Step | Hyp | Ref
| Expression |
1 | | fveq2 6756 |
. . . . . . . 8
⊢ (𝑛 = 𝑘 → (μ‘𝑛) = (μ‘𝑘)) |
2 | 1 | neeq1d 3002 |
. . . . . . 7
⊢ (𝑛 = 𝑘 → ((μ‘𝑛) ≠ 0 ↔ (μ‘𝑘) ≠ 0)) |
3 | | breq1 5073 |
. . . . . . 7
⊢ (𝑛 = 𝑘 → (𝑛 ∥ 𝑁 ↔ 𝑘 ∥ 𝑁)) |
4 | 2, 3 | anbi12d 630 |
. . . . . 6
⊢ (𝑛 = 𝑘 → (((μ‘𝑛) ≠ 0 ∧ 𝑛 ∥ 𝑁) ↔ ((μ‘𝑘) ≠ 0 ∧ 𝑘 ∥ 𝑁))) |
5 | 4 | elrab 3617 |
. . . . 5
⊢ (𝑘 ∈ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛 ∥ 𝑁)} ↔ (𝑘 ∈ ℕ ∧ ((μ‘𝑘) ≠ 0 ∧ 𝑘 ∥ 𝑁))) |
6 | | muval2 26188 |
. . . . . 6
⊢ ((𝑘 ∈ ℕ ∧
(μ‘𝑘) ≠ 0)
→ (μ‘𝑘) =
(-1↑(♯‘{𝑝
∈ ℙ ∣ 𝑝
∥ 𝑘}))) |
7 | 6 | adantrr 713 |
. . . . 5
⊢ ((𝑘 ∈ ℕ ∧
((μ‘𝑘) ≠ 0
∧ 𝑘 ∥ 𝑁)) → (μ‘𝑘) =
(-1↑(♯‘{𝑝
∈ ℙ ∣ 𝑝
∥ 𝑘}))) |
8 | 5, 7 | sylbi 216 |
. . . 4
⊢ (𝑘 ∈ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛 ∥ 𝑁)} → (μ‘𝑘) = (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑘}))) |
9 | 8 | adantl 481 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ 𝑘 ∈ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛 ∥ 𝑁)}) → (μ‘𝑘) = (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑘}))) |
10 | 9 | sumeq2dv 15343 |
. 2
⊢ (𝑁 ∈ ℕ →
Σ𝑘 ∈ {𝑛 ∈ ℕ ∣
((μ‘𝑛) ≠ 0
∧ 𝑛 ∥ 𝑁)} (μ‘𝑘) = Σ𝑘 ∈ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛 ∥ 𝑁)} (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑘}))) |
11 | | simpr 484 |
. . . . 5
⊢
(((μ‘𝑛)
≠ 0 ∧ 𝑛 ∥
𝑁) → 𝑛 ∥ 𝑁) |
12 | 11 | a1i 11 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) →
(((μ‘𝑛) ≠ 0
∧ 𝑛 ∥ 𝑁) → 𝑛 ∥ 𝑁)) |
13 | 12 | ss2rabdv 4005 |
. . 3
⊢ (𝑁 ∈ ℕ → {𝑛 ∈ ℕ ∣
((μ‘𝑛) ≠ 0
∧ 𝑛 ∥ 𝑁)} ⊆ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑁}) |
14 | | ssrab2 4009 |
. . . . . 6
⊢ {𝑛 ∈ ℕ ∣
((μ‘𝑛) ≠ 0
∧ 𝑛 ∥ 𝑁)} ⊆
ℕ |
15 | | simpr 484 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝑘 ∈ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛 ∥ 𝑁)}) → 𝑘 ∈ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛 ∥ 𝑁)}) |
16 | 14, 15 | sselid 3915 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝑘 ∈ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛 ∥ 𝑁)}) → 𝑘 ∈ ℕ) |
17 | | mucl 26195 |
. . . . 5
⊢ (𝑘 ∈ ℕ →
(μ‘𝑘) ∈
ℤ) |
18 | 16, 17 | syl 17 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ 𝑘 ∈ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛 ∥ 𝑁)}) → (μ‘𝑘) ∈ ℤ) |
19 | 18 | zcnd 12356 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ 𝑘 ∈ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛 ∥ 𝑁)}) → (μ‘𝑘) ∈ ℂ) |
20 | | difrab 4239 |
. . . . . . 7
⊢ ({𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑁} ∖ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛 ∥ 𝑁)}) = {𝑛 ∈ ℕ ∣ (𝑛 ∥ 𝑁 ∧ ¬ ((μ‘𝑛) ≠ 0 ∧ 𝑛 ∥ 𝑁))} |
21 | | pm3.21 471 |
. . . . . . . . . . 11
⊢ (𝑛 ∥ 𝑁 → ((μ‘𝑛) ≠ 0 → ((μ‘𝑛) ≠ 0 ∧ 𝑛 ∥ 𝑁))) |
22 | 21 | necon1bd 2960 |
. . . . . . . . . 10
⊢ (𝑛 ∥ 𝑁 → (¬ ((μ‘𝑛) ≠ 0 ∧ 𝑛 ∥ 𝑁) → (μ‘𝑛) = 0)) |
23 | 22 | imp 406 |
. . . . . . . . 9
⊢ ((𝑛 ∥ 𝑁 ∧ ¬ ((μ‘𝑛) ≠ 0 ∧ 𝑛 ∥ 𝑁)) → (μ‘𝑛) = 0) |
24 | 23 | a1i 11 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ → ((𝑛 ∥ 𝑁 ∧ ¬ ((μ‘𝑛) ≠ 0 ∧ 𝑛 ∥ 𝑁)) → (μ‘𝑛) = 0)) |
25 | 24 | ss2rabi 4006 |
. . . . . . 7
⊢ {𝑛 ∈ ℕ ∣ (𝑛 ∥ 𝑁 ∧ ¬ ((μ‘𝑛) ≠ 0 ∧ 𝑛 ∥ 𝑁))} ⊆ {𝑛 ∈ ℕ ∣ (μ‘𝑛) = 0} |
26 | 20, 25 | eqsstri 3951 |
. . . . . 6
⊢ ({𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑁} ∖ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛 ∥ 𝑁)}) ⊆ {𝑛 ∈ ℕ ∣ (μ‘𝑛) = 0} |
27 | 26 | sseli 3913 |
. . . . 5
⊢ (𝑘 ∈ ({𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑁} ∖ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛 ∥ 𝑁)}) → 𝑘 ∈ {𝑛 ∈ ℕ ∣ (μ‘𝑛) = 0}) |
28 | | fveqeq2 6765 |
. . . . . . 7
⊢ (𝑛 = 𝑘 → ((μ‘𝑛) = 0 ↔ (μ‘𝑘) = 0)) |
29 | 28 | elrab 3617 |
. . . . . 6
⊢ (𝑘 ∈ {𝑛 ∈ ℕ ∣ (μ‘𝑛) = 0} ↔ (𝑘 ∈ ℕ ∧
(μ‘𝑘) =
0)) |
30 | 29 | simprbi 496 |
. . . . 5
⊢ (𝑘 ∈ {𝑛 ∈ ℕ ∣ (μ‘𝑛) = 0} → (μ‘𝑘) = 0) |
31 | 27, 30 | syl 17 |
. . . 4
⊢ (𝑘 ∈ ({𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑁} ∖ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛 ∥ 𝑁)}) → (μ‘𝑘) = 0) |
32 | 31 | adantl 481 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ({𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑁} ∖ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛 ∥ 𝑁)})) → (μ‘𝑘) = 0) |
33 | | fzfid 13621 |
. . . 4
⊢ (𝑁 ∈ ℕ →
(1...𝑁) ∈
Fin) |
34 | | dvdsssfz1 15955 |
. . . 4
⊢ (𝑁 ∈ ℕ → {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑁} ⊆ (1...𝑁)) |
35 | 33, 34 | ssfid 8971 |
. . 3
⊢ (𝑁 ∈ ℕ → {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑁} ∈ Fin) |
36 | 13, 19, 32, 35 | fsumss 15365 |
. 2
⊢ (𝑁 ∈ ℕ →
Σ𝑘 ∈ {𝑛 ∈ ℕ ∣
((μ‘𝑛) ≠ 0
∧ 𝑛 ∥ 𝑁)} (μ‘𝑘) = Σ𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑁} (μ‘𝑘)) |
37 | | fveq2 6756 |
. . . . 5
⊢ (𝑥 = {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑘} → (♯‘𝑥) = (♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑘})) |
38 | 37 | oveq2d 7271 |
. . . 4
⊢ (𝑥 = {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑘} → (-1↑(♯‘𝑥)) =
(-1↑(♯‘{𝑝
∈ ℙ ∣ 𝑝
∥ 𝑘}))) |
39 | 35, 13 | ssfid 8971 |
. . . 4
⊢ (𝑁 ∈ ℕ → {𝑛 ∈ ℕ ∣
((μ‘𝑛) ≠ 0
∧ 𝑛 ∥ 𝑁)} ∈ Fin) |
40 | | eqid 2738 |
. . . . 5
⊢ {𝑛 ∈ ℕ ∣
((μ‘𝑛) ≠ 0
∧ 𝑛 ∥ 𝑁)} = {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛 ∥ 𝑁)} |
41 | | eqid 2738 |
. . . . 5
⊢ (𝑚 ∈ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛 ∥ 𝑁)} ↦ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑚}) = (𝑚 ∈ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛 ∥ 𝑁)} ↦ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑚}) |
42 | | oveq1 7262 |
. . . . . . . 8
⊢ (𝑞 = 𝑝 → (𝑞 pCnt 𝑥) = (𝑝 pCnt 𝑥)) |
43 | 42 | cbvmptv 5183 |
. . . . . . 7
⊢ (𝑞 ∈ ℙ ↦ (𝑞 pCnt 𝑥)) = (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑥)) |
44 | | oveq2 7263 |
. . . . . . . 8
⊢ (𝑥 = 𝑚 → (𝑝 pCnt 𝑥) = (𝑝 pCnt 𝑚)) |
45 | 44 | mpteq2dv 5172 |
. . . . . . 7
⊢ (𝑥 = 𝑚 → (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑥)) = (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑚))) |
46 | 43, 45 | syl5eq 2791 |
. . . . . 6
⊢ (𝑥 = 𝑚 → (𝑞 ∈ ℙ ↦ (𝑞 pCnt 𝑥)) = (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑚))) |
47 | 46 | cbvmptv 5183 |
. . . . 5
⊢ (𝑥 ∈ ℕ ↦ (𝑞 ∈ ℙ ↦ (𝑞 pCnt 𝑥))) = (𝑚 ∈ ℕ ↦ (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑚))) |
48 | 40, 41, 47 | sqff1o 26236 |
. . . 4
⊢ (𝑁 ∈ ℕ → (𝑚 ∈ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛 ∥ 𝑁)} ↦ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑚}):{𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛 ∥ 𝑁)}–1-1-onto→𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁}) |
49 | | breq2 5074 |
. . . . . . 7
⊢ (𝑚 = 𝑘 → (𝑝 ∥ 𝑚 ↔ 𝑝 ∥ 𝑘)) |
50 | 49 | rabbidv 3404 |
. . . . . 6
⊢ (𝑚 = 𝑘 → {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑚} = {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑘}) |
51 | | prmex 16310 |
. . . . . . 7
⊢ ℙ
∈ V |
52 | 51 | rabex 5251 |
. . . . . 6
⊢ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑘} ∈ V |
53 | 50, 41, 52 | fvmpt 6857 |
. . . . 5
⊢ (𝑘 ∈ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛 ∥ 𝑁)} → ((𝑚 ∈ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛 ∥ 𝑁)} ↦ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑚})‘𝑘) = {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑘}) |
54 | 53 | adantl 481 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ 𝑘 ∈ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛 ∥ 𝑁)}) → ((𝑚 ∈ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛 ∥ 𝑁)} ↦ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑚})‘𝑘) = {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑘}) |
55 | | neg1cn 12017 |
. . . . 5
⊢ -1 ∈
ℂ |
56 | | prmdvdsfi 26161 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ → {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁} ∈ Fin) |
57 | | elpwi 4539 |
. . . . . . 7
⊢ (𝑥 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁} → 𝑥 ⊆ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁}) |
58 | | ssfi 8918 |
. . . . . . 7
⊢ (({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁} ∈ Fin ∧ 𝑥 ⊆ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁}) → 𝑥 ∈ Fin) |
59 | 56, 57, 58 | syl2an 595 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁}) → 𝑥 ∈ Fin) |
60 | | hashcl 13999 |
. . . . . 6
⊢ (𝑥 ∈ Fin →
(♯‘𝑥) ∈
ℕ0) |
61 | 59, 60 | syl 17 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁}) → (♯‘𝑥) ∈
ℕ0) |
62 | | expcl 13728 |
. . . . 5
⊢ ((-1
∈ ℂ ∧ (♯‘𝑥) ∈ ℕ0) →
(-1↑(♯‘𝑥))
∈ ℂ) |
63 | 55, 61, 62 | sylancr 586 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁}) → (-1↑(♯‘𝑥)) ∈
ℂ) |
64 | 38, 39, 48, 54, 63 | fsumf1o 15363 |
. . 3
⊢ (𝑁 ∈ ℕ →
Σ𝑥 ∈ 𝒫
{𝑝 ∈ ℙ ∣
𝑝 ∥ 𝑁} (-1↑(♯‘𝑥)) = Σ𝑘 ∈ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛 ∥ 𝑁)} (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑘}))) |
65 | | fzfid 13621 |
. . . . 5
⊢ (𝑁 ∈ ℕ →
(0...(♯‘{𝑝
∈ ℙ ∣ 𝑝
∥ 𝑁})) ∈
Fin) |
66 | 56 | adantr 480 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈
(0...(♯‘{𝑝
∈ ℙ ∣ 𝑝
∥ 𝑁}))) → {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁} ∈ Fin) |
67 | | pwfi 8923 |
. . . . . . 7
⊢ ({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁} ∈ Fin ↔ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁} ∈ Fin) |
68 | 66, 67 | sylib 217 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈
(0...(♯‘{𝑝
∈ ℙ ∣ 𝑝
∥ 𝑁}))) →
𝒫 {𝑝 ∈ ℙ
∣ 𝑝 ∥ 𝑁} ∈ Fin) |
69 | | ssrab2 4009 |
. . . . . 6
⊢ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁} ∣ (♯‘𝑠) = 𝑧} ⊆ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁} |
70 | | ssfi 8918 |
. . . . . 6
⊢
((𝒫 {𝑝
∈ ℙ ∣ 𝑝
∥ 𝑁} ∈ Fin ∧
{𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁} ∣ (♯‘𝑠) = 𝑧} ⊆ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁}) → {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁} ∣ (♯‘𝑠) = 𝑧} ∈ Fin) |
71 | 68, 69, 70 | sylancl 585 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈
(0...(♯‘{𝑝
∈ ℙ ∣ 𝑝
∥ 𝑁}))) → {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁} ∣ (♯‘𝑠) = 𝑧} ∈ Fin) |
72 | | simprr 769 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ (𝑧 ∈
(0...(♯‘{𝑝
∈ ℙ ∣ 𝑝
∥ 𝑁})) ∧ 𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁} ∣ (♯‘𝑠) = 𝑧})) → 𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁} ∣ (♯‘𝑠) = 𝑧}) |
73 | | fveqeq2 6765 |
. . . . . . . . . 10
⊢ (𝑠 = 𝑥 → ((♯‘𝑠) = 𝑧 ↔ (♯‘𝑥) = 𝑧)) |
74 | 73 | elrab 3617 |
. . . . . . . . 9
⊢ (𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁} ∣ (♯‘𝑠) = 𝑧} ↔ (𝑥 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁} ∧ (♯‘𝑥) = 𝑧)) |
75 | 74 | simprbi 496 |
. . . . . . . 8
⊢ (𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁} ∣ (♯‘𝑠) = 𝑧} → (♯‘𝑥) = 𝑧) |
76 | 72, 75 | syl 17 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ (𝑧 ∈
(0...(♯‘{𝑝
∈ ℙ ∣ 𝑝
∥ 𝑁})) ∧ 𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁} ∣ (♯‘𝑠) = 𝑧})) → (♯‘𝑥) = 𝑧) |
77 | 76 | ralrimivva 3114 |
. . . . . 6
⊢ (𝑁 ∈ ℕ →
∀𝑧 ∈
(0...(♯‘{𝑝
∈ ℙ ∣ 𝑝
∥ 𝑁}))∀𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁} ∣ (♯‘𝑠) = 𝑧} (♯‘𝑥) = 𝑧) |
78 | | invdisj 5054 |
. . . . . 6
⊢
(∀𝑧 ∈
(0...(♯‘{𝑝
∈ ℙ ∣ 𝑝
∥ 𝑁}))∀𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁} ∣ (♯‘𝑠) = 𝑧} (♯‘𝑥) = 𝑧 → Disj 𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁})){𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁} ∣ (♯‘𝑠) = 𝑧}) |
79 | 77, 78 | syl 17 |
. . . . 5
⊢ (𝑁 ∈ ℕ →
Disj 𝑧 ∈
(0...(♯‘{𝑝
∈ ℙ ∣ 𝑝
∥ 𝑁})){𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁} ∣ (♯‘𝑠) = 𝑧}) |
80 | 56 | adantr 480 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ (𝑧 ∈
(0...(♯‘{𝑝
∈ ℙ ∣ 𝑝
∥ 𝑁})) ∧ 𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁} ∣ (♯‘𝑠) = 𝑧})) → {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁} ∈ Fin) |
81 | 69, 72 | sselid 3915 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ (𝑧 ∈
(0...(♯‘{𝑝
∈ ℙ ∣ 𝑝
∥ 𝑁})) ∧ 𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁} ∣ (♯‘𝑠) = 𝑧})) → 𝑥 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁}) |
82 | 81, 57 | syl 17 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ (𝑧 ∈
(0...(♯‘{𝑝
∈ ℙ ∣ 𝑝
∥ 𝑁})) ∧ 𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁} ∣ (♯‘𝑠) = 𝑧})) → 𝑥 ⊆ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁}) |
83 | 80, 82 | ssfid 8971 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ (𝑧 ∈
(0...(♯‘{𝑝
∈ ℙ ∣ 𝑝
∥ 𝑁})) ∧ 𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁} ∣ (♯‘𝑠) = 𝑧})) → 𝑥 ∈ Fin) |
84 | 83, 60 | syl 17 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ (𝑧 ∈
(0...(♯‘{𝑝
∈ ℙ ∣ 𝑝
∥ 𝑁})) ∧ 𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁} ∣ (♯‘𝑠) = 𝑧})) → (♯‘𝑥) ∈
ℕ0) |
85 | 55, 84, 62 | sylancr 586 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ (𝑧 ∈
(0...(♯‘{𝑝
∈ ℙ ∣ 𝑝
∥ 𝑁})) ∧ 𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁} ∣ (♯‘𝑠) = 𝑧})) → (-1↑(♯‘𝑥)) ∈
ℂ) |
86 | 65, 71, 79, 85 | fsumiun 15461 |
. . . 4
⊢ (𝑁 ∈ ℕ →
Σ𝑥 ∈ ∪ 𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁})){𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁} ∣ (♯‘𝑠) = 𝑧} (-1↑(♯‘𝑥)) = Σ𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁}))Σ𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁} ∣ (♯‘𝑠) = 𝑧} (-1↑(♯‘𝑥))) |
87 | | iunrab 4978 |
. . . . . 6
⊢ ∪ 𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁})){𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁} ∣ (♯‘𝑠) = 𝑧} = {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁} ∣ ∃𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁}))(♯‘𝑠) = 𝑧} |
88 | 56 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ ∧ 𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁}) → {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁} ∈ Fin) |
89 | | elpwi 4539 |
. . . . . . . . . . . . 13
⊢ (𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁} → 𝑠 ⊆ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁}) |
90 | 89 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ ∧ 𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁}) → 𝑠 ⊆ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁}) |
91 | | ssdomg 8741 |
. . . . . . . . . . . 12
⊢ ({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁} ∈ Fin → (𝑠 ⊆ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁} → 𝑠 ≼ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁})) |
92 | 88, 90, 91 | sylc 65 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ ∧ 𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁}) → 𝑠 ≼ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁}) |
93 | | ssfi 8918 |
. . . . . . . . . . . . 13
⊢ (({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁} ∈ Fin ∧ 𝑠 ⊆ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁}) → 𝑠 ∈ Fin) |
94 | 56, 89, 93 | syl2an 595 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ ∧ 𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁}) → 𝑠 ∈ Fin) |
95 | | hashdom 14022 |
. . . . . . . . . . . 12
⊢ ((𝑠 ∈ Fin ∧ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁} ∈ Fin) → ((♯‘𝑠) ≤ (♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁}) ↔ 𝑠 ≼ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁})) |
96 | 94, 88, 95 | syl2anc 583 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ ∧ 𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁}) → ((♯‘𝑠) ≤ (♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁}) ↔ 𝑠 ≼ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁})) |
97 | 92, 96 | mpbird 256 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ 𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁}) → (♯‘𝑠) ≤ (♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁})) |
98 | | hashcl 13999 |
. . . . . . . . . . . . 13
⊢ (𝑠 ∈ Fin →
(♯‘𝑠) ∈
ℕ0) |
99 | 94, 98 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ ∧ 𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁}) → (♯‘𝑠) ∈
ℕ0) |
100 | | nn0uz 12549 |
. . . . . . . . . . . 12
⊢
ℕ0 = (ℤ≥‘0) |
101 | 99, 100 | eleqtrdi 2849 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ ∧ 𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁}) → (♯‘𝑠) ∈
(ℤ≥‘0)) |
102 | | hashcl 13999 |
. . . . . . . . . . . . . 14
⊢ ({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁} ∈ Fin → (♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁}) ∈
ℕ0) |
103 | 56, 102 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈ ℕ →
(♯‘{𝑝 ∈
ℙ ∣ 𝑝 ∥
𝑁}) ∈
ℕ0) |
104 | 103 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ ∧ 𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁}) → (♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁}) ∈
ℕ0) |
105 | 104 | nn0zd 12353 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ ∧ 𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁}) → (♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁}) ∈ ℤ) |
106 | | elfz5 13177 |
. . . . . . . . . . 11
⊢
(((♯‘𝑠)
∈ (ℤ≥‘0) ∧ (♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁}) ∈ ℤ) →
((♯‘𝑠) ∈
(0...(♯‘{𝑝
∈ ℙ ∣ 𝑝
∥ 𝑁})) ↔
(♯‘𝑠) ≤
(♯‘{𝑝 ∈
ℙ ∣ 𝑝 ∥
𝑁}))) |
107 | 101, 105,
106 | syl2anc 583 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ 𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁}) → ((♯‘𝑠) ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁})) ↔ (♯‘𝑠) ≤ (♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁}))) |
108 | 97, 107 | mpbird 256 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ 𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁}) → (♯‘𝑠) ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁}))) |
109 | | eqidd 2739 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ 𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁}) → (♯‘𝑠) = (♯‘𝑠)) |
110 | | eqeq2 2750 |
. . . . . . . . . 10
⊢ (𝑧 = (♯‘𝑠) → ((♯‘𝑠) = 𝑧 ↔ (♯‘𝑠) = (♯‘𝑠))) |
111 | 110 | rspcev 3552 |
. . . . . . . . 9
⊢
(((♯‘𝑠)
∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁})) ∧ (♯‘𝑠) = (♯‘𝑠)) → ∃𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁}))(♯‘𝑠) = 𝑧) |
112 | 108, 109,
111 | syl2anc 583 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁}) → ∃𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁}))(♯‘𝑠) = 𝑧) |
113 | 112 | ralrimiva 3107 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ →
∀𝑠 ∈ 𝒫
{𝑝 ∈ ℙ ∣
𝑝 ∥ 𝑁}∃𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁}))(♯‘𝑠) = 𝑧) |
114 | | rabid2 3307 |
. . . . . . 7
⊢
(𝒫 {𝑝 ∈
ℙ ∣ 𝑝 ∥
𝑁} = {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁} ∣ ∃𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁}))(♯‘𝑠) = 𝑧} ↔ ∀𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁}∃𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁}))(♯‘𝑠) = 𝑧) |
115 | 113, 114 | sylibr 233 |
. . . . . 6
⊢ (𝑁 ∈ ℕ → 𝒫
{𝑝 ∈ ℙ ∣
𝑝 ∥ 𝑁} = {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁} ∣ ∃𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁}))(♯‘𝑠) = 𝑧}) |
116 | 87, 115 | eqtr4id 2798 |
. . . . 5
⊢ (𝑁 ∈ ℕ → ∪ 𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁})){𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁} ∣ (♯‘𝑠) = 𝑧} = 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁}) |
117 | 116 | sumeq1d 15341 |
. . . 4
⊢ (𝑁 ∈ ℕ →
Σ𝑥 ∈ ∪ 𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁})){𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁} ∣ (♯‘𝑠) = 𝑧} (-1↑(♯‘𝑥)) = Σ𝑥 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁} (-1↑(♯‘𝑥))) |
118 | | elfznn0 13278 |
. . . . . . . . . 10
⊢ (𝑧 ∈
(0...(♯‘{𝑝
∈ ℙ ∣ 𝑝
∥ 𝑁})) → 𝑧 ∈
ℕ0) |
119 | 118 | adantl 481 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈
(0...(♯‘{𝑝
∈ ℙ ∣ 𝑝
∥ 𝑁}))) → 𝑧 ∈
ℕ0) |
120 | | expcl 13728 |
. . . . . . . . 9
⊢ ((-1
∈ ℂ ∧ 𝑧
∈ ℕ0) → (-1↑𝑧) ∈ ℂ) |
121 | 55, 119, 120 | sylancr 586 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈
(0...(♯‘{𝑝
∈ ℙ ∣ 𝑝
∥ 𝑁}))) →
(-1↑𝑧) ∈
ℂ) |
122 | | fsumconst 15430 |
. . . . . . . 8
⊢ (({𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁} ∣ (♯‘𝑠) = 𝑧} ∈ Fin ∧ (-1↑𝑧) ∈ ℂ) →
Σ𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁} ∣ (♯‘𝑠) = 𝑧} (-1↑𝑧) = ((♯‘{𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁} ∣ (♯‘𝑠) = 𝑧}) · (-1↑𝑧))) |
123 | 71, 121, 122 | syl2anc 583 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈
(0...(♯‘{𝑝
∈ ℙ ∣ 𝑝
∥ 𝑁}))) →
Σ𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁} ∣ (♯‘𝑠) = 𝑧} (-1↑𝑧) = ((♯‘{𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁} ∣ (♯‘𝑠) = 𝑧}) · (-1↑𝑧))) |
124 | 75 | adantl 481 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ 𝑧 ∈
(0...(♯‘{𝑝
∈ ℙ ∣ 𝑝
∥ 𝑁}))) ∧ 𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁} ∣ (♯‘𝑠) = 𝑧}) → (♯‘𝑥) = 𝑧) |
125 | 124 | oveq2d 7271 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ ∧ 𝑧 ∈
(0...(♯‘{𝑝
∈ ℙ ∣ 𝑝
∥ 𝑁}))) ∧ 𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁} ∣ (♯‘𝑠) = 𝑧}) → (-1↑(♯‘𝑥)) = (-1↑𝑧)) |
126 | 125 | sumeq2dv 15343 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈
(0...(♯‘{𝑝
∈ ℙ ∣ 𝑝
∥ 𝑁}))) →
Σ𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁} ∣ (♯‘𝑠) = 𝑧} (-1↑(♯‘𝑥)) = Σ𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁} ∣ (♯‘𝑠) = 𝑧} (-1↑𝑧)) |
127 | | elfzelz 13185 |
. . . . . . . . 9
⊢ (𝑧 ∈
(0...(♯‘{𝑝
∈ ℙ ∣ 𝑝
∥ 𝑁})) → 𝑧 ∈
ℤ) |
128 | | hashbc 14093 |
. . . . . . . . 9
⊢ (({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁} ∈ Fin ∧ 𝑧 ∈ ℤ) →
((♯‘{𝑝 ∈
ℙ ∣ 𝑝 ∥
𝑁})C𝑧) = (♯‘{𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁} ∣ (♯‘𝑠) = 𝑧})) |
129 | 56, 127, 128 | syl2an 595 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈
(0...(♯‘{𝑝
∈ ℙ ∣ 𝑝
∥ 𝑁}))) →
((♯‘{𝑝 ∈
ℙ ∣ 𝑝 ∥
𝑁})C𝑧) = (♯‘{𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁} ∣ (♯‘𝑠) = 𝑧})) |
130 | 129 | oveq1d 7270 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈
(0...(♯‘{𝑝
∈ ℙ ∣ 𝑝
∥ 𝑁}))) →
(((♯‘{𝑝 ∈
ℙ ∣ 𝑝 ∥
𝑁})C𝑧) · (-1↑𝑧)) = ((♯‘{𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁} ∣ (♯‘𝑠) = 𝑧}) · (-1↑𝑧))) |
131 | 123, 126,
130 | 3eqtr4d 2788 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈
(0...(♯‘{𝑝
∈ ℙ ∣ 𝑝
∥ 𝑁}))) →
Σ𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁} ∣ (♯‘𝑠) = 𝑧} (-1↑(♯‘𝑥)) = (((♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁})C𝑧) · (-1↑𝑧))) |
132 | 131 | sumeq2dv 15343 |
. . . . 5
⊢ (𝑁 ∈ ℕ →
Σ𝑧 ∈
(0...(♯‘{𝑝
∈ ℙ ∣ 𝑝
∥ 𝑁}))Σ𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁} ∣ (♯‘𝑠) = 𝑧} (-1↑(♯‘𝑥)) = Σ𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁}))(((♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁})C𝑧) · (-1↑𝑧))) |
133 | | 1pneg1e0 12022 |
. . . . . . 7
⊢ (1 + -1)
= 0 |
134 | 133 | oveq1i 7265 |
. . . . . 6
⊢ ((1 +
-1)↑(♯‘{𝑝
∈ ℙ ∣ 𝑝
∥ 𝑁})) =
(0↑(♯‘{𝑝
∈ ℙ ∣ 𝑝
∥ 𝑁})) |
135 | | binom1p 15471 |
. . . . . . 7
⊢ ((-1
∈ ℂ ∧ (♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁}) ∈ ℕ0) → ((1 +
-1)↑(♯‘{𝑝
∈ ℙ ∣ 𝑝
∥ 𝑁})) = Σ𝑧 ∈
(0...(♯‘{𝑝
∈ ℙ ∣ 𝑝
∥ 𝑁}))(((♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁})C𝑧) · (-1↑𝑧))) |
136 | 55, 103, 135 | sylancr 586 |
. . . . . 6
⊢ (𝑁 ∈ ℕ → ((1 +
-1)↑(♯‘{𝑝
∈ ℙ ∣ 𝑝
∥ 𝑁})) = Σ𝑧 ∈
(0...(♯‘{𝑝
∈ ℙ ∣ 𝑝
∥ 𝑁}))(((♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁})C𝑧) · (-1↑𝑧))) |
137 | 134, 136 | eqtr3id 2793 |
. . . . 5
⊢ (𝑁 ∈ ℕ →
(0↑(♯‘{𝑝
∈ ℙ ∣ 𝑝
∥ 𝑁})) = Σ𝑧 ∈
(0...(♯‘{𝑝
∈ ℙ ∣ 𝑝
∥ 𝑁}))(((♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁})C𝑧) · (-1↑𝑧))) |
138 | | eqeq2 2750 |
. . . . . 6
⊢ (1 =
if(𝑁 = 1, 1, 0) →
((0↑(♯‘{𝑝
∈ ℙ ∣ 𝑝
∥ 𝑁})) = 1 ↔
(0↑(♯‘{𝑝
∈ ℙ ∣ 𝑝
∥ 𝑁})) = if(𝑁 = 1, 1, 0))) |
139 | | eqeq2 2750 |
. . . . . 6
⊢ (0 =
if(𝑁 = 1, 1, 0) →
((0↑(♯‘{𝑝
∈ ℙ ∣ 𝑝
∥ 𝑁})) = 0 ↔
(0↑(♯‘{𝑝
∈ ℙ ∣ 𝑝
∥ 𝑁})) = if(𝑁 = 1, 1, 0))) |
140 | | nprmdvds1 16339 |
. . . . . . . . . . . . 13
⊢ (𝑝 ∈ ℙ → ¬
𝑝 ∥
1) |
141 | | simpr 484 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ ℕ ∧ 𝑁 = 1) → 𝑁 = 1) |
142 | 141 | breq2d 5082 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℕ ∧ 𝑁 = 1) → (𝑝 ∥ 𝑁 ↔ 𝑝 ∥ 1)) |
143 | 142 | notbid 317 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℕ ∧ 𝑁 = 1) → (¬ 𝑝 ∥ 𝑁 ↔ ¬ 𝑝 ∥ 1)) |
144 | 140, 143 | syl5ibr 245 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ ∧ 𝑁 = 1) → (𝑝 ∈ ℙ → ¬ 𝑝 ∥ 𝑁)) |
145 | 144 | ralrimiv 3106 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ ∧ 𝑁 = 1) → ∀𝑝 ∈ ℙ ¬ 𝑝 ∥ 𝑁) |
146 | | rabeq0 4315 |
. . . . . . . . . . 11
⊢ ({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁} = ∅ ↔ ∀𝑝 ∈ ℙ ¬ 𝑝 ∥ 𝑁) |
147 | 145, 146 | sylibr 233 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ 𝑁 = 1) → {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁} = ∅) |
148 | 147 | fveq2d 6760 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ 𝑁 = 1) →
(♯‘{𝑝 ∈
ℙ ∣ 𝑝 ∥
𝑁}) =
(♯‘∅)) |
149 | | hash0 14010 |
. . . . . . . . 9
⊢
(♯‘∅) = 0 |
150 | 148, 149 | eqtrdi 2795 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝑁 = 1) →
(♯‘{𝑝 ∈
ℙ ∣ 𝑝 ∥
𝑁}) = 0) |
151 | 150 | oveq2d 7271 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝑁 = 1) →
(0↑(♯‘{𝑝
∈ ℙ ∣ 𝑝
∥ 𝑁})) =
(0↑0)) |
152 | | 0exp0e1 13715 |
. . . . . . 7
⊢
(0↑0) = 1 |
153 | 151, 152 | eqtrdi 2795 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝑁 = 1) →
(0↑(♯‘{𝑝
∈ ℙ ∣ 𝑝
∥ 𝑁})) =
1) |
154 | | df-ne 2943 |
. . . . . . . . . . 11
⊢ (𝑁 ≠ 1 ↔ ¬ 𝑁 = 1) |
155 | | eluz2b3 12591 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈
(ℤ≥‘2) ↔ (𝑁 ∈ ℕ ∧ 𝑁 ≠ 1)) |
156 | 155 | biimpri 227 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ ∧ 𝑁 ≠ 1) → 𝑁 ∈
(ℤ≥‘2)) |
157 | 154, 156 | sylan2br 594 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ ¬
𝑁 = 1) → 𝑁 ∈
(ℤ≥‘2)) |
158 | | exprmfct 16337 |
. . . . . . . . . 10
⊢ (𝑁 ∈
(ℤ≥‘2) → ∃𝑝 ∈ ℙ 𝑝 ∥ 𝑁) |
159 | 157, 158 | syl 17 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ ¬
𝑁 = 1) → ∃𝑝 ∈ ℙ 𝑝 ∥ 𝑁) |
160 | | rabn0 4316 |
. . . . . . . . 9
⊢ ({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁} ≠ ∅ ↔ ∃𝑝 ∈ ℙ 𝑝 ∥ 𝑁) |
161 | 159, 160 | sylibr 233 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ ¬
𝑁 = 1) → {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁} ≠ ∅) |
162 | 56 | adantr 480 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ ¬
𝑁 = 1) → {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁} ∈ Fin) |
163 | | hashnncl 14009 |
. . . . . . . . 9
⊢ ({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁} ∈ Fin → ((♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁}) ∈ ℕ ↔ {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁} ≠ ∅)) |
164 | 162, 163 | syl 17 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ ¬
𝑁 = 1) →
((♯‘{𝑝 ∈
ℙ ∣ 𝑝 ∥
𝑁}) ∈ ℕ ↔
{𝑝 ∈ ℙ ∣
𝑝 ∥ 𝑁} ≠ ∅)) |
165 | 161, 164 | mpbird 256 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ ¬
𝑁 = 1) →
(♯‘{𝑝 ∈
ℙ ∣ 𝑝 ∥
𝑁}) ∈
ℕ) |
166 | 165 | 0expd 13785 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ ¬
𝑁 = 1) →
(0↑(♯‘{𝑝
∈ ℙ ∣ 𝑝
∥ 𝑁})) =
0) |
167 | 138, 139,
153, 166 | ifbothda 4494 |
. . . . 5
⊢ (𝑁 ∈ ℕ →
(0↑(♯‘{𝑝
∈ ℙ ∣ 𝑝
∥ 𝑁})) = if(𝑁 = 1, 1, 0)) |
168 | 132, 137,
167 | 3eqtr2d 2784 |
. . . 4
⊢ (𝑁 ∈ ℕ →
Σ𝑧 ∈
(0...(♯‘{𝑝
∈ ℙ ∣ 𝑝
∥ 𝑁}))Σ𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁} ∣ (♯‘𝑠) = 𝑧} (-1↑(♯‘𝑥)) = if(𝑁 = 1, 1, 0)) |
169 | 86, 117, 168 | 3eqtr3d 2786 |
. . 3
⊢ (𝑁 ∈ ℕ →
Σ𝑥 ∈ 𝒫
{𝑝 ∈ ℙ ∣
𝑝 ∥ 𝑁} (-1↑(♯‘𝑥)) = if(𝑁 = 1, 1, 0)) |
170 | 64, 169 | eqtr3d 2780 |
. 2
⊢ (𝑁 ∈ ℕ →
Σ𝑘 ∈ {𝑛 ∈ ℕ ∣
((μ‘𝑛) ≠ 0
∧ 𝑛 ∥ 𝑁)}
(-1↑(♯‘{𝑝
∈ ℙ ∣ 𝑝
∥ 𝑘})) = if(𝑁 = 1, 1, 0)) |
171 | 10, 36, 170 | 3eqtr3d 2786 |
1
⊢ (𝑁 ∈ ℕ →
Σ𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑁} (μ‘𝑘) = if(𝑁 = 1, 1, 0)) |