MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  musum Structured version   Visualization version   GIF version

Theorem musum 27128
Description: The sum of the Möbius function over the divisors of 𝑁 gives one if 𝑁 = 1, but otherwise always sums to zero. Theorem 2.1 in [ApostolNT] p. 25. This makes the Möbius function useful for inverting divisor sums; see also muinv 27130. (Contributed by Mario Carneiro, 2-Jul-2015.)
Assertion
Ref Expression
musum (𝑁 ∈ ℕ → Σ𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑁} (μ‘𝑘) = if(𝑁 = 1, 1, 0))
Distinct variable group:   𝑘,𝑛,𝑁

Proof of Theorem musum
Dummy variables 𝑚 𝑝 𝑞 𝑠 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6822 . . . . . . . 8 (𝑛 = 𝑘 → (μ‘𝑛) = (μ‘𝑘))
21neeq1d 2987 . . . . . . 7 (𝑛 = 𝑘 → ((μ‘𝑛) ≠ 0 ↔ (μ‘𝑘) ≠ 0))
3 breq1 5092 . . . . . . 7 (𝑛 = 𝑘 → (𝑛𝑁𝑘𝑁))
42, 3anbi12d 632 . . . . . 6 (𝑛 = 𝑘 → (((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁) ↔ ((μ‘𝑘) ≠ 0 ∧ 𝑘𝑁)))
54elrab 3642 . . . . 5 (𝑘 ∈ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)} ↔ (𝑘 ∈ ℕ ∧ ((μ‘𝑘) ≠ 0 ∧ 𝑘𝑁)))
6 muval2 27071 . . . . . 6 ((𝑘 ∈ ℕ ∧ (μ‘𝑘) ≠ 0) → (μ‘𝑘) = (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑘})))
76adantrr 717 . . . . 5 ((𝑘 ∈ ℕ ∧ ((μ‘𝑘) ≠ 0 ∧ 𝑘𝑁)) → (μ‘𝑘) = (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑘})))
85, 7sylbi 217 . . . 4 (𝑘 ∈ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)} → (μ‘𝑘) = (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑘})))
98adantl 481 . . 3 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)}) → (μ‘𝑘) = (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑘})))
109sumeq2dv 15609 . 2 (𝑁 ∈ ℕ → Σ𝑘 ∈ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)} (μ‘𝑘) = Σ𝑘 ∈ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)} (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑘})))
11 simpr 484 . . . . 5 (((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁) → 𝑛𝑁)
1211a1i 11 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) → (((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁) → 𝑛𝑁))
1312ss2rabdv 4021 . . 3 (𝑁 ∈ ℕ → {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)} ⊆ {𝑛 ∈ ℕ ∣ 𝑛𝑁})
14 ssrab2 4027 . . . . . 6 {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)} ⊆ ℕ
15 simpr 484 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)}) → 𝑘 ∈ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)})
1614, 15sselid 3927 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)}) → 𝑘 ∈ ℕ)
17 mucl 27078 . . . . 5 (𝑘 ∈ ℕ → (μ‘𝑘) ∈ ℤ)
1816, 17syl 17 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)}) → (μ‘𝑘) ∈ ℤ)
1918zcnd 12578 . . 3 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)}) → (μ‘𝑘) ∈ ℂ)
20 difrab 4265 . . . . . . 7 ({𝑛 ∈ ℕ ∣ 𝑛𝑁} ∖ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)}) = {𝑛 ∈ ℕ ∣ (𝑛𝑁 ∧ ¬ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁))}
21 pm3.21 471 . . . . . . . . . . 11 (𝑛𝑁 → ((μ‘𝑛) ≠ 0 → ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)))
2221necon1bd 2946 . . . . . . . . . 10 (𝑛𝑁 → (¬ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁) → (μ‘𝑛) = 0))
2322imp 406 . . . . . . . . 9 ((𝑛𝑁 ∧ ¬ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)) → (μ‘𝑛) = 0)
2423a1i 11 . . . . . . . 8 (𝑛 ∈ ℕ → ((𝑛𝑁 ∧ ¬ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)) → (μ‘𝑛) = 0))
2524ss2rabi 4023 . . . . . . 7 {𝑛 ∈ ℕ ∣ (𝑛𝑁 ∧ ¬ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁))} ⊆ {𝑛 ∈ ℕ ∣ (μ‘𝑛) = 0}
2620, 25eqsstri 3976 . . . . . 6 ({𝑛 ∈ ℕ ∣ 𝑛𝑁} ∖ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)}) ⊆ {𝑛 ∈ ℕ ∣ (μ‘𝑛) = 0}
2726sseli 3925 . . . . 5 (𝑘 ∈ ({𝑛 ∈ ℕ ∣ 𝑛𝑁} ∖ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)}) → 𝑘 ∈ {𝑛 ∈ ℕ ∣ (μ‘𝑛) = 0})
28 fveqeq2 6831 . . . . . . 7 (𝑛 = 𝑘 → ((μ‘𝑛) = 0 ↔ (μ‘𝑘) = 0))
2928elrab 3642 . . . . . 6 (𝑘 ∈ {𝑛 ∈ ℕ ∣ (μ‘𝑛) = 0} ↔ (𝑘 ∈ ℕ ∧ (μ‘𝑘) = 0))
3029simprbi 496 . . . . 5 (𝑘 ∈ {𝑛 ∈ ℕ ∣ (μ‘𝑛) = 0} → (μ‘𝑘) = 0)
3127, 30syl 17 . . . 4 (𝑘 ∈ ({𝑛 ∈ ℕ ∣ 𝑛𝑁} ∖ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)}) → (μ‘𝑘) = 0)
3231adantl 481 . . 3 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ({𝑛 ∈ ℕ ∣ 𝑛𝑁} ∖ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)})) → (μ‘𝑘) = 0)
33 dvdsfi 16700 . . 3 (𝑁 ∈ ℕ → {𝑛 ∈ ℕ ∣ 𝑛𝑁} ∈ Fin)
3413, 19, 32, 33fsumss 15632 . 2 (𝑁 ∈ ℕ → Σ𝑘 ∈ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)} (μ‘𝑘) = Σ𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑁} (μ‘𝑘))
35 fveq2 6822 . . . . 5 (𝑥 = {𝑝 ∈ ℙ ∣ 𝑝𝑘} → (♯‘𝑥) = (♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑘}))
3635oveq2d 7362 . . . 4 (𝑥 = {𝑝 ∈ ℙ ∣ 𝑝𝑘} → (-1↑(♯‘𝑥)) = (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑘})))
3733, 13ssfid 9153 . . . 4 (𝑁 ∈ ℕ → {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)} ∈ Fin)
38 eqid 2731 . . . . 5 {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)} = {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)}
39 eqid 2731 . . . . 5 (𝑚 ∈ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)} ↦ {𝑝 ∈ ℙ ∣ 𝑝𝑚}) = (𝑚 ∈ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)} ↦ {𝑝 ∈ ℙ ∣ 𝑝𝑚})
40 oveq1 7353 . . . . . . . 8 (𝑞 = 𝑝 → (𝑞 pCnt 𝑥) = (𝑝 pCnt 𝑥))
4140cbvmptv 5193 . . . . . . 7 (𝑞 ∈ ℙ ↦ (𝑞 pCnt 𝑥)) = (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑥))
42 oveq2 7354 . . . . . . . 8 (𝑥 = 𝑚 → (𝑝 pCnt 𝑥) = (𝑝 pCnt 𝑚))
4342mpteq2dv 5183 . . . . . . 7 (𝑥 = 𝑚 → (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑥)) = (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑚)))
4441, 43eqtrid 2778 . . . . . 6 (𝑥 = 𝑚 → (𝑞 ∈ ℙ ↦ (𝑞 pCnt 𝑥)) = (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑚)))
4544cbvmptv 5193 . . . . 5 (𝑥 ∈ ℕ ↦ (𝑞 ∈ ℙ ↦ (𝑞 pCnt 𝑥))) = (𝑚 ∈ ℕ ↦ (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑚)))
4638, 39, 45sqff1o 27119 . . . 4 (𝑁 ∈ ℕ → (𝑚 ∈ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)} ↦ {𝑝 ∈ ℙ ∣ 𝑝𝑚}):{𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)}–1-1-onto→𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})
47 breq2 5093 . . . . . . 7 (𝑚 = 𝑘 → (𝑝𝑚𝑝𝑘))
4847rabbidv 3402 . . . . . 6 (𝑚 = 𝑘 → {𝑝 ∈ ℙ ∣ 𝑝𝑚} = {𝑝 ∈ ℙ ∣ 𝑝𝑘})
49 prmex 16588 . . . . . . 7 ℙ ∈ V
5049rabex 5275 . . . . . 6 {𝑝 ∈ ℙ ∣ 𝑝𝑘} ∈ V
5148, 39, 50fvmpt 6929 . . . . 5 (𝑘 ∈ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)} → ((𝑚 ∈ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)} ↦ {𝑝 ∈ ℙ ∣ 𝑝𝑚})‘𝑘) = {𝑝 ∈ ℙ ∣ 𝑝𝑘})
5251adantl 481 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)}) → ((𝑚 ∈ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)} ↦ {𝑝 ∈ ℙ ∣ 𝑝𝑚})‘𝑘) = {𝑝 ∈ ℙ ∣ 𝑝𝑘})
53 neg1cn 12110 . . . . 5 -1 ∈ ℂ
54 prmdvdsfi 27044 . . . . . . 7 (𝑁 ∈ ℕ → {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∈ Fin)
55 elpwi 4554 . . . . . . 7 (𝑥 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} → 𝑥 ⊆ {𝑝 ∈ ℙ ∣ 𝑝𝑁})
56 ssfi 9082 . . . . . . 7 (({𝑝 ∈ ℙ ∣ 𝑝𝑁} ∈ Fin ∧ 𝑥 ⊆ {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → 𝑥 ∈ Fin)
5754, 55, 56syl2an 596 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → 𝑥 ∈ Fin)
58 hashcl 14263 . . . . . 6 (𝑥 ∈ Fin → (♯‘𝑥) ∈ ℕ0)
5957, 58syl 17 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → (♯‘𝑥) ∈ ℕ0)
60 expcl 13986 . . . . 5 ((-1 ∈ ℂ ∧ (♯‘𝑥) ∈ ℕ0) → (-1↑(♯‘𝑥)) ∈ ℂ)
6153, 59, 60sylancr 587 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → (-1↑(♯‘𝑥)) ∈ ℂ)
6236, 37, 46, 52, 61fsumf1o 15630 . . 3 (𝑁 ∈ ℕ → Σ𝑥 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} (-1↑(♯‘𝑥)) = Σ𝑘 ∈ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)} (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑘})))
63 fzfid 13880 . . . . 5 (𝑁 ∈ ℕ → (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})) ∈ Fin)
6454adantr 480 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))) → {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∈ Fin)
65 pwfi 9203 . . . . . . 7 ({𝑝 ∈ ℙ ∣ 𝑝𝑁} ∈ Fin ↔ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∈ Fin)
6664, 65sylib 218 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))) → 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∈ Fin)
67 ssrab2 4027 . . . . . 6 {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧} ⊆ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}
68 ssfi 9082 . . . . . 6 ((𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∈ Fin ∧ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧} ⊆ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧} ∈ Fin)
6966, 67, 68sylancl 586 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))) → {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧} ∈ Fin)
70 simprr 772 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})) ∧ 𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧})) → 𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧})
71 fveqeq2 6831 . . . . . . . . . 10 (𝑠 = 𝑥 → ((♯‘𝑠) = 𝑧 ↔ (♯‘𝑥) = 𝑧))
7271elrab 3642 . . . . . . . . 9 (𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧} ↔ (𝑥 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∧ (♯‘𝑥) = 𝑧))
7372simprbi 496 . . . . . . . 8 (𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧} → (♯‘𝑥) = 𝑧)
7470, 73syl 17 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})) ∧ 𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧})) → (♯‘𝑥) = 𝑧)
7574ralrimivva 3175 . . . . . 6 (𝑁 ∈ ℕ → ∀𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))∀𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧} (♯‘𝑥) = 𝑧)
76 invdisj 5075 . . . . . 6 (∀𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))∀𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧} (♯‘𝑥) = 𝑧Disj 𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})){𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧})
7775, 76syl 17 . . . . 5 (𝑁 ∈ ℕ → Disj 𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})){𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧})
7854adantr 480 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})) ∧ 𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧})) → {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∈ Fin)
7967, 70sselid 3927 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})) ∧ 𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧})) → 𝑥 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})
8079, 55syl 17 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})) ∧ 𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧})) → 𝑥 ⊆ {𝑝 ∈ ℙ ∣ 𝑝𝑁})
8178, 80ssfid 9153 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})) ∧ 𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧})) → 𝑥 ∈ Fin)
8281, 58syl 17 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})) ∧ 𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧})) → (♯‘𝑥) ∈ ℕ0)
8353, 82, 60sylancr 587 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})) ∧ 𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧})) → (-1↑(♯‘𝑥)) ∈ ℂ)
8463, 69, 77, 83fsumiun 15728 . . . 4 (𝑁 ∈ ℕ → Σ𝑥 𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})){𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧} (-1↑(♯‘𝑥)) = Σ𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))Σ𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧} (-1↑(♯‘𝑥)))
85 iunrab 4999 . . . . . 6 𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})){𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧} = {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ ∃𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))(♯‘𝑠) = 𝑧}
8654adantr 480 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∈ Fin)
87 elpwi 4554 . . . . . . . . . . . . 13 (𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} → 𝑠 ⊆ {𝑝 ∈ ℙ ∣ 𝑝𝑁})
8887adantl 481 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → 𝑠 ⊆ {𝑝 ∈ ℙ ∣ 𝑝𝑁})
89 ssdomg 8922 . . . . . . . . . . . 12 ({𝑝 ∈ ℙ ∣ 𝑝𝑁} ∈ Fin → (𝑠 ⊆ {𝑝 ∈ ℙ ∣ 𝑝𝑁} → 𝑠 ≼ {𝑝 ∈ ℙ ∣ 𝑝𝑁}))
9086, 88, 89sylc 65 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → 𝑠 ≼ {𝑝 ∈ ℙ ∣ 𝑝𝑁})
91 ssfi 9082 . . . . . . . . . . . . 13 (({𝑝 ∈ ℙ ∣ 𝑝𝑁} ∈ Fin ∧ 𝑠 ⊆ {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → 𝑠 ∈ Fin)
9254, 87, 91syl2an 596 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → 𝑠 ∈ Fin)
93 hashdom 14286 . . . . . . . . . . . 12 ((𝑠 ∈ Fin ∧ {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∈ Fin) → ((♯‘𝑠) ≤ (♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}) ↔ 𝑠 ≼ {𝑝 ∈ ℙ ∣ 𝑝𝑁}))
9492, 86, 93syl2anc 584 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → ((♯‘𝑠) ≤ (♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}) ↔ 𝑠 ≼ {𝑝 ∈ ℙ ∣ 𝑝𝑁}))
9590, 94mpbird 257 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → (♯‘𝑠) ≤ (♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))
96 hashcl 14263 . . . . . . . . . . . . 13 (𝑠 ∈ Fin → (♯‘𝑠) ∈ ℕ0)
9792, 96syl 17 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → (♯‘𝑠) ∈ ℕ0)
98 nn0uz 12774 . . . . . . . . . . . 12 0 = (ℤ‘0)
9997, 98eleqtrdi 2841 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → (♯‘𝑠) ∈ (ℤ‘0))
100 hashcl 14263 . . . . . . . . . . . . . 14 ({𝑝 ∈ ℙ ∣ 𝑝𝑁} ∈ Fin → (♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∈ ℕ0)
10154, 100syl 17 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∈ ℕ0)
102101adantr 480 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → (♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∈ ℕ0)
103102nn0zd 12494 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → (♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∈ ℤ)
104 elfz5 13416 . . . . . . . . . . 11 (((♯‘𝑠) ∈ (ℤ‘0) ∧ (♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∈ ℤ) → ((♯‘𝑠) ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})) ↔ (♯‘𝑠) ≤ (♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})))
10599, 103, 104syl2anc 584 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → ((♯‘𝑠) ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})) ↔ (♯‘𝑠) ≤ (♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})))
10695, 105mpbird 257 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → (♯‘𝑠) ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})))
107 eqidd 2732 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → (♯‘𝑠) = (♯‘𝑠))
108 eqeq2 2743 . . . . . . . . . 10 (𝑧 = (♯‘𝑠) → ((♯‘𝑠) = 𝑧 ↔ (♯‘𝑠) = (♯‘𝑠)))
109108rspcev 3572 . . . . . . . . 9 (((♯‘𝑠) ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})) ∧ (♯‘𝑠) = (♯‘𝑠)) → ∃𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))(♯‘𝑠) = 𝑧)
110106, 107, 109syl2anc 584 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → ∃𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))(♯‘𝑠) = 𝑧)
111110ralrimiva 3124 . . . . . . 7 (𝑁 ∈ ℕ → ∀𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}∃𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))(♯‘𝑠) = 𝑧)
112 rabid2 3428 . . . . . . 7 (𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} = {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ ∃𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))(♯‘𝑠) = 𝑧} ↔ ∀𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}∃𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))(♯‘𝑠) = 𝑧)
113111, 112sylibr 234 . . . . . 6 (𝑁 ∈ ℕ → 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} = {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ ∃𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))(♯‘𝑠) = 𝑧})
11485, 113eqtr4id 2785 . . . . 5 (𝑁 ∈ ℕ → 𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})){𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧} = 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})
115114sumeq1d 15607 . . . 4 (𝑁 ∈ ℕ → Σ𝑥 𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})){𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧} (-1↑(♯‘𝑥)) = Σ𝑥 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} (-1↑(♯‘𝑥)))
116 elfznn0 13520 . . . . . . . . . 10 (𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})) → 𝑧 ∈ ℕ0)
117116adantl 481 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))) → 𝑧 ∈ ℕ0)
118 expcl 13986 . . . . . . . . 9 ((-1 ∈ ℂ ∧ 𝑧 ∈ ℕ0) → (-1↑𝑧) ∈ ℂ)
11953, 117, 118sylancr 587 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))) → (-1↑𝑧) ∈ ℂ)
120 fsumconst 15697 . . . . . . . 8 (({𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧} ∈ Fin ∧ (-1↑𝑧) ∈ ℂ) → Σ𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧} (-1↑𝑧) = ((♯‘{𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧}) · (-1↑𝑧)))
12169, 119, 120syl2anc 584 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))) → Σ𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧} (-1↑𝑧) = ((♯‘{𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧}) · (-1↑𝑧)))
12273adantl 481 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))) ∧ 𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧}) → (♯‘𝑥) = 𝑧)
123122oveq2d 7362 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))) ∧ 𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧}) → (-1↑(♯‘𝑥)) = (-1↑𝑧))
124123sumeq2dv 15609 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))) → Σ𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧} (-1↑(♯‘𝑥)) = Σ𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧} (-1↑𝑧))
125 elfzelz 13424 . . . . . . . . 9 (𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})) → 𝑧 ∈ ℤ)
126 hashbc 14360 . . . . . . . . 9 (({𝑝 ∈ ℙ ∣ 𝑝𝑁} ∈ Fin ∧ 𝑧 ∈ ℤ) → ((♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})C𝑧) = (♯‘{𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧}))
12754, 125, 126syl2an 596 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))) → ((♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})C𝑧) = (♯‘{𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧}))
128127oveq1d 7361 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))) → (((♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})C𝑧) · (-1↑𝑧)) = ((♯‘{𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧}) · (-1↑𝑧)))
129121, 124, 1283eqtr4d 2776 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))) → Σ𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧} (-1↑(♯‘𝑥)) = (((♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})C𝑧) · (-1↑𝑧)))
130129sumeq2dv 15609 . . . . 5 (𝑁 ∈ ℕ → Σ𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))Σ𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧} (-1↑(♯‘𝑥)) = Σ𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))(((♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})C𝑧) · (-1↑𝑧)))
131 1pneg1e0 12239 . . . . . . 7 (1 + -1) = 0
132131oveq1i 7356 . . . . . 6 ((1 + -1)↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})) = (0↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))
133 binom1p 15738 . . . . . . 7 ((-1 ∈ ℂ ∧ (♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∈ ℕ0) → ((1 + -1)↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})) = Σ𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))(((♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})C𝑧) · (-1↑𝑧)))
13453, 101, 133sylancr 587 . . . . . 6 (𝑁 ∈ ℕ → ((1 + -1)↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})) = Σ𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))(((♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})C𝑧) · (-1↑𝑧)))
135132, 134eqtr3id 2780 . . . . 5 (𝑁 ∈ ℕ → (0↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})) = Σ𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))(((♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})C𝑧) · (-1↑𝑧)))
136 eqeq2 2743 . . . . . 6 (1 = if(𝑁 = 1, 1, 0) → ((0↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})) = 1 ↔ (0↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})) = if(𝑁 = 1, 1, 0)))
137 eqeq2 2743 . . . . . 6 (0 = if(𝑁 = 1, 1, 0) → ((0↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})) = 0 ↔ (0↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})) = if(𝑁 = 1, 1, 0)))
138 nprmdvds1 16617 . . . . . . . . . . . . 13 (𝑝 ∈ ℙ → ¬ 𝑝 ∥ 1)
139 simpr 484 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ 𝑁 = 1) → 𝑁 = 1)
140139breq2d 5101 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑁 = 1) → (𝑝𝑁𝑝 ∥ 1))
141140notbid 318 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑁 = 1) → (¬ 𝑝𝑁 ↔ ¬ 𝑝 ∥ 1))
142138, 141imbitrrid 246 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑁 = 1) → (𝑝 ∈ ℙ → ¬ 𝑝𝑁))
143142ralrimiv 3123 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑁 = 1) → ∀𝑝 ∈ ℙ ¬ 𝑝𝑁)
144 rabeq0 4335 . . . . . . . . . . 11 ({𝑝 ∈ ℙ ∣ 𝑝𝑁} = ∅ ↔ ∀𝑝 ∈ ℙ ¬ 𝑝𝑁)
145143, 144sylibr 234 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑁 = 1) → {𝑝 ∈ ℙ ∣ 𝑝𝑁} = ∅)
146145fveq2d 6826 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑁 = 1) → (♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}) = (♯‘∅))
147 hash0 14274 . . . . . . . . 9 (♯‘∅) = 0
148146, 147eqtrdi 2782 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑁 = 1) → (♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}) = 0)
149148oveq2d 7362 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑁 = 1) → (0↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})) = (0↑0))
150 0exp0e1 13973 . . . . . . 7 (0↑0) = 1
151149, 150eqtrdi 2782 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑁 = 1) → (0↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})) = 1)
152 df-ne 2929 . . . . . . . . . . 11 (𝑁 ≠ 1 ↔ ¬ 𝑁 = 1)
153 eluz2b3 12820 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘2) ↔ (𝑁 ∈ ℕ ∧ 𝑁 ≠ 1))
154153biimpri 228 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑁 ≠ 1) → 𝑁 ∈ (ℤ‘2))
155152, 154sylan2br 595 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ ¬ 𝑁 = 1) → 𝑁 ∈ (ℤ‘2))
156 exprmfct 16615 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝𝑁)
157155, 156syl 17 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ ¬ 𝑁 = 1) → ∃𝑝 ∈ ℙ 𝑝𝑁)
158 rabn0 4336 . . . . . . . . 9 ({𝑝 ∈ ℙ ∣ 𝑝𝑁} ≠ ∅ ↔ ∃𝑝 ∈ ℙ 𝑝𝑁)
159157, 158sylibr 234 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ ¬ 𝑁 = 1) → {𝑝 ∈ ℙ ∣ 𝑝𝑁} ≠ ∅)
16054adantr 480 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ ¬ 𝑁 = 1) → {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∈ Fin)
161 hashnncl 14273 . . . . . . . . 9 ({𝑝 ∈ ℙ ∣ 𝑝𝑁} ∈ Fin → ((♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∈ ℕ ↔ {𝑝 ∈ ℙ ∣ 𝑝𝑁} ≠ ∅))
162160, 161syl 17 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ ¬ 𝑁 = 1) → ((♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∈ ℕ ↔ {𝑝 ∈ ℙ ∣ 𝑝𝑁} ≠ ∅))
163159, 162mpbird 257 . . . . . . 7 ((𝑁 ∈ ℕ ∧ ¬ 𝑁 = 1) → (♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∈ ℕ)
1641630expd 14046 . . . . . 6 ((𝑁 ∈ ℕ ∧ ¬ 𝑁 = 1) → (0↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})) = 0)
165136, 137, 151, 164ifbothda 4511 . . . . 5 (𝑁 ∈ ℕ → (0↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})) = if(𝑁 = 1, 1, 0))
166130, 135, 1653eqtr2d 2772 . . . 4 (𝑁 ∈ ℕ → Σ𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))Σ𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧} (-1↑(♯‘𝑥)) = if(𝑁 = 1, 1, 0))
16784, 115, 1663eqtr3d 2774 . . 3 (𝑁 ∈ ℕ → Σ𝑥 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} (-1↑(♯‘𝑥)) = if(𝑁 = 1, 1, 0))
16862, 167eqtr3d 2768 . 2 (𝑁 ∈ ℕ → Σ𝑘 ∈ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)} (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑘})) = if(𝑁 = 1, 1, 0))
16910, 34, 1683eqtr3d 2774 1 (𝑁 ∈ ℕ → Σ𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑁} (μ‘𝑘) = if(𝑁 = 1, 1, 0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wne 2928  wral 3047  wrex 3056  {crab 3395  cdif 3894  wss 3897  c0 4280  ifcif 4472  𝒫 cpw 4547   ciun 4939  Disj wdisj 5056   class class class wbr 5089  cmpt 5170  cfv 6481  (class class class)co 7346  cdom 8867  Fincfn 8869  cc 11004  0cc0 11006  1c1 11007   + caddc 11009   · cmul 11011  cle 11147  -cneg 11345  cn 12125  2c2 12180  0cn0 12381  cz 12468  cuz 12732  ...cfz 13407  cexp 13968  Ccbc 14209  chash 14237  Σcsu 15593  cdvds 16163  cprime 16582   pCnt cpc 16748  μcmu 27032
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-disj 5057  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-oadd 8389  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-oi 9396  df-dju 9794  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-xnn0 12455  df-z 12469  df-uz 12733  df-q 12847  df-rp 12891  df-fz 13408  df-fzo 13555  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-fac 14181  df-bc 14210  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-sum 15594  df-dvds 16164  df-gcd 16406  df-prm 16583  df-pc 16749  df-mu 27038
This theorem is referenced by:  musumsum  27129  muinv  27130
  Copyright terms: Public domain W3C validator