MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtrprfv Structured version   Visualization version   GIF version

Theorem pmtrprfv 19390
Description: In a transposition of two given points, each maps to the other. (Contributed by Stefan O'Rear, 25-Aug-2015.)
Hypothesis
Ref Expression
pmtrfval.t 𝑇 = (pmTrsp‘𝐷)
Assertion
Ref Expression
pmtrprfv ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑋𝑌)) → ((𝑇‘{𝑋, 𝑌})‘𝑋) = 𝑌)

Proof of Theorem pmtrprfv
StepHypRef Expression
1 simpl 482 . . 3 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑋𝑌)) → 𝐷𝑉)
2 simpr1 1195 . . . 4 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑋𝑌)) → 𝑋𝐷)
3 simpr2 1196 . . . 4 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑋𝑌)) → 𝑌𝐷)
42, 3prssd 4789 . . 3 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑋𝑌)) → {𝑋, 𝑌} ⊆ 𝐷)
5 enpr2 9962 . . . 4 ((𝑋𝐷𝑌𝐷𝑋𝑌) → {𝑋, 𝑌} ≈ 2o)
65adantl 481 . . 3 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑋𝑌)) → {𝑋, 𝑌} ≈ 2o)
7 pmtrfval.t . . . 4 𝑇 = (pmTrsp‘𝐷)
87pmtrfv 19389 . . 3 (((𝐷𝑉 ∧ {𝑋, 𝑌} ⊆ 𝐷 ∧ {𝑋, 𝑌} ≈ 2o) ∧ 𝑋𝐷) → ((𝑇‘{𝑋, 𝑌})‘𝑋) = if(𝑋 ∈ {𝑋, 𝑌}, ({𝑋, 𝑌} ∖ {𝑋}), 𝑋))
91, 4, 6, 2, 8syl31anc 1375 . 2 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑋𝑌)) → ((𝑇‘{𝑋, 𝑌})‘𝑋) = if(𝑋 ∈ {𝑋, 𝑌}, ({𝑋, 𝑌} ∖ {𝑋}), 𝑋))
10 prid1g 4727 . . . . 5 (𝑋𝐷𝑋 ∈ {𝑋, 𝑌})
112, 10syl 17 . . . 4 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑋𝑌)) → 𝑋 ∈ {𝑋, 𝑌})
1211iftrued 4499 . . 3 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑋𝑌)) → if(𝑋 ∈ {𝑋, 𝑌}, ({𝑋, 𝑌} ∖ {𝑋}), 𝑋) = ({𝑋, 𝑌} ∖ {𝑋}))
13 difprsnss 4766 . . . . . . 7 ({𝑋, 𝑌} ∖ {𝑋}) ⊆ {𝑌}
1413a1i 11 . . . . . 6 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑋𝑌)) → ({𝑋, 𝑌} ∖ {𝑋}) ⊆ {𝑌})
15 prid2g 4728 . . . . . . . . 9 (𝑌𝐷𝑌 ∈ {𝑋, 𝑌})
163, 15syl 17 . . . . . . . 8 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑋𝑌)) → 𝑌 ∈ {𝑋, 𝑌})
17 simpr3 1197 . . . . . . . . 9 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑋𝑌)) → 𝑋𝑌)
1817necomd 2981 . . . . . . . 8 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑋𝑌)) → 𝑌𝑋)
19 eldifsn 4753 . . . . . . . 8 (𝑌 ∈ ({𝑋, 𝑌} ∖ {𝑋}) ↔ (𝑌 ∈ {𝑋, 𝑌} ∧ 𝑌𝑋))
2016, 18, 19sylanbrc 583 . . . . . . 7 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑋𝑌)) → 𝑌 ∈ ({𝑋, 𝑌} ∖ {𝑋}))
2120snssd 4776 . . . . . 6 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑋𝑌)) → {𝑌} ⊆ ({𝑋, 𝑌} ∖ {𝑋}))
2214, 21eqssd 3967 . . . . 5 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑋𝑌)) → ({𝑋, 𝑌} ∖ {𝑋}) = {𝑌})
2322unieqd 4887 . . . 4 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑋𝑌)) → ({𝑋, 𝑌} ∖ {𝑋}) = {𝑌})
24 unisng 4892 . . . . 5 (𝑌𝐷 {𝑌} = 𝑌)
253, 24syl 17 . . . 4 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑋𝑌)) → {𝑌} = 𝑌)
2623, 25eqtrd 2765 . . 3 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑋𝑌)) → ({𝑋, 𝑌} ∖ {𝑋}) = 𝑌)
2712, 26eqtrd 2765 . 2 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑋𝑌)) → if(𝑋 ∈ {𝑋, 𝑌}, ({𝑋, 𝑌} ∖ {𝑋}), 𝑋) = 𝑌)
289, 27eqtrd 2765 1 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑋𝑌)) → ((𝑇‘{𝑋, 𝑌})‘𝑋) = 𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  cdif 3914  wss 3917  ifcif 4491  {csn 4592  {cpr 4594   cuni 4874   class class class wbr 5110  cfv 6514  2oc2o 8431  cen 8918  pmTrspcpmtr 19378
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-1o 8437  df-2o 8438  df-en 8922  df-pmtr 19379
This theorem is referenced by:  symggen  19407  pmtr3ncomlem1  19410  mdetralt  22502  mdetunilem7  22512  pmtrprfv2  33052  pmtridfv1  33059  psgnfzto1stlem  33064
  Copyright terms: Public domain W3C validator