1i 11 . 2 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) → (𝐴 = ∅ → (∫1𝐹) = (vol‘𝐴)))
19 n0 4277 . . 3 (𝐴 ≠ ∅ ↔ ∃𝑦 𝑦𝐴)
2012i1f1 24759 . . . . . . . 8 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) → 𝐹 ∈ dom ∫1)
2120adantr 480 . . . . . . 7 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦𝐴) → 𝐹 ∈ dom ∫1)
22 itg1val 24752 . . . . . . 7 (𝐹 ∈ dom ∫1 → (∫1𝐹) = Σ𝑧 ∈ (ran 𝐹 ∖ {0})(𝑧 · (vol‘(𝐹 “ {𝑧}))))
2321, 22syl 17 . . . . . 6 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦𝐴) → (∫1𝐹) = Σ𝑧 ∈ (ran 𝐹 ∖ {0})(𝑧 · (vol‘(𝐹 “ {𝑧}))))
2412i1f1lem 24758 . . . . . . . . . . . . . 14 (𝐹:ℝ⟶{0, 1} ∧ (𝐴 ∈ dom vol → (𝐹 “ {1}) = 𝐴))
2524simpli 483 . . . . . . . . . . . . 13 𝐹:ℝ⟶{0, 1}
26 frn 6591 . . . . . . . . . . . . 13 (𝐹:ℝ⟶{0, 1} → ran 𝐹 ⊆ {0, 1})
2725, 26ax-mp 5 . . . . . . . . . . . 12 ran 𝐹 ⊆ {0, 1}
28 ssdif 4070 . . . . . . . . . . . 12 (ran 𝐹 ⊆ {0, 1} → (ran 𝐹 ∖ {0}) ⊆ ({0, 1} ∖ {0}))
2927, 28ax-mp 5 . . . . . . . . . . 11 (ran 𝐹 ∖ {0}) ⊆ ({0, 1} ∖ {0})
30 difprsnss 4729 . . . . . . . . . . 11 ({0, 1} ∖ {0}) ⊆ {1}
3129, 30sstri 3926 . . . . . . . . . 10 (ran 𝐹 ∖ {0}) ⊆ {1}
3231a1i 11 . . . . . . . . 9 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦𝐴) → (ran 𝐹 ∖ {0}) ⊆ {1})
33 mblss 24600 . . . . . . . . . . . . . . . 16 (𝐴 ∈ dom vol → 𝐴 ⊆ ℝ)
3433adantr 480 . . . . . . . . . . . . . . 15 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) → 𝐴 ⊆ ℝ)
3534sselda 3917 . . . . . . . . . . . . . 14 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦𝐴) → 𝑦 ∈ ℝ)
36 eleq1w 2821 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
3736ifbid 4479 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → if(𝑥𝐴, 1, 0) = if(𝑦𝐴, 1, 0))
38 1ex 10902 . . . . . . . . . . . . . . . 16 1 ∈ V
39 c0ex 10900 . . . . . . . . . . . . . . . 16 0 ∈ V
4038, 39ifex 4506 . . . . . . . . . . . . . . 15 if(𝑦𝐴, 1, 0) ∈ V
4137, 12, 40fvmpt 6857 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ → (𝐹𝑦) = if(𝑦𝐴, 1, 0))
4235, 41syl 17 . . . . . . . . . . . . 13 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦𝐴) → (𝐹𝑦) = if(𝑦𝐴, 1, 0))
43 iftrue 4462 . . . . . . . . . . . . . 14 (𝑦𝐴 → if(𝑦𝐴, 1, 0) = 1)
4443adantl 481 . . . . . . . . . . . . 13 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦𝐴) → if(𝑦𝐴, 1, 0) = 1)
4542, 44eqtrd 2778 . . . . . . . . . . . 12 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦𝐴) → (𝐹𝑦) = 1)
46 ffn 6584 . . . . . . . . . . . . . 14 (𝐹:ℝ⟶{0, 1} → 𝐹 Fn ℝ)
4725, 46ax-mp 5 . . . . . . . . . . . . 13 𝐹 Fn ℝ
48 fnfvelrn 6940 . . . . . . . . . . . . 13 ((𝐹 Fn ℝ ∧ 𝑦 ∈ ℝ) → (𝐹𝑦) ∈ ran 𝐹)
4947, 35, 48sylancr 586 . . . . . . . . . . . 12 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦𝐴) → (𝐹𝑦) ∈ ran 𝐹)
5045, 49eqeltrrd 2840 . . . . . . . . . . 11 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦𝐴) → 1 ∈ ran 𝐹)
51 ax-1ne0 10871 . . . . . . . . . . 11 1 ≠ 0
52 eldifsn 4717 . . . . . . . . . . 11 (1 ∈ (ran 𝐹 ∖ {0}) ↔ (1 ∈ ran 𝐹 ∧ 1 ≠ 0))
5350, 51, 52sylanblrc 589 . . . . . . . . . 10 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦𝐴) → 1 ∈ (ran 𝐹 ∖ {0}))
5453snssd 4739 . . . . . . . . 9 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦𝐴) → {1} ⊆ (ran 𝐹 ∖ {0}))
5532, 54eqssd 3934 . . . . . . . 8 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦𝐴) → (ran 𝐹 ∖ {0}) = {1})
5655sumeq1d 15341 . . . . . . 7 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦𝐴) → Σ𝑧 ∈ (ran 𝐹 ∖ {0})(𝑧 · (vol‘(𝐹 “ {𝑧}))) = Σ𝑧 ∈ {1} (𝑧 · (vol‘(𝐹 “ {𝑧}))))
57 1re 10906 . . . . . . . . 9 1 ∈ ℝ
5824simpri 485 . . . . . . . . . . . . . 14 (𝐴 ∈ dom vol → (𝐹 “ {1}) = 𝐴)
5958ad2antrr 722 . . . . . . . . . . . . 13 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦𝐴) → (𝐹 “ {1}) = 𝐴)
6059fveq2d 6760 . . . . . . . . . . . 12 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦𝐴) → (vol‘(𝐹 “ {1})) = (vol‘𝐴))
6160oveq2d 7271 . . . . . . . . . . 11 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦𝐴) → (1 · (vol‘(𝐹 “ {1}))) = (1 · (vol‘𝐴)))
62 simplr 765 . . . . . . . . . . . . 13 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦𝐴) → (vol‘𝐴) ∈ ℝ)
6362recnd 10934 . . . . . . . . . . . 12 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦𝐴) → (vol‘𝐴) ∈ ℂ)
6463mulid2d 10924 . . . . . . . . . . 11 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦𝐴) → (1 · (vol‘𝐴)) = (vol‘𝐴))
6561, 64eqtrd 2778 . . . . . . . . . 10 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦𝐴) → (1 · (vol‘(𝐹 “ {1}))) = (vol‘𝐴))
6665, 63eqeltrd 2839 . . . . . . . . 9 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦𝐴) → (1 · (vol‘(𝐹 “ {1}))) ∈ ℂ)
67 id 22 . . . . . . . . . . 11 (𝑧 = 1 → 𝑧 = 1)
68 sneq 4568 . . . . . . . . . . . . 13 (𝑧 = 1 → {𝑧} = {1})
6968imaeq2d 5958 . . . . . . . . . . . 12 (𝑧 = 1 → (𝐹 “ {𝑧}) = (𝐹 “ {1}))
7069fveq2d 6760 . . . . . . . . . . 11 (𝑧 = 1 → (vol‘(𝐹 “ {𝑧})) = (vol‘(𝐹 “ {1})))
7167, 70oveq12d 7273 . . . . . . . . . 10 (𝑧 = 1 → (𝑧 · (vol‘(𝐹 “ {𝑧}))) = (1 · (vol‘(𝐹 “ {1}))))
7271sumsn 15386 . . . . . . . . 9 ((1 ∈ ℝ ∧ (1 · (vol‘(𝐹 “ {1}))) ∈ ℂ) → Σ𝑧 ∈ {1} (𝑧 · (vol‘(𝐹 “ {𝑧}))) = (1 · (vol‘(𝐹 “ {1}))))
7357, 66, 72sylancr 586 . . . . . . . 8 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦𝐴) → Σ𝑧 ∈ {1} (𝑧 · (vol‘(𝐹 “ {𝑧}))) = (1 · (vol‘(𝐹 “ {1}))))
7473, 65eqtrd 2778 . . . . . . 7 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦𝐴) → Σ𝑧 ∈ {1} (𝑧 · (vol‘(𝐹 “ {𝑧}))) = (vol‘𝐴))
7556, 74eqtrd 2778 . . . . . 6 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦𝐴) → Σ𝑧 ∈ (ran 𝐹 ∖ {0})(𝑧 · (vol‘(𝐹 “ {𝑧}))) = (vol‘𝐴))
7623, 75eqtrd 2778 . . . . 5 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦𝐴) → (∫1𝐹) = (vol‘𝐴))
7776ex 412 . . . 4 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) → (𝑦𝐴 → (∫1𝐹) = (vol‘𝐴)))
7877exlimdv 1937 . . 3 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) → (∃𝑦 𝑦𝐴 → (∫1𝐹) = (vol‘𝐴)))
7919, 78syl5bi 241 . 2 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) → (𝐴 ≠ ∅ → (∫1𝐹) = (vol‘𝐴)))
8018, 79pm2.61dne 3030 1 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) → (∫1𝐹) = (vol‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wex 1783  wcel 2108  wne 2942  cdif 3880  wss 3883  c0 4253  ifcif 4456  {csn 4558  {cpr 4560  cmpt 5153   × cxp 5578  ccnv 5579  dom cdm 5580  ran crn 5581  cima 5583   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255  cc 10800  cr 10801  0cc0 10802  1c1 10803   · cmul 10807  Σcsu 15325  vol*covol 24531  volcvol 24532  1citg1 24684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-oi 9199  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-q 12618  df-rp 12660  df-xadd 12778  df-ioo 13012  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-sum 15326  df-xmet 20503  df-met 20504  df-ovol 24533  df-vol 24534  df-mbf 24688  df-itg1 24689
This theorem is referenced by:  itg2const  24810  itg2addnclem  35755
  Copyright terms: Public domain W3C validator