MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtrprfv Structured version   Visualization version   GIF version

Theorem pmtrprfv 18976
Description: In a transposition of two given points, each maps to the other. (Contributed by Stefan O'Rear, 25-Aug-2015.)
Hypothesis
Ref Expression
pmtrfval.t 𝑇 = (pmTrsp‘𝐷)
Assertion
Ref Expression
pmtrprfv ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑋𝑌)) → ((𝑇‘{𝑋, 𝑌})‘𝑋) = 𝑌)

Proof of Theorem pmtrprfv
StepHypRef Expression
1 simpl 482 . . 3 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑋𝑌)) → 𝐷𝑉)
2 simpr1 1192 . . . 4 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑋𝑌)) → 𝑋𝐷)
3 simpr2 1193 . . . 4 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑋𝑌)) → 𝑌𝐷)
42, 3prssd 4752 . . 3 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑋𝑌)) → {𝑋, 𝑌} ⊆ 𝐷)
5 pr2nelem 9691 . . . 4 ((𝑋𝐷𝑌𝐷𝑋𝑌) → {𝑋, 𝑌} ≈ 2o)
65adantl 481 . . 3 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑋𝑌)) → {𝑋, 𝑌} ≈ 2o)
7 pmtrfval.t . . . 4 𝑇 = (pmTrsp‘𝐷)
87pmtrfv 18975 . . 3 (((𝐷𝑉 ∧ {𝑋, 𝑌} ⊆ 𝐷 ∧ {𝑋, 𝑌} ≈ 2o) ∧ 𝑋𝐷) → ((𝑇‘{𝑋, 𝑌})‘𝑋) = if(𝑋 ∈ {𝑋, 𝑌}, ({𝑋, 𝑌} ∖ {𝑋}), 𝑋))
91, 4, 6, 2, 8syl31anc 1371 . 2 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑋𝑌)) → ((𝑇‘{𝑋, 𝑌})‘𝑋) = if(𝑋 ∈ {𝑋, 𝑌}, ({𝑋, 𝑌} ∖ {𝑋}), 𝑋))
10 prid1g 4693 . . . . 5 (𝑋𝐷𝑋 ∈ {𝑋, 𝑌})
112, 10syl 17 . . . 4 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑋𝑌)) → 𝑋 ∈ {𝑋, 𝑌})
1211iftrued 4464 . . 3 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑋𝑌)) → if(𝑋 ∈ {𝑋, 𝑌}, ({𝑋, 𝑌} ∖ {𝑋}), 𝑋) = ({𝑋, 𝑌} ∖ {𝑋}))
13 difprsnss 4729 . . . . . . 7 ({𝑋, 𝑌} ∖ {𝑋}) ⊆ {𝑌}
1413a1i 11 . . . . . 6 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑋𝑌)) → ({𝑋, 𝑌} ∖ {𝑋}) ⊆ {𝑌})
15 prid2g 4694 . . . . . . . . 9 (𝑌𝐷𝑌 ∈ {𝑋, 𝑌})
163, 15syl 17 . . . . . . . 8 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑋𝑌)) → 𝑌 ∈ {𝑋, 𝑌})
17 simpr3 1194 . . . . . . . . 9 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑋𝑌)) → 𝑋𝑌)
1817necomd 2998 . . . . . . . 8 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑋𝑌)) → 𝑌𝑋)
19 eldifsn 4717 . . . . . . . 8 (𝑌 ∈ ({𝑋, 𝑌} ∖ {𝑋}) ↔ (𝑌 ∈ {𝑋, 𝑌} ∧ 𝑌𝑋))
2016, 18, 19sylanbrc 582 . . . . . . 7 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑋𝑌)) → 𝑌 ∈ ({𝑋, 𝑌} ∖ {𝑋}))
2120snssd 4739 . . . . . 6 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑋𝑌)) → {𝑌} ⊆ ({𝑋, 𝑌} ∖ {𝑋}))
2214, 21eqssd 3934 . . . . 5 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑋𝑌)) → ({𝑋, 𝑌} ∖ {𝑋}) = {𝑌})
2322unieqd 4850 . . . 4 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑋𝑌)) → ({𝑋, 𝑌} ∖ {𝑋}) = {𝑌})
24 unisng 4857 . . . . 5 (𝑌𝐷 {𝑌} = 𝑌)
253, 24syl 17 . . . 4 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑋𝑌)) → {𝑌} = 𝑌)
2623, 25eqtrd 2778 . . 3 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑋𝑌)) → ({𝑋, 𝑌} ∖ {𝑋}) = 𝑌)
2712, 26eqtrd 2778 . 2 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑋𝑌)) → if(𝑋 ∈ {𝑋, 𝑌}, ({𝑋, 𝑌} ∖ {𝑋}), 𝑋) = 𝑌)
289, 27eqtrd 2778 1 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑋𝑌)) → ((𝑇‘{𝑋, 𝑌})‘𝑋) = 𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  cdif 3880  wss 3883  ifcif 4456  {csn 4558  {cpr 4560   cuni 4836   class class class wbr 5070  cfv 6418  2oc2o 8261  cen 8688  pmTrspcpmtr 18964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-om 7688  df-1o 8267  df-2o 8268  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pmtr 18965
This theorem is referenced by:  symggen  18993  pmtr3ncomlem1  18996  mdetralt  21665  mdetunilem7  21675  pmtrprfv2  31259  pmtridfv1  31264  psgnfzto1stlem  31269
  Copyright terms: Public domain W3C validator