MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  musum Structured version   Visualization version   GIF version

Theorem musum 27101
Description: The sum of the Möbius function over the divisors of 𝑁 gives one if 𝑁 = 1, but otherwise always sums to zero. Theorem 2.1 in [ApostolNT] p. 25. This makes the Möbius function useful for inverting divisor sums; see also muinv 27103. (Contributed by Mario Carneiro, 2-Jul-2015.)
Assertion
Ref Expression
musum (𝑁 ∈ ℕ → Σ𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑁} (μ‘𝑘) = if(𝑁 = 1, 1, 0))
Distinct variable group:   𝑘,𝑛,𝑁

Proof of Theorem musum
Dummy variables 𝑚 𝑝 𝑞 𝑠 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6858 . . . . . . . 8 (𝑛 = 𝑘 → (μ‘𝑛) = (μ‘𝑘))
21neeq1d 2984 . . . . . . 7 (𝑛 = 𝑘 → ((μ‘𝑛) ≠ 0 ↔ (μ‘𝑘) ≠ 0))
3 breq1 5110 . . . . . . 7 (𝑛 = 𝑘 → (𝑛𝑁𝑘𝑁))
42, 3anbi12d 632 . . . . . 6 (𝑛 = 𝑘 → (((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁) ↔ ((μ‘𝑘) ≠ 0 ∧ 𝑘𝑁)))
54elrab 3659 . . . . 5 (𝑘 ∈ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)} ↔ (𝑘 ∈ ℕ ∧ ((μ‘𝑘) ≠ 0 ∧ 𝑘𝑁)))
6 muval2 27044 . . . . . 6 ((𝑘 ∈ ℕ ∧ (μ‘𝑘) ≠ 0) → (μ‘𝑘) = (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑘})))
76adantrr 717 . . . . 5 ((𝑘 ∈ ℕ ∧ ((μ‘𝑘) ≠ 0 ∧ 𝑘𝑁)) → (μ‘𝑘) = (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑘})))
85, 7sylbi 217 . . . 4 (𝑘 ∈ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)} → (μ‘𝑘) = (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑘})))
98adantl 481 . . 3 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)}) → (μ‘𝑘) = (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑘})))
109sumeq2dv 15668 . 2 (𝑁 ∈ ℕ → Σ𝑘 ∈ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)} (μ‘𝑘) = Σ𝑘 ∈ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)} (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑘})))
11 simpr 484 . . . . 5 (((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁) → 𝑛𝑁)
1211a1i 11 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) → (((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁) → 𝑛𝑁))
1312ss2rabdv 4039 . . 3 (𝑁 ∈ ℕ → {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)} ⊆ {𝑛 ∈ ℕ ∣ 𝑛𝑁})
14 ssrab2 4043 . . . . . 6 {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)} ⊆ ℕ
15 simpr 484 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)}) → 𝑘 ∈ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)})
1614, 15sselid 3944 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)}) → 𝑘 ∈ ℕ)
17 mucl 27051 . . . . 5 (𝑘 ∈ ℕ → (μ‘𝑘) ∈ ℤ)
1816, 17syl 17 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)}) → (μ‘𝑘) ∈ ℤ)
1918zcnd 12639 . . 3 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)}) → (μ‘𝑘) ∈ ℂ)
20 difrab 4281 . . . . . . 7 ({𝑛 ∈ ℕ ∣ 𝑛𝑁} ∖ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)}) = {𝑛 ∈ ℕ ∣ (𝑛𝑁 ∧ ¬ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁))}
21 pm3.21 471 . . . . . . . . . . 11 (𝑛𝑁 → ((μ‘𝑛) ≠ 0 → ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)))
2221necon1bd 2943 . . . . . . . . . 10 (𝑛𝑁 → (¬ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁) → (μ‘𝑛) = 0))
2322imp 406 . . . . . . . . 9 ((𝑛𝑁 ∧ ¬ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)) → (μ‘𝑛) = 0)
2423a1i 11 . . . . . . . 8 (𝑛 ∈ ℕ → ((𝑛𝑁 ∧ ¬ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)) → (μ‘𝑛) = 0))
2524ss2rabi 4040 . . . . . . 7 {𝑛 ∈ ℕ ∣ (𝑛𝑁 ∧ ¬ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁))} ⊆ {𝑛 ∈ ℕ ∣ (μ‘𝑛) = 0}
2620, 25eqsstri 3993 . . . . . 6 ({𝑛 ∈ ℕ ∣ 𝑛𝑁} ∖ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)}) ⊆ {𝑛 ∈ ℕ ∣ (μ‘𝑛) = 0}
2726sseli 3942 . . . . 5 (𝑘 ∈ ({𝑛 ∈ ℕ ∣ 𝑛𝑁} ∖ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)}) → 𝑘 ∈ {𝑛 ∈ ℕ ∣ (μ‘𝑛) = 0})
28 fveqeq2 6867 . . . . . . 7 (𝑛 = 𝑘 → ((μ‘𝑛) = 0 ↔ (μ‘𝑘) = 0))
2928elrab 3659 . . . . . 6 (𝑘 ∈ {𝑛 ∈ ℕ ∣ (μ‘𝑛) = 0} ↔ (𝑘 ∈ ℕ ∧ (μ‘𝑘) = 0))
3029simprbi 496 . . . . 5 (𝑘 ∈ {𝑛 ∈ ℕ ∣ (μ‘𝑛) = 0} → (μ‘𝑘) = 0)
3127, 30syl 17 . . . 4 (𝑘 ∈ ({𝑛 ∈ ℕ ∣ 𝑛𝑁} ∖ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)}) → (μ‘𝑘) = 0)
3231adantl 481 . . 3 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ({𝑛 ∈ ℕ ∣ 𝑛𝑁} ∖ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)})) → (μ‘𝑘) = 0)
33 dvdsfi 16759 . . 3 (𝑁 ∈ ℕ → {𝑛 ∈ ℕ ∣ 𝑛𝑁} ∈ Fin)
3413, 19, 32, 33fsumss 15691 . 2 (𝑁 ∈ ℕ → Σ𝑘 ∈ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)} (μ‘𝑘) = Σ𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑁} (μ‘𝑘))
35 fveq2 6858 . . . . 5 (𝑥 = {𝑝 ∈ ℙ ∣ 𝑝𝑘} → (♯‘𝑥) = (♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑘}))
3635oveq2d 7403 . . . 4 (𝑥 = {𝑝 ∈ ℙ ∣ 𝑝𝑘} → (-1↑(♯‘𝑥)) = (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑘})))
3733, 13ssfid 9212 . . . 4 (𝑁 ∈ ℕ → {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)} ∈ Fin)
38 eqid 2729 . . . . 5 {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)} = {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)}
39 eqid 2729 . . . . 5 (𝑚 ∈ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)} ↦ {𝑝 ∈ ℙ ∣ 𝑝𝑚}) = (𝑚 ∈ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)} ↦ {𝑝 ∈ ℙ ∣ 𝑝𝑚})
40 oveq1 7394 . . . . . . . 8 (𝑞 = 𝑝 → (𝑞 pCnt 𝑥) = (𝑝 pCnt 𝑥))
4140cbvmptv 5211 . . . . . . 7 (𝑞 ∈ ℙ ↦ (𝑞 pCnt 𝑥)) = (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑥))
42 oveq2 7395 . . . . . . . 8 (𝑥 = 𝑚 → (𝑝 pCnt 𝑥) = (𝑝 pCnt 𝑚))
4342mpteq2dv 5201 . . . . . . 7 (𝑥 = 𝑚 → (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑥)) = (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑚)))
4441, 43eqtrid 2776 . . . . . 6 (𝑥 = 𝑚 → (𝑞 ∈ ℙ ↦ (𝑞 pCnt 𝑥)) = (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑚)))
4544cbvmptv 5211 . . . . 5 (𝑥 ∈ ℕ ↦ (𝑞 ∈ ℙ ↦ (𝑞 pCnt 𝑥))) = (𝑚 ∈ ℕ ↦ (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑚)))
4638, 39, 45sqff1o 27092 . . . 4 (𝑁 ∈ ℕ → (𝑚 ∈ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)} ↦ {𝑝 ∈ ℙ ∣ 𝑝𝑚}):{𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)}–1-1-onto→𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})
47 breq2 5111 . . . . . . 7 (𝑚 = 𝑘 → (𝑝𝑚𝑝𝑘))
4847rabbidv 3413 . . . . . 6 (𝑚 = 𝑘 → {𝑝 ∈ ℙ ∣ 𝑝𝑚} = {𝑝 ∈ ℙ ∣ 𝑝𝑘})
49 prmex 16647 . . . . . . 7 ℙ ∈ V
5049rabex 5294 . . . . . 6 {𝑝 ∈ ℙ ∣ 𝑝𝑘} ∈ V
5148, 39, 50fvmpt 6968 . . . . 5 (𝑘 ∈ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)} → ((𝑚 ∈ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)} ↦ {𝑝 ∈ ℙ ∣ 𝑝𝑚})‘𝑘) = {𝑝 ∈ ℙ ∣ 𝑝𝑘})
5251adantl 481 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)}) → ((𝑚 ∈ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)} ↦ {𝑝 ∈ ℙ ∣ 𝑝𝑚})‘𝑘) = {𝑝 ∈ ℙ ∣ 𝑝𝑘})
53 neg1cn 12171 . . . . 5 -1 ∈ ℂ
54 prmdvdsfi 27017 . . . . . . 7 (𝑁 ∈ ℕ → {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∈ Fin)
55 elpwi 4570 . . . . . . 7 (𝑥 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} → 𝑥 ⊆ {𝑝 ∈ ℙ ∣ 𝑝𝑁})
56 ssfi 9137 . . . . . . 7 (({𝑝 ∈ ℙ ∣ 𝑝𝑁} ∈ Fin ∧ 𝑥 ⊆ {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → 𝑥 ∈ Fin)
5754, 55, 56syl2an 596 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → 𝑥 ∈ Fin)
58 hashcl 14321 . . . . . 6 (𝑥 ∈ Fin → (♯‘𝑥) ∈ ℕ0)
5957, 58syl 17 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → (♯‘𝑥) ∈ ℕ0)
60 expcl 14044 . . . . 5 ((-1 ∈ ℂ ∧ (♯‘𝑥) ∈ ℕ0) → (-1↑(♯‘𝑥)) ∈ ℂ)
6153, 59, 60sylancr 587 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → (-1↑(♯‘𝑥)) ∈ ℂ)
6236, 37, 46, 52, 61fsumf1o 15689 . . 3 (𝑁 ∈ ℕ → Σ𝑥 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} (-1↑(♯‘𝑥)) = Σ𝑘 ∈ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)} (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑘})))
63 fzfid 13938 . . . . 5 (𝑁 ∈ ℕ → (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})) ∈ Fin)
6454adantr 480 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))) → {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∈ Fin)
65 pwfi 9268 . . . . . . 7 ({𝑝 ∈ ℙ ∣ 𝑝𝑁} ∈ Fin ↔ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∈ Fin)
6664, 65sylib 218 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))) → 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∈ Fin)
67 ssrab2 4043 . . . . . 6 {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧} ⊆ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}
68 ssfi 9137 . . . . . 6 ((𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∈ Fin ∧ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧} ⊆ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧} ∈ Fin)
6966, 67, 68sylancl 586 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))) → {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧} ∈ Fin)
70 simprr 772 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})) ∧ 𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧})) → 𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧})
71 fveqeq2 6867 . . . . . . . . . 10 (𝑠 = 𝑥 → ((♯‘𝑠) = 𝑧 ↔ (♯‘𝑥) = 𝑧))
7271elrab 3659 . . . . . . . . 9 (𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧} ↔ (𝑥 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∧ (♯‘𝑥) = 𝑧))
7372simprbi 496 . . . . . . . 8 (𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧} → (♯‘𝑥) = 𝑧)
7470, 73syl 17 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})) ∧ 𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧})) → (♯‘𝑥) = 𝑧)
7574ralrimivva 3180 . . . . . 6 (𝑁 ∈ ℕ → ∀𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))∀𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧} (♯‘𝑥) = 𝑧)
76 invdisj 5093 . . . . . 6 (∀𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))∀𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧} (♯‘𝑥) = 𝑧Disj 𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})){𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧})
7775, 76syl 17 . . . . 5 (𝑁 ∈ ℕ → Disj 𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})){𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧})
7854adantr 480 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})) ∧ 𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧})) → {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∈ Fin)
7967, 70sselid 3944 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})) ∧ 𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧})) → 𝑥 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})
8079, 55syl 17 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})) ∧ 𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧})) → 𝑥 ⊆ {𝑝 ∈ ℙ ∣ 𝑝𝑁})
8178, 80ssfid 9212 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})) ∧ 𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧})) → 𝑥 ∈ Fin)
8281, 58syl 17 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})) ∧ 𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧})) → (♯‘𝑥) ∈ ℕ0)
8353, 82, 60sylancr 587 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})) ∧ 𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧})) → (-1↑(♯‘𝑥)) ∈ ℂ)
8463, 69, 77, 83fsumiun 15787 . . . 4 (𝑁 ∈ ℕ → Σ𝑥 𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})){𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧} (-1↑(♯‘𝑥)) = Σ𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))Σ𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧} (-1↑(♯‘𝑥)))
85 iunrab 5016 . . . . . 6 𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})){𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧} = {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ ∃𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))(♯‘𝑠) = 𝑧}
8654adantr 480 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∈ Fin)
87 elpwi 4570 . . . . . . . . . . . . 13 (𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} → 𝑠 ⊆ {𝑝 ∈ ℙ ∣ 𝑝𝑁})
8887adantl 481 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → 𝑠 ⊆ {𝑝 ∈ ℙ ∣ 𝑝𝑁})
89 ssdomg 8971 . . . . . . . . . . . 12 ({𝑝 ∈ ℙ ∣ 𝑝𝑁} ∈ Fin → (𝑠 ⊆ {𝑝 ∈ ℙ ∣ 𝑝𝑁} → 𝑠 ≼ {𝑝 ∈ ℙ ∣ 𝑝𝑁}))
9086, 88, 89sylc 65 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → 𝑠 ≼ {𝑝 ∈ ℙ ∣ 𝑝𝑁})
91 ssfi 9137 . . . . . . . . . . . . 13 (({𝑝 ∈ ℙ ∣ 𝑝𝑁} ∈ Fin ∧ 𝑠 ⊆ {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → 𝑠 ∈ Fin)
9254, 87, 91syl2an 596 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → 𝑠 ∈ Fin)
93 hashdom 14344 . . . . . . . . . . . 12 ((𝑠 ∈ Fin ∧ {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∈ Fin) → ((♯‘𝑠) ≤ (♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}) ↔ 𝑠 ≼ {𝑝 ∈ ℙ ∣ 𝑝𝑁}))
9492, 86, 93syl2anc 584 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → ((♯‘𝑠) ≤ (♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}) ↔ 𝑠 ≼ {𝑝 ∈ ℙ ∣ 𝑝𝑁}))
9590, 94mpbird 257 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → (♯‘𝑠) ≤ (♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))
96 hashcl 14321 . . . . . . . . . . . . 13 (𝑠 ∈ Fin → (♯‘𝑠) ∈ ℕ0)
9792, 96syl 17 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → (♯‘𝑠) ∈ ℕ0)
98 nn0uz 12835 . . . . . . . . . . . 12 0 = (ℤ‘0)
9997, 98eleqtrdi 2838 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → (♯‘𝑠) ∈ (ℤ‘0))
100 hashcl 14321 . . . . . . . . . . . . . 14 ({𝑝 ∈ ℙ ∣ 𝑝𝑁} ∈ Fin → (♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∈ ℕ0)
10154, 100syl 17 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∈ ℕ0)
102101adantr 480 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → (♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∈ ℕ0)
103102nn0zd 12555 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → (♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∈ ℤ)
104 elfz5 13477 . . . . . . . . . . 11 (((♯‘𝑠) ∈ (ℤ‘0) ∧ (♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∈ ℤ) → ((♯‘𝑠) ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})) ↔ (♯‘𝑠) ≤ (♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})))
10599, 103, 104syl2anc 584 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → ((♯‘𝑠) ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})) ↔ (♯‘𝑠) ≤ (♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})))
10695, 105mpbird 257 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → (♯‘𝑠) ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})))
107 eqidd 2730 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → (♯‘𝑠) = (♯‘𝑠))
108 eqeq2 2741 . . . . . . . . . 10 (𝑧 = (♯‘𝑠) → ((♯‘𝑠) = 𝑧 ↔ (♯‘𝑠) = (♯‘𝑠)))
109108rspcev 3588 . . . . . . . . 9 (((♯‘𝑠) ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})) ∧ (♯‘𝑠) = (♯‘𝑠)) → ∃𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))(♯‘𝑠) = 𝑧)
110106, 107, 109syl2anc 584 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → ∃𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))(♯‘𝑠) = 𝑧)
111110ralrimiva 3125 . . . . . . 7 (𝑁 ∈ ℕ → ∀𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}∃𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))(♯‘𝑠) = 𝑧)
112 rabid2 3439 . . . . . . 7 (𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} = {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ ∃𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))(♯‘𝑠) = 𝑧} ↔ ∀𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}∃𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))(♯‘𝑠) = 𝑧)
113111, 112sylibr 234 . . . . . 6 (𝑁 ∈ ℕ → 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} = {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ ∃𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))(♯‘𝑠) = 𝑧})
11485, 113eqtr4id 2783 . . . . 5 (𝑁 ∈ ℕ → 𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})){𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧} = 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})
115114sumeq1d 15666 . . . 4 (𝑁 ∈ ℕ → Σ𝑥 𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})){𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧} (-1↑(♯‘𝑥)) = Σ𝑥 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} (-1↑(♯‘𝑥)))
116 elfznn0 13581 . . . . . . . . . 10 (𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})) → 𝑧 ∈ ℕ0)
117116adantl 481 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))) → 𝑧 ∈ ℕ0)
118 expcl 14044 . . . . . . . . 9 ((-1 ∈ ℂ ∧ 𝑧 ∈ ℕ0) → (-1↑𝑧) ∈ ℂ)
11953, 117, 118sylancr 587 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))) → (-1↑𝑧) ∈ ℂ)
120 fsumconst 15756 . . . . . . . 8 (({𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧} ∈ Fin ∧ (-1↑𝑧) ∈ ℂ) → Σ𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧} (-1↑𝑧) = ((♯‘{𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧}) · (-1↑𝑧)))
12169, 119, 120syl2anc 584 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))) → Σ𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧} (-1↑𝑧) = ((♯‘{𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧}) · (-1↑𝑧)))
12273adantl 481 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))) ∧ 𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧}) → (♯‘𝑥) = 𝑧)
123122oveq2d 7403 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))) ∧ 𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧}) → (-1↑(♯‘𝑥)) = (-1↑𝑧))
124123sumeq2dv 15668 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))) → Σ𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧} (-1↑(♯‘𝑥)) = Σ𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧} (-1↑𝑧))
125 elfzelz 13485 . . . . . . . . 9 (𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})) → 𝑧 ∈ ℤ)
126 hashbc 14418 . . . . . . . . 9 (({𝑝 ∈ ℙ ∣ 𝑝𝑁} ∈ Fin ∧ 𝑧 ∈ ℤ) → ((♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})C𝑧) = (♯‘{𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧}))
12754, 125, 126syl2an 596 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))) → ((♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})C𝑧) = (♯‘{𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧}))
128127oveq1d 7402 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))) → (((♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})C𝑧) · (-1↑𝑧)) = ((♯‘{𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧}) · (-1↑𝑧)))
129121, 124, 1283eqtr4d 2774 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))) → Σ𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧} (-1↑(♯‘𝑥)) = (((♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})C𝑧) · (-1↑𝑧)))
130129sumeq2dv 15668 . . . . 5 (𝑁 ∈ ℕ → Σ𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))Σ𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧} (-1↑(♯‘𝑥)) = Σ𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))(((♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})C𝑧) · (-1↑𝑧)))
131 1pneg1e0 12300 . . . . . . 7 (1 + -1) = 0
132131oveq1i 7397 . . . . . 6 ((1 + -1)↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})) = (0↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))
133 binom1p 15797 . . . . . . 7 ((-1 ∈ ℂ ∧ (♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∈ ℕ0) → ((1 + -1)↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})) = Σ𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))(((♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})C𝑧) · (-1↑𝑧)))
13453, 101, 133sylancr 587 . . . . . 6 (𝑁 ∈ ℕ → ((1 + -1)↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})) = Σ𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))(((♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})C𝑧) · (-1↑𝑧)))
135132, 134eqtr3id 2778 . . . . 5 (𝑁 ∈ ℕ → (0↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})) = Σ𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))(((♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})C𝑧) · (-1↑𝑧)))
136 eqeq2 2741 . . . . . 6 (1 = if(𝑁 = 1, 1, 0) → ((0↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})) = 1 ↔ (0↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})) = if(𝑁 = 1, 1, 0)))
137 eqeq2 2741 . . . . . 6 (0 = if(𝑁 = 1, 1, 0) → ((0↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})) = 0 ↔ (0↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})) = if(𝑁 = 1, 1, 0)))
138 nprmdvds1 16676 . . . . . . . . . . . . 13 (𝑝 ∈ ℙ → ¬ 𝑝 ∥ 1)
139 simpr 484 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ 𝑁 = 1) → 𝑁 = 1)
140139breq2d 5119 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑁 = 1) → (𝑝𝑁𝑝 ∥ 1))
141140notbid 318 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑁 = 1) → (¬ 𝑝𝑁 ↔ ¬ 𝑝 ∥ 1))
142138, 141imbitrrid 246 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑁 = 1) → (𝑝 ∈ ℙ → ¬ 𝑝𝑁))
143142ralrimiv 3124 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑁 = 1) → ∀𝑝 ∈ ℙ ¬ 𝑝𝑁)
144 rabeq0 4351 . . . . . . . . . . 11 ({𝑝 ∈ ℙ ∣ 𝑝𝑁} = ∅ ↔ ∀𝑝 ∈ ℙ ¬ 𝑝𝑁)
145143, 144sylibr 234 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑁 = 1) → {𝑝 ∈ ℙ ∣ 𝑝𝑁} = ∅)
146145fveq2d 6862 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑁 = 1) → (♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}) = (♯‘∅))
147 hash0 14332 . . . . . . . . 9 (♯‘∅) = 0
148146, 147eqtrdi 2780 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑁 = 1) → (♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}) = 0)
149148oveq2d 7403 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑁 = 1) → (0↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})) = (0↑0))
150 0exp0e1 14031 . . . . . . 7 (0↑0) = 1
151149, 150eqtrdi 2780 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑁 = 1) → (0↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})) = 1)
152 df-ne 2926 . . . . . . . . . . 11 (𝑁 ≠ 1 ↔ ¬ 𝑁 = 1)
153 eluz2b3 12881 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘2) ↔ (𝑁 ∈ ℕ ∧ 𝑁 ≠ 1))
154153biimpri 228 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑁 ≠ 1) → 𝑁 ∈ (ℤ‘2))
155152, 154sylan2br 595 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ ¬ 𝑁 = 1) → 𝑁 ∈ (ℤ‘2))
156 exprmfct 16674 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝𝑁)
157155, 156syl 17 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ ¬ 𝑁 = 1) → ∃𝑝 ∈ ℙ 𝑝𝑁)
158 rabn0 4352 . . . . . . . . 9 ({𝑝 ∈ ℙ ∣ 𝑝𝑁} ≠ ∅ ↔ ∃𝑝 ∈ ℙ 𝑝𝑁)
159157, 158sylibr 234 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ ¬ 𝑁 = 1) → {𝑝 ∈ ℙ ∣ 𝑝𝑁} ≠ ∅)
16054adantr 480 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ ¬ 𝑁 = 1) → {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∈ Fin)
161 hashnncl 14331 . . . . . . . . 9 ({𝑝 ∈ ℙ ∣ 𝑝𝑁} ∈ Fin → ((♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∈ ℕ ↔ {𝑝 ∈ ℙ ∣ 𝑝𝑁} ≠ ∅))
162160, 161syl 17 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ ¬ 𝑁 = 1) → ((♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∈ ℕ ↔ {𝑝 ∈ ℙ ∣ 𝑝𝑁} ≠ ∅))
163159, 162mpbird 257 . . . . . . 7 ((𝑁 ∈ ℕ ∧ ¬ 𝑁 = 1) → (♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∈ ℕ)
1641630expd 14104 . . . . . 6 ((𝑁 ∈ ℕ ∧ ¬ 𝑁 = 1) → (0↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})) = 0)
165136, 137, 151, 164ifbothda 4527 . . . . 5 (𝑁 ∈ ℕ → (0↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})) = if(𝑁 = 1, 1, 0))
166130, 135, 1653eqtr2d 2770 . . . 4 (𝑁 ∈ ℕ → Σ𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))Σ𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧} (-1↑(♯‘𝑥)) = if(𝑁 = 1, 1, 0))
16784, 115, 1663eqtr3d 2772 . . 3 (𝑁 ∈ ℕ → Σ𝑥 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} (-1↑(♯‘𝑥)) = if(𝑁 = 1, 1, 0))
16862, 167eqtr3d 2766 . 2 (𝑁 ∈ ℕ → Σ𝑘 ∈ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)} (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑘})) = if(𝑁 = 1, 1, 0))
16910, 34, 1683eqtr3d 2772 1 (𝑁 ∈ ℕ → Σ𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑁} (μ‘𝑘) = if(𝑁 = 1, 1, 0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  {crab 3405  cdif 3911  wss 3914  c0 4296  ifcif 4488  𝒫 cpw 4563   ciun 4955  Disj wdisj 5074   class class class wbr 5107  cmpt 5188  cfv 6511  (class class class)co 7387  cdom 8916  Fincfn 8918  cc 11066  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073  cle 11209  -cneg 11406  cn 12186  2c2 12241  0cn0 12442  cz 12529  cuz 12793  ...cfz 13468  cexp 14026  Ccbc 14267  chash 14295  Σcsu 15652  cdvds 16222  cprime 16641   pCnt cpc 16807  μcmu 27005
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-disj 5075  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-oi 9463  df-dju 9854  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-xnn0 12516  df-z 12530  df-uz 12794  df-q 12908  df-rp 12952  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-fac 14239  df-bc 14268  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-sum 15653  df-dvds 16223  df-gcd 16465  df-prm 16642  df-pc 16808  df-mu 27011
This theorem is referenced by:  musumsum  27102  muinv  27103
  Copyright terms: Public domain W3C validator