MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtrprfv Structured version   Visualization version   GIF version

Theorem pmtrprfv 18312
Description: In a transposition of two given points, each maps to the other. (Contributed by Stefan O'Rear, 25-Aug-2015.)
Hypothesis
Ref Expression
pmtrfval.t 𝑇 = (pmTrsp‘𝐷)
Assertion
Ref Expression
pmtrprfv ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑋𝑌)) → ((𝑇‘{𝑋, 𝑌})‘𝑋) = 𝑌)

Proof of Theorem pmtrprfv
StepHypRef Expression
1 simpl 483 . . 3 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑋𝑌)) → 𝐷𝑉)
2 simpr1 1187 . . . 4 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑋𝑌)) → 𝑋𝐷)
3 simpr2 1188 . . . 4 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑋𝑌)) → 𝑌𝐷)
42, 3prssd 4662 . . 3 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑋𝑌)) → {𝑋, 𝑌} ⊆ 𝐷)
5 pr2nelem 9276 . . . 4 ((𝑋𝐷𝑌𝐷𝑋𝑌) → {𝑋, 𝑌} ≈ 2o)
65adantl 482 . . 3 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑋𝑌)) → {𝑋, 𝑌} ≈ 2o)
7 pmtrfval.t . . . 4 𝑇 = (pmTrsp‘𝐷)
87pmtrfv 18311 . . 3 (((𝐷𝑉 ∧ {𝑋, 𝑌} ⊆ 𝐷 ∧ {𝑋, 𝑌} ≈ 2o) ∧ 𝑋𝐷) → ((𝑇‘{𝑋, 𝑌})‘𝑋) = if(𝑋 ∈ {𝑋, 𝑌}, ({𝑋, 𝑌} ∖ {𝑋}), 𝑋))
91, 4, 6, 2, 8syl31anc 1366 . 2 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑋𝑌)) → ((𝑇‘{𝑋, 𝑌})‘𝑋) = if(𝑋 ∈ {𝑋, 𝑌}, ({𝑋, 𝑌} ∖ {𝑋}), 𝑋))
10 prid1g 4603 . . . . 5 (𝑋𝐷𝑋 ∈ {𝑋, 𝑌})
112, 10syl 17 . . . 4 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑋𝑌)) → 𝑋 ∈ {𝑋, 𝑌})
1211iftrued 4389 . . 3 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑋𝑌)) → if(𝑋 ∈ {𝑋, 𝑌}, ({𝑋, 𝑌} ∖ {𝑋}), 𝑋) = ({𝑋, 𝑌} ∖ {𝑋}))
13 difprsnss 4639 . . . . . . 7 ({𝑋, 𝑌} ∖ {𝑋}) ⊆ {𝑌}
1413a1i 11 . . . . . 6 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑋𝑌)) → ({𝑋, 𝑌} ∖ {𝑋}) ⊆ {𝑌})
15 prid2g 4604 . . . . . . . . 9 (𝑌𝐷𝑌 ∈ {𝑋, 𝑌})
163, 15syl 17 . . . . . . . 8 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑋𝑌)) → 𝑌 ∈ {𝑋, 𝑌})
17 simpr3 1189 . . . . . . . . 9 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑋𝑌)) → 𝑋𝑌)
1817necomd 3039 . . . . . . . 8 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑋𝑌)) → 𝑌𝑋)
19 eldifsn 4626 . . . . . . . 8 (𝑌 ∈ ({𝑋, 𝑌} ∖ {𝑋}) ↔ (𝑌 ∈ {𝑋, 𝑌} ∧ 𝑌𝑋))
2016, 18, 19sylanbrc 583 . . . . . . 7 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑋𝑌)) → 𝑌 ∈ ({𝑋, 𝑌} ∖ {𝑋}))
2120snssd 4649 . . . . . 6 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑋𝑌)) → {𝑌} ⊆ ({𝑋, 𝑌} ∖ {𝑋}))
2214, 21eqssd 3906 . . . . 5 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑋𝑌)) → ({𝑋, 𝑌} ∖ {𝑋}) = {𝑌})
2322unieqd 4755 . . . 4 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑋𝑌)) → ({𝑋, 𝑌} ∖ {𝑋}) = {𝑌})
24 unisng 4760 . . . . 5 (𝑌𝐷 {𝑌} = 𝑌)
253, 24syl 17 . . . 4 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑋𝑌)) → {𝑌} = 𝑌)
2623, 25eqtrd 2831 . . 3 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑋𝑌)) → ({𝑋, 𝑌} ∖ {𝑋}) = 𝑌)
2712, 26eqtrd 2831 . 2 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑋𝑌)) → if(𝑋 ∈ {𝑋, 𝑌}, ({𝑋, 𝑌} ∖ {𝑋}), 𝑋) = 𝑌)
289, 27eqtrd 2831 1 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑋𝑌)) → ((𝑇‘{𝑋, 𝑌})‘𝑋) = 𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1080   = wceq 1522  wcel 2081  wne 2984  cdif 3856  wss 3859  ifcif 4381  {csn 4472  {cpr 4474   cuni 4745   class class class wbr 4962  cfv 6225  2oc2o 7947  cen 8354  pmTrspcpmtr 18300
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5081  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-ral 3110  df-rex 3111  df-reu 3112  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-pss 3876  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-tp 4477  df-op 4479  df-uni 4746  df-iun 4827  df-br 4963  df-opab 5025  df-mpt 5042  df-tr 5064  df-id 5348  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-ord 6069  df-on 6070  df-lim 6071  df-suc 6072  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-om 7437  df-1o 7953  df-2o 7954  df-er 8139  df-en 8358  df-dom 8359  df-sdom 8360  df-pmtr 18301
This theorem is referenced by:  symggen  18329  pmtr3ncomlem1  18332  mdetralt  20901  mdetunilem7  20911  pmtrprfv2  30391  psgnfzto1stlem  30664  pmtridfv1  30671
  Copyright terms: Public domain W3C validator