MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtrprfv Structured version   Visualization version   GIF version

Theorem pmtrprfv 19434
Description: In a transposition of two given points, each maps to the other. (Contributed by Stefan O'Rear, 25-Aug-2015.)
Hypothesis
Ref Expression
pmtrfval.t 𝑇 = (pmTrsp‘𝐷)
Assertion
Ref Expression
pmtrprfv ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑋𝑌)) → ((𝑇‘{𝑋, 𝑌})‘𝑋) = 𝑌)

Proof of Theorem pmtrprfv
StepHypRef Expression
1 simpl 482 . . 3 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑋𝑌)) → 𝐷𝑉)
2 simpr1 1195 . . . 4 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑋𝑌)) → 𝑋𝐷)
3 simpr2 1196 . . . 4 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑋𝑌)) → 𝑌𝐷)
42, 3prssd 4798 . . 3 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑋𝑌)) → {𝑋, 𝑌} ⊆ 𝐷)
5 enpr2 10016 . . . 4 ((𝑋𝐷𝑌𝐷𝑋𝑌) → {𝑋, 𝑌} ≈ 2o)
65adantl 481 . . 3 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑋𝑌)) → {𝑋, 𝑌} ≈ 2o)
7 pmtrfval.t . . . 4 𝑇 = (pmTrsp‘𝐷)
87pmtrfv 19433 . . 3 (((𝐷𝑉 ∧ {𝑋, 𝑌} ⊆ 𝐷 ∧ {𝑋, 𝑌} ≈ 2o) ∧ 𝑋𝐷) → ((𝑇‘{𝑋, 𝑌})‘𝑋) = if(𝑋 ∈ {𝑋, 𝑌}, ({𝑋, 𝑌} ∖ {𝑋}), 𝑋))
91, 4, 6, 2, 8syl31anc 1375 . 2 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑋𝑌)) → ((𝑇‘{𝑋, 𝑌})‘𝑋) = if(𝑋 ∈ {𝑋, 𝑌}, ({𝑋, 𝑌} ∖ {𝑋}), 𝑋))
10 prid1g 4736 . . . . 5 (𝑋𝐷𝑋 ∈ {𝑋, 𝑌})
112, 10syl 17 . . . 4 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑋𝑌)) → 𝑋 ∈ {𝑋, 𝑌})
1211iftrued 4508 . . 3 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑋𝑌)) → if(𝑋 ∈ {𝑋, 𝑌}, ({𝑋, 𝑌} ∖ {𝑋}), 𝑋) = ({𝑋, 𝑌} ∖ {𝑋}))
13 difprsnss 4775 . . . . . . 7 ({𝑋, 𝑌} ∖ {𝑋}) ⊆ {𝑌}
1413a1i 11 . . . . . 6 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑋𝑌)) → ({𝑋, 𝑌} ∖ {𝑋}) ⊆ {𝑌})
15 prid2g 4737 . . . . . . . . 9 (𝑌𝐷𝑌 ∈ {𝑋, 𝑌})
163, 15syl 17 . . . . . . . 8 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑋𝑌)) → 𝑌 ∈ {𝑋, 𝑌})
17 simpr3 1197 . . . . . . . . 9 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑋𝑌)) → 𝑋𝑌)
1817necomd 2987 . . . . . . . 8 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑋𝑌)) → 𝑌𝑋)
19 eldifsn 4762 . . . . . . . 8 (𝑌 ∈ ({𝑋, 𝑌} ∖ {𝑋}) ↔ (𝑌 ∈ {𝑋, 𝑌} ∧ 𝑌𝑋))
2016, 18, 19sylanbrc 583 . . . . . . 7 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑋𝑌)) → 𝑌 ∈ ({𝑋, 𝑌} ∖ {𝑋}))
2120snssd 4785 . . . . . 6 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑋𝑌)) → {𝑌} ⊆ ({𝑋, 𝑌} ∖ {𝑋}))
2214, 21eqssd 3976 . . . . 5 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑋𝑌)) → ({𝑋, 𝑌} ∖ {𝑋}) = {𝑌})
2322unieqd 4896 . . . 4 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑋𝑌)) → ({𝑋, 𝑌} ∖ {𝑋}) = {𝑌})
24 unisng 4901 . . . . 5 (𝑌𝐷 {𝑌} = 𝑌)
253, 24syl 17 . . . 4 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑋𝑌)) → {𝑌} = 𝑌)
2623, 25eqtrd 2770 . . 3 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑋𝑌)) → ({𝑋, 𝑌} ∖ {𝑋}) = 𝑌)
2712, 26eqtrd 2770 . 2 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑋𝑌)) → if(𝑋 ∈ {𝑋, 𝑌}, ({𝑋, 𝑌} ∖ {𝑋}), 𝑋) = 𝑌)
289, 27eqtrd 2770 1 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑋𝑌)) → ((𝑇‘{𝑋, 𝑌})‘𝑋) = 𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108  wne 2932  cdif 3923  wss 3926  ifcif 4500  {csn 4601  {cpr 4603   cuni 4883   class class class wbr 5119  cfv 6531  2oc2o 8474  cen 8956  pmTrspcpmtr 19422
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-1o 8480  df-2o 8481  df-en 8960  df-pmtr 19423
This theorem is referenced by:  symggen  19451  pmtr3ncomlem1  19454  mdetralt  22546  mdetunilem7  22556  pmtrprfv2  33099  pmtridfv1  33106  psgnfzto1stlem  33111
  Copyright terms: Public domain W3C validator