MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg11 Structured version   Visualization version   GIF version

Theorem itg11 25592
Description: The integral of an indicator function is the volume of the set. (Contributed by Mario Carneiro, 18-Jun-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Hypothesis
Ref Expression
i1f1.1 𝐹 = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 1, 0))
Assertion
Ref Expression
itg11 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) → (∫1𝐹) = (vol‘𝐴))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem itg11
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovol0 25394 . . . . 5 (vol*‘∅) = 0
2 0mbl 25440 . . . . . 6 ∅ ∈ dom vol
3 mblvol 25431 . . . . . 6 (∅ ∈ dom vol → (vol‘∅) = (vol*‘∅))
42, 3ax-mp 5 . . . . 5 (vol‘∅) = (vol*‘∅)
5 itg10 25589 . . . . 5 (∫1‘(ℝ × {0})) = 0
61, 4, 53eqtr4ri 2763 . . . 4 (∫1‘(ℝ × {0})) = (vol‘∅)
7 noel 4301 . . . . . . . . 9 ¬ 𝑥 ∈ ∅
8 eleq2 2817 . . . . . . . . 9 (𝐴 = ∅ → (𝑥𝐴𝑥 ∈ ∅))
97, 8mtbiri 327 . . . . . . . 8 (𝐴 = ∅ → ¬ 𝑥𝐴)
109iffalsed 4499 . . . . . . 7 (𝐴 = ∅ → if(𝑥𝐴, 1, 0) = 0)
1110mpteq2dv 5201 . . . . . 6 (𝐴 = ∅ → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 1, 0)) = (𝑥 ∈ ℝ ↦ 0))
12 i1f1.1 . . . . . 6 𝐹 = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 1, 0))
13 fconstmpt 5700 . . . . . 6 (ℝ × {0}) = (𝑥 ∈ ℝ ↦ 0)
1411, 12, 133eqtr4g 2789 . . . . 5 (𝐴 = ∅ → 𝐹 = (ℝ × {0}))
1514fveq2d 6862 . . . 4 (𝐴 = ∅ → (∫1𝐹) = (∫1‘(ℝ × {0})))
16 fveq2 6858 . . . 4 (𝐴 = ∅ → (vol‘𝐴) = (vol‘∅))
176, 15, 163eqtr4a 2790 . . 3 (𝐴 = ∅ → (∫1𝐹) = (vol‘𝐴))
1817a1i 11 . 2 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) → (𝐴 = ∅ → (∫1𝐹) = (vol‘𝐴)))
19 n0 4316 . . 3 (𝐴 ≠ ∅ ↔ ∃𝑦 𝑦𝐴)
2012i1f1 25591 . . . . . . . 8 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) → 𝐹 ∈ dom ∫1)
2120adantr 480 . . . . . . 7 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦𝐴) → 𝐹 ∈ dom ∫1)
22 itg1val 25584 . . . . . . 7 (𝐹 ∈ dom ∫1 → (∫1𝐹) = Σ𝑧 ∈ (ran 𝐹 ∖ {0})(𝑧 · (vol‘(𝐹 “ {𝑧}))))
2321, 22syl 17 . . . . . 6 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦𝐴) → (∫1𝐹) = Σ𝑧 ∈ (ran 𝐹 ∖ {0})(𝑧 · (vol‘(𝐹 “ {𝑧}))))
2412i1f1lem 25590 . . . . . . . . . . . . . 14 (𝐹:ℝ⟶{0, 1} ∧ (𝐴 ∈ dom vol → (𝐹 “ {1}) = 𝐴))
2524simpli 483 . . . . . . . . . . . . 13 𝐹:ℝ⟶{0, 1}
26 frn 6695 . . . . . . . . . . . . 13 (𝐹:ℝ⟶{0, 1} → ran 𝐹 ⊆ {0, 1})
2725, 26ax-mp 5 . . . . . . . . . . . 12 ran 𝐹 ⊆ {0, 1}
28 ssdif 4107 . . . . . . . . . . . 12 (ran 𝐹 ⊆ {0, 1} → (ran 𝐹 ∖ {0}) ⊆ ({0, 1} ∖ {0}))
2927, 28ax-mp 5 . . . . . . . . . . 11 (ran 𝐹 ∖ {0}) ⊆ ({0, 1} ∖ {0})
30 difprsnss 4763 . . . . . . . . . . 11 ({0, 1} ∖ {0}) ⊆ {1}
3129, 30sstri 3956 . . . . . . . . . 10 (ran 𝐹 ∖ {0}) ⊆ {1}
3231a1i 11 . . . . . . . . 9 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦𝐴) → (ran 𝐹 ∖ {0}) ⊆ {1})
33 mblss 25432 . . . . . . . . . . . . . . . 16 (𝐴 ∈ dom vol → 𝐴 ⊆ ℝ)
3433adantr 480 . . . . . . . . . . . . . . 15 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) → 𝐴 ⊆ ℝ)
3534sselda 3946 . . . . . . . . . . . . . 14 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦𝐴) → 𝑦 ∈ ℝ)
36 eleq1w 2811 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
3736ifbid 4512 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → if(𝑥𝐴, 1, 0) = if(𝑦𝐴, 1, 0))
38 1ex 11170 . . . . . . . . . . . . . . . 16 1 ∈ V
39 c0ex 11168 . . . . . . . . . . . . . . . 16 0 ∈ V
4038, 39ifex 4539 . . . . . . . . . . . . . . 15 if(𝑦𝐴, 1, 0) ∈ V
4137, 12, 40fvmpt 6968 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ → (𝐹𝑦) = if(𝑦𝐴, 1, 0))
4235, 41syl 17 . . . . . . . . . . . . 13 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦𝐴) → (𝐹𝑦) = if(𝑦𝐴, 1, 0))
43 iftrue 4494 . . . . . . . . . . . . . 14 (𝑦𝐴 → if(𝑦𝐴, 1, 0) = 1)
4443adantl 481 . . . . . . . . . . . . 13 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦𝐴) → if(𝑦𝐴, 1, 0) = 1)
4542, 44eqtrd 2764 . . . . . . . . . . . 12 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦𝐴) → (𝐹𝑦) = 1)
46 ffn 6688 . . . . . . . . . . . . . 14 (𝐹:ℝ⟶{0, 1} → 𝐹 Fn ℝ)
4725, 46ax-mp 5 . . . . . . . . . . . . 13 𝐹 Fn ℝ
48 fnfvelrn 7052 . . . . . . . . . . . . 13 ((𝐹 Fn ℝ ∧ 𝑦 ∈ ℝ) → (𝐹𝑦) ∈ ran 𝐹)
4947, 35, 48sylancr 587 . . . . . . . . . . . 12 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦𝐴) → (𝐹𝑦) ∈ ran 𝐹)
5045, 49eqeltrrd 2829 . . . . . . . . . . 11 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦𝐴) → 1 ∈ ran 𝐹)
51 ax-1ne0 11137 . . . . . . . . . . 11 1 ≠ 0
52 eldifsn 4750 . . . . . . . . . . 11 (1 ∈ (ran 𝐹 ∖ {0}) ↔ (1 ∈ ran 𝐹 ∧ 1 ≠ 0))
5350, 51, 52sylanblrc 590 . . . . . . . . . 10 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦𝐴) → 1 ∈ (ran 𝐹 ∖ {0}))
5453snssd 4773 . . . . . . . . 9 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦𝐴) → {1} ⊆ (ran 𝐹 ∖ {0}))
5532, 54eqssd 3964 . . . . . . . 8 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦𝐴) → (ran 𝐹 ∖ {0}) = {1})
5655sumeq1d 15666 . . . . . . 7 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦𝐴) → Σ𝑧 ∈ (ran 𝐹 ∖ {0})(𝑧 · (vol‘(𝐹 “ {𝑧}))) = Σ𝑧 ∈ {1} (𝑧 · (vol‘(𝐹 “ {𝑧}))))
57 1re 11174 . . . . . . . . 9 1 ∈ ℝ
5824simpri 485 . . . . . . . . . . . . . 14 (𝐴 ∈ dom vol → (𝐹 “ {1}) = 𝐴)
5958ad2antrr 726 . . . . . . . . . . . . 13 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦𝐴) → (𝐹 “ {1}) = 𝐴)
6059fveq2d 6862 . . . . . . . . . . . 12 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦𝐴) → (vol‘(𝐹 “ {1})) = (vol‘𝐴))
6160oveq2d 7403 . . . . . . . . . . 11 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦𝐴) → (1 · (vol‘(𝐹 “ {1}))) = (1 · (vol‘𝐴)))
62 simplr 768 . . . . . . . . . . . . 13 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦𝐴) → (vol‘𝐴) ∈ ℝ)
6362recnd 11202 . . . . . . . . . . . 12 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦𝐴) → (vol‘𝐴) ∈ ℂ)
6463mullidd 11192 . . . . . . . . . . 11 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦𝐴) → (1 · (vol‘𝐴)) = (vol‘𝐴))
6561, 64eqtrd 2764 . . . . . . . . . 10 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦𝐴) → (1 · (vol‘(𝐹 “ {1}))) = (vol‘𝐴))
6665, 63eqeltrd 2828 . . . . . . . . 9 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦𝐴) → (1 · (vol‘(𝐹 “ {1}))) ∈ ℂ)
67 id 22 . . . . . . . . . . 11 (𝑧 = 1 → 𝑧 = 1)
68 sneq 4599 . . . . . . . . . . . . 13 (𝑧 = 1 → {𝑧} = {1})
6968imaeq2d 6031 . . . . . . . . . . . 12 (𝑧 = 1 → (𝐹 “ {𝑧}) = (𝐹 “ {1}))
7069fveq2d 6862 . . . . . . . . . . 11 (𝑧 = 1 → (vol‘(𝐹 “ {𝑧})) = (vol‘(𝐹 “ {1})))
7167, 70oveq12d 7405 . . . . . . . . . 10 (𝑧 = 1 → (𝑧 · (vol‘(𝐹 “ {𝑧}))) = (1 · (vol‘(𝐹 “ {1}))))
7271sumsn 15712 . . . . . . . . 9 ((1 ∈ ℝ ∧ (1 · (vol‘(𝐹 “ {1}))) ∈ ℂ) → Σ𝑧 ∈ {1} (𝑧 · (vol‘(𝐹 “ {𝑧}))) = (1 · (vol‘(𝐹 “ {1}))))
7357, 66, 72sylancr 587 . . . . . . . 8 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦𝐴) → Σ𝑧 ∈ {1} (𝑧 · (vol‘(𝐹 “ {𝑧}))) = (1 · (vol‘(𝐹 “ {1}))))
7473, 65eqtrd 2764 . . . . . . 7 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦𝐴) → Σ𝑧 ∈ {1} (𝑧 · (vol‘(𝐹 “ {𝑧}))) = (vol‘𝐴))
7556, 74eqtrd 2764 . . . . . 6 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦𝐴) → Σ𝑧 ∈ (ran 𝐹 ∖ {0})(𝑧 · (vol‘(𝐹 “ {𝑧}))) = (vol‘𝐴))
7623, 75eqtrd 2764 . . . . 5 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ 𝑦𝐴) → (∫1𝐹) = (vol‘𝐴))
7776ex 412 . . . 4 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) → (𝑦𝐴 → (∫1𝐹) = (vol‘𝐴)))
7877exlimdv 1933 . . 3 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) → (∃𝑦 𝑦𝐴 → (∫1𝐹) = (vol‘𝐴)))
7919, 78biimtrid 242 . 2 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) → (𝐴 ≠ ∅ → (∫1𝐹) = (vol‘𝐴)))
8018, 79pm2.61dne 3011 1 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) → (∫1𝐹) = (vol‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109  wne 2925  cdif 3911  wss 3914  c0 4296  ifcif 4488  {csn 4589  {cpr 4591  cmpt 5188   × cxp 5636  ccnv 5637  dom cdm 5638  ran crn 5639  cima 5641   Fn wfn 6506  wf 6507  cfv 6511  (class class class)co 7387  cc 11066  cr 11067  0cc0 11068  1c1 11069   · cmul 11073  Σcsu 15652  vol*covol 25363  volcvol 25364  1citg1 25516
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-oi 9463  df-dju 9854  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-q 12908  df-rp 12952  df-xadd 13073  df-ioo 13310  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-sum 15653  df-xmet 21257  df-met 21258  df-ovol 25365  df-vol 25366  df-mbf 25520  df-itg1 25521
This theorem is referenced by:  itg2const  25641  itg2addnclem  37665
  Copyright terms: Public domain W3C validator