Step | Hyp | Ref
| Expression |
1 | | ovol0 24562 |
. . . . 5
⊢
(vol*‘∅) = 0 |
2 | | 0mbl 24608 |
. . . . . 6
⊢ ∅
∈ dom vol |
3 | | mblvol 24599 |
. . . . . 6
⊢ (∅
∈ dom vol → (vol‘∅) =
(vol*‘∅)) |
4 | 2, 3 | ax-mp 5 |
. . . . 5
⊢
(vol‘∅) = (vol*‘∅) |
5 | | itg10 24757 |
. . . . 5
⊢
(∫1‘(ℝ × {0})) = 0 |
6 | 1, 4, 5 | 3eqtr4ri 2777 |
. . . 4
⊢
(∫1‘(ℝ × {0})) =
(vol‘∅) |
7 | | noel 4261 |
. . . . . . . . 9
⊢ ¬
𝑥 ∈
∅ |
8 | | eleq2 2827 |
. . . . . . . . 9
⊢ (𝐴 = ∅ → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ ∅)) |
9 | 7, 8 | mtbiri 326 |
. . . . . . . 8
⊢ (𝐴 = ∅ → ¬ 𝑥 ∈ 𝐴) |
10 | 9 | iffalsed 4467 |
. . . . . . 7
⊢ (𝐴 = ∅ → if(𝑥 ∈ 𝐴, 1, 0) = 0) |
11 | 10 | mpteq2dv 5172 |
. . . . . 6
⊢ (𝐴 = ∅ → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 1, 0)) = (𝑥 ∈ ℝ ↦ 0)) |
12 | | i1f1.1 |
. . . . . 6
⊢ 𝐹 = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 1, 0)) |
13 | | fconstmpt 5640 |
. . . . . 6
⊢ (ℝ
× {0}) = (𝑥 ∈
ℝ ↦ 0) |
14 | 11, 12, 13 | 3eqtr4g 2804 |
. . . . 5
⊢ (𝐴 = ∅ → 𝐹 = (ℝ ×
{0})) |
15 | 14 | fveq2d 6760 |
. . . 4
⊢ (𝐴 = ∅ →
(∫1‘𝐹)
= (∫1‘(ℝ × {0}))) |
16 | | fveq2 6756 |
. . . 4
⊢ (𝐴 = ∅ →
(vol‘𝐴) =
(vol‘∅)) |
17 | 6, 15, 16 | 3eqtr4a 2805 |
. . 3
⊢ (𝐴 = ∅ →
(∫1‘𝐹)
= (vol‘𝐴)) |
18 | 17 | a1i 11 |
. 2
⊢ ((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ) → (𝐴 =
∅ → (∫1‘𝐹) = (vol‘𝐴))) |
19 | | n0 4277 |
. . 3
⊢ (𝐴 ≠ ∅ ↔
∃𝑦 𝑦 ∈ 𝐴) |
20 | 12 | i1f1 24759 |
. . . . . . . 8
⊢ ((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ) → 𝐹 ∈
dom ∫1) |
21 | 20 | adantr 480 |
. . . . . . 7
⊢ (((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ) ∧ 𝑦 ∈
𝐴) → 𝐹 ∈ dom
∫1) |
22 | | itg1val 24752 |
. . . . . . 7
⊢ (𝐹 ∈ dom ∫1
→ (∫1‘𝐹) = Σ𝑧 ∈ (ran 𝐹 ∖ {0})(𝑧 · (vol‘(◡𝐹 “ {𝑧})))) |
23 | 21, 22 | syl 17 |
. . . . . 6
⊢ (((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ) ∧ 𝑦 ∈
𝐴) →
(∫1‘𝐹)
= Σ𝑧 ∈ (ran
𝐹 ∖ {0})(𝑧 · (vol‘(◡𝐹 “ {𝑧})))) |
24 | 12 | i1f1lem 24758 |
. . . . . . . . . . . . . 14
⊢ (𝐹:ℝ⟶{0, 1} ∧
(𝐴 ∈ dom vol →
(◡𝐹 “ {1}) = 𝐴)) |
25 | 24 | simpli 483 |
. . . . . . . . . . . . 13
⊢ 𝐹:ℝ⟶{0,
1} |
26 | | frn 6591 |
. . . . . . . . . . . . 13
⊢ (𝐹:ℝ⟶{0, 1} →
ran 𝐹 ⊆ {0,
1}) |
27 | 25, 26 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ ran 𝐹 ⊆ {0, 1} |
28 | | ssdif 4070 |
. . . . . . . . . . . 12
⊢ (ran
𝐹 ⊆ {0, 1} →
(ran 𝐹 ∖ {0}) ⊆
({0, 1} ∖ {0})) |
29 | 27, 28 | ax-mp 5 |
. . . . . . . . . . 11
⊢ (ran
𝐹 ∖ {0}) ⊆ ({0,
1} ∖ {0}) |
30 | | difprsnss 4729 |
. . . . . . . . . . 11
⊢ ({0, 1}
∖ {0}) ⊆ {1} |
31 | 29, 30 | sstri 3926 |
. . . . . . . . . 10
⊢ (ran
𝐹 ∖ {0}) ⊆
{1} |
32 | 31 | a1i 11 |
. . . . . . . . 9
⊢ (((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ) ∧ 𝑦 ∈
𝐴) → (ran 𝐹 ∖ {0}) ⊆
{1}) |
33 | | mblss 24600 |
. . . . . . . . . . . . . . . 16
⊢ (𝐴 ∈ dom vol → 𝐴 ⊆
ℝ) |
34 | 33 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ) → 𝐴 ⊆
ℝ) |
35 | 34 | sselda 3917 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ) ∧ 𝑦 ∈
𝐴) → 𝑦 ∈
ℝ) |
36 | | eleq1w 2821 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) |
37 | 36 | ifbid 4479 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑦 → if(𝑥 ∈ 𝐴, 1, 0) = if(𝑦 ∈ 𝐴, 1, 0)) |
38 | | 1ex 10902 |
. . . . . . . . . . . . . . . 16
⊢ 1 ∈
V |
39 | | c0ex 10900 |
. . . . . . . . . . . . . . . 16
⊢ 0 ∈
V |
40 | 38, 39 | ifex 4506 |
. . . . . . . . . . . . . . 15
⊢ if(𝑦 ∈ 𝐴, 1, 0) ∈ V |
41 | 37, 12, 40 | fvmpt 6857 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ ℝ → (𝐹‘𝑦) = if(𝑦 ∈ 𝐴, 1, 0)) |
42 | 35, 41 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ) ∧ 𝑦 ∈
𝐴) → (𝐹‘𝑦) = if(𝑦 ∈ 𝐴, 1, 0)) |
43 | | iftrue 4462 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ 𝐴 → if(𝑦 ∈ 𝐴, 1, 0) = 1) |
44 | 43 | adantl 481 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ) ∧ 𝑦 ∈
𝐴) → if(𝑦 ∈ 𝐴, 1, 0) = 1) |
45 | 42, 44 | eqtrd 2778 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ) ∧ 𝑦 ∈
𝐴) → (𝐹‘𝑦) = 1) |
46 | | ffn 6584 |
. . . . . . . . . . . . . 14
⊢ (𝐹:ℝ⟶{0, 1} →
𝐹 Fn
ℝ) |
47 | 25, 46 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢ 𝐹 Fn ℝ |
48 | | fnfvelrn 6940 |
. . . . . . . . . . . . 13
⊢ ((𝐹 Fn ℝ ∧ 𝑦 ∈ ℝ) → (𝐹‘𝑦) ∈ ran 𝐹) |
49 | 47, 35, 48 | sylancr 586 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ) ∧ 𝑦 ∈
𝐴) → (𝐹‘𝑦) ∈ ran 𝐹) |
50 | 45, 49 | eqeltrrd 2840 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ) ∧ 𝑦 ∈
𝐴) → 1 ∈ ran
𝐹) |
51 | | ax-1ne0 10871 |
. . . . . . . . . . 11
⊢ 1 ≠
0 |
52 | | eldifsn 4717 |
. . . . . . . . . . 11
⊢ (1 ∈
(ran 𝐹 ∖ {0}) ↔
(1 ∈ ran 𝐹 ∧ 1
≠ 0)) |
53 | 50, 51, 52 | sylanblrc 589 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ) ∧ 𝑦 ∈
𝐴) → 1 ∈ (ran
𝐹 ∖
{0})) |
54 | 53 | snssd 4739 |
. . . . . . . . 9
⊢ (((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ) ∧ 𝑦 ∈
𝐴) → {1} ⊆ (ran
𝐹 ∖
{0})) |
55 | 32, 54 | eqssd 3934 |
. . . . . . . 8
⊢ (((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ) ∧ 𝑦 ∈
𝐴) → (ran 𝐹 ∖ {0}) =
{1}) |
56 | 55 | sumeq1d 15341 |
. . . . . . 7
⊢ (((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ) ∧ 𝑦 ∈
𝐴) → Σ𝑧 ∈ (ran 𝐹 ∖ {0})(𝑧 · (vol‘(◡𝐹 “ {𝑧}))) = Σ𝑧 ∈ {1} (𝑧 · (vol‘(◡𝐹 “ {𝑧})))) |
57 | | 1re 10906 |
. . . . . . . . 9
⊢ 1 ∈
ℝ |
58 | 24 | simpri 485 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ dom vol → (◡𝐹 “ {1}) = 𝐴) |
59 | 58 | ad2antrr 722 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ) ∧ 𝑦 ∈
𝐴) → (◡𝐹 “ {1}) = 𝐴) |
60 | 59 | fveq2d 6760 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ) ∧ 𝑦 ∈
𝐴) → (vol‘(◡𝐹 “ {1})) = (vol‘𝐴)) |
61 | 60 | oveq2d 7271 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ) ∧ 𝑦 ∈
𝐴) → (1 ·
(vol‘(◡𝐹 “ {1}))) = (1 ·
(vol‘𝐴))) |
62 | | simplr 765 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ) ∧ 𝑦 ∈
𝐴) → (vol‘𝐴) ∈
ℝ) |
63 | 62 | recnd 10934 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ) ∧ 𝑦 ∈
𝐴) → (vol‘𝐴) ∈
ℂ) |
64 | 63 | mulid2d 10924 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ) ∧ 𝑦 ∈
𝐴) → (1 ·
(vol‘𝐴)) =
(vol‘𝐴)) |
65 | 61, 64 | eqtrd 2778 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ) ∧ 𝑦 ∈
𝐴) → (1 ·
(vol‘(◡𝐹 “ {1}))) = (vol‘𝐴)) |
66 | 65, 63 | eqeltrd 2839 |
. . . . . . . . 9
⊢ (((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ) ∧ 𝑦 ∈
𝐴) → (1 ·
(vol‘(◡𝐹 “ {1}))) ∈
ℂ) |
67 | | id 22 |
. . . . . . . . . . 11
⊢ (𝑧 = 1 → 𝑧 = 1) |
68 | | sneq 4568 |
. . . . . . . . . . . . 13
⊢ (𝑧 = 1 → {𝑧} = {1}) |
69 | 68 | imaeq2d 5958 |
. . . . . . . . . . . 12
⊢ (𝑧 = 1 → (◡𝐹 “ {𝑧}) = (◡𝐹 “ {1})) |
70 | 69 | fveq2d 6760 |
. . . . . . . . . . 11
⊢ (𝑧 = 1 → (vol‘(◡𝐹 “ {𝑧})) = (vol‘(◡𝐹 “ {1}))) |
71 | 67, 70 | oveq12d 7273 |
. . . . . . . . . 10
⊢ (𝑧 = 1 → (𝑧 · (vol‘(◡𝐹 “ {𝑧}))) = (1 · (vol‘(◡𝐹 “ {1})))) |
72 | 71 | sumsn 15386 |
. . . . . . . . 9
⊢ ((1
∈ ℝ ∧ (1 · (vol‘(◡𝐹 “ {1}))) ∈ ℂ) →
Σ𝑧 ∈ {1} (𝑧 · (vol‘(◡𝐹 “ {𝑧}))) = (1 · (vol‘(◡𝐹 “ {1})))) |
73 | 57, 66, 72 | sylancr 586 |
. . . . . . . 8
⊢ (((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ) ∧ 𝑦 ∈
𝐴) → Σ𝑧 ∈ {1} (𝑧 · (vol‘(◡𝐹 “ {𝑧}))) = (1 · (vol‘(◡𝐹 “ {1})))) |
74 | 73, 65 | eqtrd 2778 |
. . . . . . 7
⊢ (((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ) ∧ 𝑦 ∈
𝐴) → Σ𝑧 ∈ {1} (𝑧 · (vol‘(◡𝐹 “ {𝑧}))) = (vol‘𝐴)) |
75 | 56, 74 | eqtrd 2778 |
. . . . . 6
⊢ (((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ) ∧ 𝑦 ∈
𝐴) → Σ𝑧 ∈ (ran 𝐹 ∖ {0})(𝑧 · (vol‘(◡𝐹 “ {𝑧}))) = (vol‘𝐴)) |
76 | 23, 75 | eqtrd 2778 |
. . . . 5
⊢ (((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ) ∧ 𝑦 ∈
𝐴) →
(∫1‘𝐹)
= (vol‘𝐴)) |
77 | 76 | ex 412 |
. . . 4
⊢ ((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ) → (𝑦 ∈
𝐴 →
(∫1‘𝐹)
= (vol‘𝐴))) |
78 | 77 | exlimdv 1937 |
. . 3
⊢ ((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ) → (∃𝑦
𝑦 ∈ 𝐴 → (∫1‘𝐹) = (vol‘𝐴))) |
79 | 19, 78 | syl5bi 241 |
. 2
⊢ ((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ) → (𝐴 ≠
∅ → (∫1‘𝐹) = (vol‘𝐴))) |
80 | 18, 79 | pm2.61dne 3030 |
1
⊢ ((𝐴 ∈ dom vol ∧
(vol‘𝐴) ∈
ℝ) → (∫1‘𝐹) = (vol‘𝐴)) |