MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  musum Structured version   Visualization version   GIF version

Theorem musum 27077
Description: The sum of the Möbius function over the divisors of 𝑁 gives one if 𝑁 = 1, but otherwise always sums to zero. Theorem 2.1 in [ApostolNT] p. 25. This makes the Möbius function useful for inverting divisor sums; see also muinv 27079. (Contributed by Mario Carneiro, 2-Jul-2015.)
Assertion
Ref Expression
musum (𝑁 ∈ ℕ → Σ𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑁} (μ‘𝑘) = if(𝑁 = 1, 1, 0))
Distinct variable group:   𝑘,𝑛,𝑁

Proof of Theorem musum
Dummy variables 𝑚 𝑝 𝑞 𝑠 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6840 . . . . . . . 8 (𝑛 = 𝑘 → (μ‘𝑛) = (μ‘𝑘))
21neeq1d 2984 . . . . . . 7 (𝑛 = 𝑘 → ((μ‘𝑛) ≠ 0 ↔ (μ‘𝑘) ≠ 0))
3 breq1 5105 . . . . . . 7 (𝑛 = 𝑘 → (𝑛𝑁𝑘𝑁))
42, 3anbi12d 632 . . . . . 6 (𝑛 = 𝑘 → (((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁) ↔ ((μ‘𝑘) ≠ 0 ∧ 𝑘𝑁)))
54elrab 3656 . . . . 5 (𝑘 ∈ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)} ↔ (𝑘 ∈ ℕ ∧ ((μ‘𝑘) ≠ 0 ∧ 𝑘𝑁)))
6 muval2 27020 . . . . . 6 ((𝑘 ∈ ℕ ∧ (μ‘𝑘) ≠ 0) → (μ‘𝑘) = (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑘})))
76adantrr 717 . . . . 5 ((𝑘 ∈ ℕ ∧ ((μ‘𝑘) ≠ 0 ∧ 𝑘𝑁)) → (μ‘𝑘) = (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑘})))
85, 7sylbi 217 . . . 4 (𝑘 ∈ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)} → (μ‘𝑘) = (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑘})))
98adantl 481 . . 3 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)}) → (μ‘𝑘) = (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑘})))
109sumeq2dv 15644 . 2 (𝑁 ∈ ℕ → Σ𝑘 ∈ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)} (μ‘𝑘) = Σ𝑘 ∈ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)} (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑘})))
11 simpr 484 . . . . 5 (((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁) → 𝑛𝑁)
1211a1i 11 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) → (((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁) → 𝑛𝑁))
1312ss2rabdv 4035 . . 3 (𝑁 ∈ ℕ → {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)} ⊆ {𝑛 ∈ ℕ ∣ 𝑛𝑁})
14 ssrab2 4039 . . . . . 6 {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)} ⊆ ℕ
15 simpr 484 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)}) → 𝑘 ∈ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)})
1614, 15sselid 3941 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)}) → 𝑘 ∈ ℕ)
17 mucl 27027 . . . . 5 (𝑘 ∈ ℕ → (μ‘𝑘) ∈ ℤ)
1816, 17syl 17 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)}) → (μ‘𝑘) ∈ ℤ)
1918zcnd 12615 . . 3 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)}) → (μ‘𝑘) ∈ ℂ)
20 difrab 4277 . . . . . . 7 ({𝑛 ∈ ℕ ∣ 𝑛𝑁} ∖ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)}) = {𝑛 ∈ ℕ ∣ (𝑛𝑁 ∧ ¬ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁))}
21 pm3.21 471 . . . . . . . . . . 11 (𝑛𝑁 → ((μ‘𝑛) ≠ 0 → ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)))
2221necon1bd 2943 . . . . . . . . . 10 (𝑛𝑁 → (¬ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁) → (μ‘𝑛) = 0))
2322imp 406 . . . . . . . . 9 ((𝑛𝑁 ∧ ¬ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)) → (μ‘𝑛) = 0)
2423a1i 11 . . . . . . . 8 (𝑛 ∈ ℕ → ((𝑛𝑁 ∧ ¬ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)) → (μ‘𝑛) = 0))
2524ss2rabi 4036 . . . . . . 7 {𝑛 ∈ ℕ ∣ (𝑛𝑁 ∧ ¬ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁))} ⊆ {𝑛 ∈ ℕ ∣ (μ‘𝑛) = 0}
2620, 25eqsstri 3990 . . . . . 6 ({𝑛 ∈ ℕ ∣ 𝑛𝑁} ∖ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)}) ⊆ {𝑛 ∈ ℕ ∣ (μ‘𝑛) = 0}
2726sseli 3939 . . . . 5 (𝑘 ∈ ({𝑛 ∈ ℕ ∣ 𝑛𝑁} ∖ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)}) → 𝑘 ∈ {𝑛 ∈ ℕ ∣ (μ‘𝑛) = 0})
28 fveqeq2 6849 . . . . . . 7 (𝑛 = 𝑘 → ((μ‘𝑛) = 0 ↔ (μ‘𝑘) = 0))
2928elrab 3656 . . . . . 6 (𝑘 ∈ {𝑛 ∈ ℕ ∣ (μ‘𝑛) = 0} ↔ (𝑘 ∈ ℕ ∧ (μ‘𝑘) = 0))
3029simprbi 496 . . . . 5 (𝑘 ∈ {𝑛 ∈ ℕ ∣ (μ‘𝑛) = 0} → (μ‘𝑘) = 0)
3127, 30syl 17 . . . 4 (𝑘 ∈ ({𝑛 ∈ ℕ ∣ 𝑛𝑁} ∖ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)}) → (μ‘𝑘) = 0)
3231adantl 481 . . 3 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ({𝑛 ∈ ℕ ∣ 𝑛𝑁} ∖ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)})) → (μ‘𝑘) = 0)
33 dvdsfi 16735 . . 3 (𝑁 ∈ ℕ → {𝑛 ∈ ℕ ∣ 𝑛𝑁} ∈ Fin)
3413, 19, 32, 33fsumss 15667 . 2 (𝑁 ∈ ℕ → Σ𝑘 ∈ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)} (μ‘𝑘) = Σ𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑁} (μ‘𝑘))
35 fveq2 6840 . . . . 5 (𝑥 = {𝑝 ∈ ℙ ∣ 𝑝𝑘} → (♯‘𝑥) = (♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑘}))
3635oveq2d 7385 . . . 4 (𝑥 = {𝑝 ∈ ℙ ∣ 𝑝𝑘} → (-1↑(♯‘𝑥)) = (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑘})))
3733, 13ssfid 9188 . . . 4 (𝑁 ∈ ℕ → {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)} ∈ Fin)
38 eqid 2729 . . . . 5 {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)} = {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)}
39 eqid 2729 . . . . 5 (𝑚 ∈ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)} ↦ {𝑝 ∈ ℙ ∣ 𝑝𝑚}) = (𝑚 ∈ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)} ↦ {𝑝 ∈ ℙ ∣ 𝑝𝑚})
40 oveq1 7376 . . . . . . . 8 (𝑞 = 𝑝 → (𝑞 pCnt 𝑥) = (𝑝 pCnt 𝑥))
4140cbvmptv 5206 . . . . . . 7 (𝑞 ∈ ℙ ↦ (𝑞 pCnt 𝑥)) = (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑥))
42 oveq2 7377 . . . . . . . 8 (𝑥 = 𝑚 → (𝑝 pCnt 𝑥) = (𝑝 pCnt 𝑚))
4342mpteq2dv 5196 . . . . . . 7 (𝑥 = 𝑚 → (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑥)) = (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑚)))
4441, 43eqtrid 2776 . . . . . 6 (𝑥 = 𝑚 → (𝑞 ∈ ℙ ↦ (𝑞 pCnt 𝑥)) = (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑚)))
4544cbvmptv 5206 . . . . 5 (𝑥 ∈ ℕ ↦ (𝑞 ∈ ℙ ↦ (𝑞 pCnt 𝑥))) = (𝑚 ∈ ℕ ↦ (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑚)))
4638, 39, 45sqff1o 27068 . . . 4 (𝑁 ∈ ℕ → (𝑚 ∈ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)} ↦ {𝑝 ∈ ℙ ∣ 𝑝𝑚}):{𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)}–1-1-onto→𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})
47 breq2 5106 . . . . . . 7 (𝑚 = 𝑘 → (𝑝𝑚𝑝𝑘))
4847rabbidv 3410 . . . . . 6 (𝑚 = 𝑘 → {𝑝 ∈ ℙ ∣ 𝑝𝑚} = {𝑝 ∈ ℙ ∣ 𝑝𝑘})
49 prmex 16623 . . . . . . 7 ℙ ∈ V
5049rabex 5289 . . . . . 6 {𝑝 ∈ ℙ ∣ 𝑝𝑘} ∈ V
5148, 39, 50fvmpt 6950 . . . . 5 (𝑘 ∈ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)} → ((𝑚 ∈ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)} ↦ {𝑝 ∈ ℙ ∣ 𝑝𝑚})‘𝑘) = {𝑝 ∈ ℙ ∣ 𝑝𝑘})
5251adantl 481 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)}) → ((𝑚 ∈ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)} ↦ {𝑝 ∈ ℙ ∣ 𝑝𝑚})‘𝑘) = {𝑝 ∈ ℙ ∣ 𝑝𝑘})
53 neg1cn 12147 . . . . 5 -1 ∈ ℂ
54 prmdvdsfi 26993 . . . . . . 7 (𝑁 ∈ ℕ → {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∈ Fin)
55 elpwi 4566 . . . . . . 7 (𝑥 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} → 𝑥 ⊆ {𝑝 ∈ ℙ ∣ 𝑝𝑁})
56 ssfi 9114 . . . . . . 7 (({𝑝 ∈ ℙ ∣ 𝑝𝑁} ∈ Fin ∧ 𝑥 ⊆ {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → 𝑥 ∈ Fin)
5754, 55, 56syl2an 596 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → 𝑥 ∈ Fin)
58 hashcl 14297 . . . . . 6 (𝑥 ∈ Fin → (♯‘𝑥) ∈ ℕ0)
5957, 58syl 17 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → (♯‘𝑥) ∈ ℕ0)
60 expcl 14020 . . . . 5 ((-1 ∈ ℂ ∧ (♯‘𝑥) ∈ ℕ0) → (-1↑(♯‘𝑥)) ∈ ℂ)
6153, 59, 60sylancr 587 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → (-1↑(♯‘𝑥)) ∈ ℂ)
6236, 37, 46, 52, 61fsumf1o 15665 . . 3 (𝑁 ∈ ℕ → Σ𝑥 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} (-1↑(♯‘𝑥)) = Σ𝑘 ∈ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)} (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑘})))
63 fzfid 13914 . . . . 5 (𝑁 ∈ ℕ → (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})) ∈ Fin)
6454adantr 480 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))) → {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∈ Fin)
65 pwfi 9244 . . . . . . 7 ({𝑝 ∈ ℙ ∣ 𝑝𝑁} ∈ Fin ↔ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∈ Fin)
6664, 65sylib 218 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))) → 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∈ Fin)
67 ssrab2 4039 . . . . . 6 {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧} ⊆ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}
68 ssfi 9114 . . . . . 6 ((𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∈ Fin ∧ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧} ⊆ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧} ∈ Fin)
6966, 67, 68sylancl 586 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))) → {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧} ∈ Fin)
70 simprr 772 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})) ∧ 𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧})) → 𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧})
71 fveqeq2 6849 . . . . . . . . . 10 (𝑠 = 𝑥 → ((♯‘𝑠) = 𝑧 ↔ (♯‘𝑥) = 𝑧))
7271elrab 3656 . . . . . . . . 9 (𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧} ↔ (𝑥 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∧ (♯‘𝑥) = 𝑧))
7372simprbi 496 . . . . . . . 8 (𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧} → (♯‘𝑥) = 𝑧)
7470, 73syl 17 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})) ∧ 𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧})) → (♯‘𝑥) = 𝑧)
7574ralrimivva 3178 . . . . . 6 (𝑁 ∈ ℕ → ∀𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))∀𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧} (♯‘𝑥) = 𝑧)
76 invdisj 5088 . . . . . 6 (∀𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))∀𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧} (♯‘𝑥) = 𝑧Disj 𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})){𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧})
7775, 76syl 17 . . . . 5 (𝑁 ∈ ℕ → Disj 𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})){𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧})
7854adantr 480 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})) ∧ 𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧})) → {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∈ Fin)
7967, 70sselid 3941 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})) ∧ 𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧})) → 𝑥 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})
8079, 55syl 17 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})) ∧ 𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧})) → 𝑥 ⊆ {𝑝 ∈ ℙ ∣ 𝑝𝑁})
8178, 80ssfid 9188 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})) ∧ 𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧})) → 𝑥 ∈ Fin)
8281, 58syl 17 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})) ∧ 𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧})) → (♯‘𝑥) ∈ ℕ0)
8353, 82, 60sylancr 587 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})) ∧ 𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧})) → (-1↑(♯‘𝑥)) ∈ ℂ)
8463, 69, 77, 83fsumiun 15763 . . . 4 (𝑁 ∈ ℕ → Σ𝑥 𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})){𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧} (-1↑(♯‘𝑥)) = Σ𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))Σ𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧} (-1↑(♯‘𝑥)))
85 iunrab 5011 . . . . . 6 𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})){𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧} = {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ ∃𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))(♯‘𝑠) = 𝑧}
8654adantr 480 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∈ Fin)
87 elpwi 4566 . . . . . . . . . . . . 13 (𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} → 𝑠 ⊆ {𝑝 ∈ ℙ ∣ 𝑝𝑁})
8887adantl 481 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → 𝑠 ⊆ {𝑝 ∈ ℙ ∣ 𝑝𝑁})
89 ssdomg 8948 . . . . . . . . . . . 12 ({𝑝 ∈ ℙ ∣ 𝑝𝑁} ∈ Fin → (𝑠 ⊆ {𝑝 ∈ ℙ ∣ 𝑝𝑁} → 𝑠 ≼ {𝑝 ∈ ℙ ∣ 𝑝𝑁}))
9086, 88, 89sylc 65 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → 𝑠 ≼ {𝑝 ∈ ℙ ∣ 𝑝𝑁})
91 ssfi 9114 . . . . . . . . . . . . 13 (({𝑝 ∈ ℙ ∣ 𝑝𝑁} ∈ Fin ∧ 𝑠 ⊆ {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → 𝑠 ∈ Fin)
9254, 87, 91syl2an 596 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → 𝑠 ∈ Fin)
93 hashdom 14320 . . . . . . . . . . . 12 ((𝑠 ∈ Fin ∧ {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∈ Fin) → ((♯‘𝑠) ≤ (♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}) ↔ 𝑠 ≼ {𝑝 ∈ ℙ ∣ 𝑝𝑁}))
9492, 86, 93syl2anc 584 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → ((♯‘𝑠) ≤ (♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}) ↔ 𝑠 ≼ {𝑝 ∈ ℙ ∣ 𝑝𝑁}))
9590, 94mpbird 257 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → (♯‘𝑠) ≤ (♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))
96 hashcl 14297 . . . . . . . . . . . . 13 (𝑠 ∈ Fin → (♯‘𝑠) ∈ ℕ0)
9792, 96syl 17 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → (♯‘𝑠) ∈ ℕ0)
98 nn0uz 12811 . . . . . . . . . . . 12 0 = (ℤ‘0)
9997, 98eleqtrdi 2838 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → (♯‘𝑠) ∈ (ℤ‘0))
100 hashcl 14297 . . . . . . . . . . . . . 14 ({𝑝 ∈ ℙ ∣ 𝑝𝑁} ∈ Fin → (♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∈ ℕ0)
10154, 100syl 17 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∈ ℕ0)
102101adantr 480 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → (♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∈ ℕ0)
103102nn0zd 12531 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → (♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∈ ℤ)
104 elfz5 13453 . . . . . . . . . . 11 (((♯‘𝑠) ∈ (ℤ‘0) ∧ (♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∈ ℤ) → ((♯‘𝑠) ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})) ↔ (♯‘𝑠) ≤ (♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})))
10599, 103, 104syl2anc 584 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → ((♯‘𝑠) ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})) ↔ (♯‘𝑠) ≤ (♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})))
10695, 105mpbird 257 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → (♯‘𝑠) ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})))
107 eqidd 2730 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → (♯‘𝑠) = (♯‘𝑠))
108 eqeq2 2741 . . . . . . . . . 10 (𝑧 = (♯‘𝑠) → ((♯‘𝑠) = 𝑧 ↔ (♯‘𝑠) = (♯‘𝑠)))
109108rspcev 3585 . . . . . . . . 9 (((♯‘𝑠) ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})) ∧ (♯‘𝑠) = (♯‘𝑠)) → ∃𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))(♯‘𝑠) = 𝑧)
110106, 107, 109syl2anc 584 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → ∃𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))(♯‘𝑠) = 𝑧)
111110ralrimiva 3125 . . . . . . 7 (𝑁 ∈ ℕ → ∀𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}∃𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))(♯‘𝑠) = 𝑧)
112 rabid2 3436 . . . . . . 7 (𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} = {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ ∃𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))(♯‘𝑠) = 𝑧} ↔ ∀𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}∃𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))(♯‘𝑠) = 𝑧)
113111, 112sylibr 234 . . . . . 6 (𝑁 ∈ ℕ → 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} = {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ ∃𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))(♯‘𝑠) = 𝑧})
11485, 113eqtr4id 2783 . . . . 5 (𝑁 ∈ ℕ → 𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})){𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧} = 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})
115114sumeq1d 15642 . . . 4 (𝑁 ∈ ℕ → Σ𝑥 𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})){𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧} (-1↑(♯‘𝑥)) = Σ𝑥 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} (-1↑(♯‘𝑥)))
116 elfznn0 13557 . . . . . . . . . 10 (𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})) → 𝑧 ∈ ℕ0)
117116adantl 481 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))) → 𝑧 ∈ ℕ0)
118 expcl 14020 . . . . . . . . 9 ((-1 ∈ ℂ ∧ 𝑧 ∈ ℕ0) → (-1↑𝑧) ∈ ℂ)
11953, 117, 118sylancr 587 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))) → (-1↑𝑧) ∈ ℂ)
120 fsumconst 15732 . . . . . . . 8 (({𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧} ∈ Fin ∧ (-1↑𝑧) ∈ ℂ) → Σ𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧} (-1↑𝑧) = ((♯‘{𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧}) · (-1↑𝑧)))
12169, 119, 120syl2anc 584 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))) → Σ𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧} (-1↑𝑧) = ((♯‘{𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧}) · (-1↑𝑧)))
12273adantl 481 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))) ∧ 𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧}) → (♯‘𝑥) = 𝑧)
123122oveq2d 7385 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))) ∧ 𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧}) → (-1↑(♯‘𝑥)) = (-1↑𝑧))
124123sumeq2dv 15644 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))) → Σ𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧} (-1↑(♯‘𝑥)) = Σ𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧} (-1↑𝑧))
125 elfzelz 13461 . . . . . . . . 9 (𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})) → 𝑧 ∈ ℤ)
126 hashbc 14394 . . . . . . . . 9 (({𝑝 ∈ ℙ ∣ 𝑝𝑁} ∈ Fin ∧ 𝑧 ∈ ℤ) → ((♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})C𝑧) = (♯‘{𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧}))
12754, 125, 126syl2an 596 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))) → ((♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})C𝑧) = (♯‘{𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧}))
128127oveq1d 7384 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))) → (((♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})C𝑧) · (-1↑𝑧)) = ((♯‘{𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧}) · (-1↑𝑧)))
129121, 124, 1283eqtr4d 2774 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))) → Σ𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧} (-1↑(♯‘𝑥)) = (((♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})C𝑧) · (-1↑𝑧)))
130129sumeq2dv 15644 . . . . 5 (𝑁 ∈ ℕ → Σ𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))Σ𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧} (-1↑(♯‘𝑥)) = Σ𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))(((♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})C𝑧) · (-1↑𝑧)))
131 1pneg1e0 12276 . . . . . . 7 (1 + -1) = 0
132131oveq1i 7379 . . . . . 6 ((1 + -1)↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})) = (0↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))
133 binom1p 15773 . . . . . . 7 ((-1 ∈ ℂ ∧ (♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∈ ℕ0) → ((1 + -1)↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})) = Σ𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))(((♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})C𝑧) · (-1↑𝑧)))
13453, 101, 133sylancr 587 . . . . . 6 (𝑁 ∈ ℕ → ((1 + -1)↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})) = Σ𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))(((♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})C𝑧) · (-1↑𝑧)))
135132, 134eqtr3id 2778 . . . . 5 (𝑁 ∈ ℕ → (0↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})) = Σ𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))(((♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})C𝑧) · (-1↑𝑧)))
136 eqeq2 2741 . . . . . 6 (1 = if(𝑁 = 1, 1, 0) → ((0↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})) = 1 ↔ (0↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})) = if(𝑁 = 1, 1, 0)))
137 eqeq2 2741 . . . . . 6 (0 = if(𝑁 = 1, 1, 0) → ((0↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})) = 0 ↔ (0↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})) = if(𝑁 = 1, 1, 0)))
138 nprmdvds1 16652 . . . . . . . . . . . . 13 (𝑝 ∈ ℙ → ¬ 𝑝 ∥ 1)
139 simpr 484 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ 𝑁 = 1) → 𝑁 = 1)
140139breq2d 5114 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑁 = 1) → (𝑝𝑁𝑝 ∥ 1))
141140notbid 318 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑁 = 1) → (¬ 𝑝𝑁 ↔ ¬ 𝑝 ∥ 1))
142138, 141imbitrrid 246 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑁 = 1) → (𝑝 ∈ ℙ → ¬ 𝑝𝑁))
143142ralrimiv 3124 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑁 = 1) → ∀𝑝 ∈ ℙ ¬ 𝑝𝑁)
144 rabeq0 4347 . . . . . . . . . . 11 ({𝑝 ∈ ℙ ∣ 𝑝𝑁} = ∅ ↔ ∀𝑝 ∈ ℙ ¬ 𝑝𝑁)
145143, 144sylibr 234 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑁 = 1) → {𝑝 ∈ ℙ ∣ 𝑝𝑁} = ∅)
146145fveq2d 6844 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑁 = 1) → (♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}) = (♯‘∅))
147 hash0 14308 . . . . . . . . 9 (♯‘∅) = 0
148146, 147eqtrdi 2780 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑁 = 1) → (♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}) = 0)
149148oveq2d 7385 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑁 = 1) → (0↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})) = (0↑0))
150 0exp0e1 14007 . . . . . . 7 (0↑0) = 1
151149, 150eqtrdi 2780 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑁 = 1) → (0↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})) = 1)
152 df-ne 2926 . . . . . . . . . . 11 (𝑁 ≠ 1 ↔ ¬ 𝑁 = 1)
153 eluz2b3 12857 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘2) ↔ (𝑁 ∈ ℕ ∧ 𝑁 ≠ 1))
154153biimpri 228 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑁 ≠ 1) → 𝑁 ∈ (ℤ‘2))
155152, 154sylan2br 595 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ ¬ 𝑁 = 1) → 𝑁 ∈ (ℤ‘2))
156 exprmfct 16650 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝𝑁)
157155, 156syl 17 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ ¬ 𝑁 = 1) → ∃𝑝 ∈ ℙ 𝑝𝑁)
158 rabn0 4348 . . . . . . . . 9 ({𝑝 ∈ ℙ ∣ 𝑝𝑁} ≠ ∅ ↔ ∃𝑝 ∈ ℙ 𝑝𝑁)
159157, 158sylibr 234 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ ¬ 𝑁 = 1) → {𝑝 ∈ ℙ ∣ 𝑝𝑁} ≠ ∅)
16054adantr 480 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ ¬ 𝑁 = 1) → {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∈ Fin)
161 hashnncl 14307 . . . . . . . . 9 ({𝑝 ∈ ℙ ∣ 𝑝𝑁} ∈ Fin → ((♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∈ ℕ ↔ {𝑝 ∈ ℙ ∣ 𝑝𝑁} ≠ ∅))
162160, 161syl 17 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ ¬ 𝑁 = 1) → ((♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∈ ℕ ↔ {𝑝 ∈ ℙ ∣ 𝑝𝑁} ≠ ∅))
163159, 162mpbird 257 . . . . . . 7 ((𝑁 ∈ ℕ ∧ ¬ 𝑁 = 1) → (♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∈ ℕ)
1641630expd 14080 . . . . . 6 ((𝑁 ∈ ℕ ∧ ¬ 𝑁 = 1) → (0↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})) = 0)
165136, 137, 151, 164ifbothda 4523 . . . . 5 (𝑁 ∈ ℕ → (0↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})) = if(𝑁 = 1, 1, 0))
166130, 135, 1653eqtr2d 2770 . . . 4 (𝑁 ∈ ℕ → Σ𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))Σ𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧} (-1↑(♯‘𝑥)) = if(𝑁 = 1, 1, 0))
16784, 115, 1663eqtr3d 2772 . . 3 (𝑁 ∈ ℕ → Σ𝑥 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} (-1↑(♯‘𝑥)) = if(𝑁 = 1, 1, 0))
16862, 167eqtr3d 2766 . 2 (𝑁 ∈ ℕ → Σ𝑘 ∈ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)} (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑘})) = if(𝑁 = 1, 1, 0))
16910, 34, 1683eqtr3d 2772 1 (𝑁 ∈ ℕ → Σ𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑁} (μ‘𝑘) = if(𝑁 = 1, 1, 0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  {crab 3402  cdif 3908  wss 3911  c0 4292  ifcif 4484  𝒫 cpw 4559   ciun 4951  Disj wdisj 5069   class class class wbr 5102  cmpt 5183  cfv 6499  (class class class)co 7369  cdom 8893  Fincfn 8895  cc 11042  0cc0 11044  1c1 11045   + caddc 11047   · cmul 11049  cle 11185  -cneg 11382  cn 12162  2c2 12217  0cn0 12418  cz 12505  cuz 12769  ...cfz 13444  cexp 14002  Ccbc 14243  chash 14271  Σcsu 15628  cdvds 16198  cprime 16617   pCnt cpc 16783  μcmu 26981
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-disj 5070  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-oadd 8415  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-inf 9370  df-oi 9439  df-dju 9830  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-xnn0 12492  df-z 12506  df-uz 12770  df-q 12884  df-rp 12928  df-fz 13445  df-fzo 13592  df-fl 13730  df-mod 13808  df-seq 13943  df-exp 14003  df-fac 14215  df-bc 14244  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-clim 15430  df-sum 15629  df-dvds 16199  df-gcd 16441  df-prm 16618  df-pc 16784  df-mu 26987
This theorem is referenced by:  musumsum  27078  muinv  27079
  Copyright terms: Public domain W3C validator