MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  musum Structured version   Visualization version   GIF version

Theorem musum 26540
Description: The sum of the Möbius function over the divisors of 𝑁 gives one if 𝑁 = 1, but otherwise always sums to zero. Theorem 2.1 in [ApostolNT] p. 25. This makes the Möbius function useful for inverting divisor sums; see also muinv 26542. (Contributed by Mario Carneiro, 2-Jul-2015.)
Assertion
Ref Expression
musum (𝑁 ∈ ℕ → Σ𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑁} (μ‘𝑘) = if(𝑁 = 1, 1, 0))
Distinct variable group:   𝑘,𝑛,𝑁

Proof of Theorem musum
Dummy variables 𝑚 𝑝 𝑞 𝑠 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6842 . . . . . . . 8 (𝑛 = 𝑘 → (μ‘𝑛) = (μ‘𝑘))
21neeq1d 3003 . . . . . . 7 (𝑛 = 𝑘 → ((μ‘𝑛) ≠ 0 ↔ (μ‘𝑘) ≠ 0))
3 breq1 5108 . . . . . . 7 (𝑛 = 𝑘 → (𝑛𝑁𝑘𝑁))
42, 3anbi12d 631 . . . . . 6 (𝑛 = 𝑘 → (((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁) ↔ ((μ‘𝑘) ≠ 0 ∧ 𝑘𝑁)))
54elrab 3645 . . . . 5 (𝑘 ∈ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)} ↔ (𝑘 ∈ ℕ ∧ ((μ‘𝑘) ≠ 0 ∧ 𝑘𝑁)))
6 muval2 26483 . . . . . 6 ((𝑘 ∈ ℕ ∧ (μ‘𝑘) ≠ 0) → (μ‘𝑘) = (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑘})))
76adantrr 715 . . . . 5 ((𝑘 ∈ ℕ ∧ ((μ‘𝑘) ≠ 0 ∧ 𝑘𝑁)) → (μ‘𝑘) = (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑘})))
85, 7sylbi 216 . . . 4 (𝑘 ∈ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)} → (μ‘𝑘) = (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑘})))
98adantl 482 . . 3 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)}) → (μ‘𝑘) = (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑘})))
109sumeq2dv 15588 . 2 (𝑁 ∈ ℕ → Σ𝑘 ∈ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)} (μ‘𝑘) = Σ𝑘 ∈ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)} (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑘})))
11 simpr 485 . . . . 5 (((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁) → 𝑛𝑁)
1211a1i 11 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) → (((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁) → 𝑛𝑁))
1312ss2rabdv 4033 . . 3 (𝑁 ∈ ℕ → {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)} ⊆ {𝑛 ∈ ℕ ∣ 𝑛𝑁})
14 ssrab2 4037 . . . . . 6 {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)} ⊆ ℕ
15 simpr 485 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)}) → 𝑘 ∈ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)})
1614, 15sselid 3942 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)}) → 𝑘 ∈ ℕ)
17 mucl 26490 . . . . 5 (𝑘 ∈ ℕ → (μ‘𝑘) ∈ ℤ)
1816, 17syl 17 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)}) → (μ‘𝑘) ∈ ℤ)
1918zcnd 12608 . . 3 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)}) → (μ‘𝑘) ∈ ℂ)
20 difrab 4268 . . . . . . 7 ({𝑛 ∈ ℕ ∣ 𝑛𝑁} ∖ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)}) = {𝑛 ∈ ℕ ∣ (𝑛𝑁 ∧ ¬ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁))}
21 pm3.21 472 . . . . . . . . . . 11 (𝑛𝑁 → ((μ‘𝑛) ≠ 0 → ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)))
2221necon1bd 2961 . . . . . . . . . 10 (𝑛𝑁 → (¬ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁) → (μ‘𝑛) = 0))
2322imp 407 . . . . . . . . 9 ((𝑛𝑁 ∧ ¬ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)) → (μ‘𝑛) = 0)
2423a1i 11 . . . . . . . 8 (𝑛 ∈ ℕ → ((𝑛𝑁 ∧ ¬ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)) → (μ‘𝑛) = 0))
2524ss2rabi 4034 . . . . . . 7 {𝑛 ∈ ℕ ∣ (𝑛𝑁 ∧ ¬ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁))} ⊆ {𝑛 ∈ ℕ ∣ (μ‘𝑛) = 0}
2620, 25eqsstri 3978 . . . . . 6 ({𝑛 ∈ ℕ ∣ 𝑛𝑁} ∖ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)}) ⊆ {𝑛 ∈ ℕ ∣ (μ‘𝑛) = 0}
2726sseli 3940 . . . . 5 (𝑘 ∈ ({𝑛 ∈ ℕ ∣ 𝑛𝑁} ∖ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)}) → 𝑘 ∈ {𝑛 ∈ ℕ ∣ (μ‘𝑛) = 0})
28 fveqeq2 6851 . . . . . . 7 (𝑛 = 𝑘 → ((μ‘𝑛) = 0 ↔ (μ‘𝑘) = 0))
2928elrab 3645 . . . . . 6 (𝑘 ∈ {𝑛 ∈ ℕ ∣ (μ‘𝑛) = 0} ↔ (𝑘 ∈ ℕ ∧ (μ‘𝑘) = 0))
3029simprbi 497 . . . . 5 (𝑘 ∈ {𝑛 ∈ ℕ ∣ (μ‘𝑛) = 0} → (μ‘𝑘) = 0)
3127, 30syl 17 . . . 4 (𝑘 ∈ ({𝑛 ∈ ℕ ∣ 𝑛𝑁} ∖ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)}) → (μ‘𝑘) = 0)
3231adantl 482 . . 3 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ({𝑛 ∈ ℕ ∣ 𝑛𝑁} ∖ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)})) → (μ‘𝑘) = 0)
33 fzfid 13878 . . . 4 (𝑁 ∈ ℕ → (1...𝑁) ∈ Fin)
34 dvdsssfz1 16200 . . . 4 (𝑁 ∈ ℕ → {𝑛 ∈ ℕ ∣ 𝑛𝑁} ⊆ (1...𝑁))
3533, 34ssfid 9211 . . 3 (𝑁 ∈ ℕ → {𝑛 ∈ ℕ ∣ 𝑛𝑁} ∈ Fin)
3613, 19, 32, 35fsumss 15610 . 2 (𝑁 ∈ ℕ → Σ𝑘 ∈ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)} (μ‘𝑘) = Σ𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑁} (μ‘𝑘))
37 fveq2 6842 . . . . 5 (𝑥 = {𝑝 ∈ ℙ ∣ 𝑝𝑘} → (♯‘𝑥) = (♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑘}))
3837oveq2d 7373 . . . 4 (𝑥 = {𝑝 ∈ ℙ ∣ 𝑝𝑘} → (-1↑(♯‘𝑥)) = (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑘})))
3935, 13ssfid 9211 . . . 4 (𝑁 ∈ ℕ → {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)} ∈ Fin)
40 eqid 2736 . . . . 5 {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)} = {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)}
41 eqid 2736 . . . . 5 (𝑚 ∈ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)} ↦ {𝑝 ∈ ℙ ∣ 𝑝𝑚}) = (𝑚 ∈ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)} ↦ {𝑝 ∈ ℙ ∣ 𝑝𝑚})
42 oveq1 7364 . . . . . . . 8 (𝑞 = 𝑝 → (𝑞 pCnt 𝑥) = (𝑝 pCnt 𝑥))
4342cbvmptv 5218 . . . . . . 7 (𝑞 ∈ ℙ ↦ (𝑞 pCnt 𝑥)) = (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑥))
44 oveq2 7365 . . . . . . . 8 (𝑥 = 𝑚 → (𝑝 pCnt 𝑥) = (𝑝 pCnt 𝑚))
4544mpteq2dv 5207 . . . . . . 7 (𝑥 = 𝑚 → (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑥)) = (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑚)))
4643, 45eqtrid 2788 . . . . . 6 (𝑥 = 𝑚 → (𝑞 ∈ ℙ ↦ (𝑞 pCnt 𝑥)) = (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑚)))
4746cbvmptv 5218 . . . . 5 (𝑥 ∈ ℕ ↦ (𝑞 ∈ ℙ ↦ (𝑞 pCnt 𝑥))) = (𝑚 ∈ ℕ ↦ (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑚)))
4840, 41, 47sqff1o 26531 . . . 4 (𝑁 ∈ ℕ → (𝑚 ∈ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)} ↦ {𝑝 ∈ ℙ ∣ 𝑝𝑚}):{𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)}–1-1-onto→𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})
49 breq2 5109 . . . . . . 7 (𝑚 = 𝑘 → (𝑝𝑚𝑝𝑘))
5049rabbidv 3415 . . . . . 6 (𝑚 = 𝑘 → {𝑝 ∈ ℙ ∣ 𝑝𝑚} = {𝑝 ∈ ℙ ∣ 𝑝𝑘})
51 prmex 16553 . . . . . . 7 ℙ ∈ V
5251rabex 5289 . . . . . 6 {𝑝 ∈ ℙ ∣ 𝑝𝑘} ∈ V
5350, 41, 52fvmpt 6948 . . . . 5 (𝑘 ∈ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)} → ((𝑚 ∈ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)} ↦ {𝑝 ∈ ℙ ∣ 𝑝𝑚})‘𝑘) = {𝑝 ∈ ℙ ∣ 𝑝𝑘})
5453adantl 482 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)}) → ((𝑚 ∈ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)} ↦ {𝑝 ∈ ℙ ∣ 𝑝𝑚})‘𝑘) = {𝑝 ∈ ℙ ∣ 𝑝𝑘})
55 neg1cn 12267 . . . . 5 -1 ∈ ℂ
56 prmdvdsfi 26456 . . . . . . 7 (𝑁 ∈ ℕ → {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∈ Fin)
57 elpwi 4567 . . . . . . 7 (𝑥 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} → 𝑥 ⊆ {𝑝 ∈ ℙ ∣ 𝑝𝑁})
58 ssfi 9117 . . . . . . 7 (({𝑝 ∈ ℙ ∣ 𝑝𝑁} ∈ Fin ∧ 𝑥 ⊆ {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → 𝑥 ∈ Fin)
5956, 57, 58syl2an 596 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → 𝑥 ∈ Fin)
60 hashcl 14256 . . . . . 6 (𝑥 ∈ Fin → (♯‘𝑥) ∈ ℕ0)
6159, 60syl 17 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → (♯‘𝑥) ∈ ℕ0)
62 expcl 13985 . . . . 5 ((-1 ∈ ℂ ∧ (♯‘𝑥) ∈ ℕ0) → (-1↑(♯‘𝑥)) ∈ ℂ)
6355, 61, 62sylancr 587 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → (-1↑(♯‘𝑥)) ∈ ℂ)
6438, 39, 48, 54, 63fsumf1o 15608 . . 3 (𝑁 ∈ ℕ → Σ𝑥 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} (-1↑(♯‘𝑥)) = Σ𝑘 ∈ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)} (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑘})))
65 fzfid 13878 . . . . 5 (𝑁 ∈ ℕ → (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})) ∈ Fin)
6656adantr 481 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))) → {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∈ Fin)
67 pwfi 9122 . . . . . . 7 ({𝑝 ∈ ℙ ∣ 𝑝𝑁} ∈ Fin ↔ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∈ Fin)
6866, 67sylib 217 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))) → 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∈ Fin)
69 ssrab2 4037 . . . . . 6 {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧} ⊆ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}
70 ssfi 9117 . . . . . 6 ((𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∈ Fin ∧ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧} ⊆ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧} ∈ Fin)
7168, 69, 70sylancl 586 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))) → {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧} ∈ Fin)
72 simprr 771 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})) ∧ 𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧})) → 𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧})
73 fveqeq2 6851 . . . . . . . . . 10 (𝑠 = 𝑥 → ((♯‘𝑠) = 𝑧 ↔ (♯‘𝑥) = 𝑧))
7473elrab 3645 . . . . . . . . 9 (𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧} ↔ (𝑥 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∧ (♯‘𝑥) = 𝑧))
7574simprbi 497 . . . . . . . 8 (𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧} → (♯‘𝑥) = 𝑧)
7672, 75syl 17 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})) ∧ 𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧})) → (♯‘𝑥) = 𝑧)
7776ralrimivva 3197 . . . . . 6 (𝑁 ∈ ℕ → ∀𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))∀𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧} (♯‘𝑥) = 𝑧)
78 invdisj 5089 . . . . . 6 (∀𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))∀𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧} (♯‘𝑥) = 𝑧Disj 𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})){𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧})
7977, 78syl 17 . . . . 5 (𝑁 ∈ ℕ → Disj 𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})){𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧})
8056adantr 481 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})) ∧ 𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧})) → {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∈ Fin)
8169, 72sselid 3942 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})) ∧ 𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧})) → 𝑥 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})
8281, 57syl 17 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})) ∧ 𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧})) → 𝑥 ⊆ {𝑝 ∈ ℙ ∣ 𝑝𝑁})
8380, 82ssfid 9211 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})) ∧ 𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧})) → 𝑥 ∈ Fin)
8483, 60syl 17 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})) ∧ 𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧})) → (♯‘𝑥) ∈ ℕ0)
8555, 84, 62sylancr 587 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})) ∧ 𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧})) → (-1↑(♯‘𝑥)) ∈ ℂ)
8665, 71, 79, 85fsumiun 15706 . . . 4 (𝑁 ∈ ℕ → Σ𝑥 𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})){𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧} (-1↑(♯‘𝑥)) = Σ𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))Σ𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧} (-1↑(♯‘𝑥)))
87 iunrab 5012 . . . . . 6 𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})){𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧} = {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ ∃𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))(♯‘𝑠) = 𝑧}
8856adantr 481 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∈ Fin)
89 elpwi 4567 . . . . . . . . . . . . 13 (𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} → 𝑠 ⊆ {𝑝 ∈ ℙ ∣ 𝑝𝑁})
9089adantl 482 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → 𝑠 ⊆ {𝑝 ∈ ℙ ∣ 𝑝𝑁})
91 ssdomg 8940 . . . . . . . . . . . 12 ({𝑝 ∈ ℙ ∣ 𝑝𝑁} ∈ Fin → (𝑠 ⊆ {𝑝 ∈ ℙ ∣ 𝑝𝑁} → 𝑠 ≼ {𝑝 ∈ ℙ ∣ 𝑝𝑁}))
9288, 90, 91sylc 65 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → 𝑠 ≼ {𝑝 ∈ ℙ ∣ 𝑝𝑁})
93 ssfi 9117 . . . . . . . . . . . . 13 (({𝑝 ∈ ℙ ∣ 𝑝𝑁} ∈ Fin ∧ 𝑠 ⊆ {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → 𝑠 ∈ Fin)
9456, 89, 93syl2an 596 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → 𝑠 ∈ Fin)
95 hashdom 14279 . . . . . . . . . . . 12 ((𝑠 ∈ Fin ∧ {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∈ Fin) → ((♯‘𝑠) ≤ (♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}) ↔ 𝑠 ≼ {𝑝 ∈ ℙ ∣ 𝑝𝑁}))
9694, 88, 95syl2anc 584 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → ((♯‘𝑠) ≤ (♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}) ↔ 𝑠 ≼ {𝑝 ∈ ℙ ∣ 𝑝𝑁}))
9792, 96mpbird 256 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → (♯‘𝑠) ≤ (♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))
98 hashcl 14256 . . . . . . . . . . . . 13 (𝑠 ∈ Fin → (♯‘𝑠) ∈ ℕ0)
9994, 98syl 17 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → (♯‘𝑠) ∈ ℕ0)
100 nn0uz 12805 . . . . . . . . . . . 12 0 = (ℤ‘0)
10199, 100eleqtrdi 2848 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → (♯‘𝑠) ∈ (ℤ‘0))
102 hashcl 14256 . . . . . . . . . . . . . 14 ({𝑝 ∈ ℙ ∣ 𝑝𝑁} ∈ Fin → (♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∈ ℕ0)
10356, 102syl 17 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∈ ℕ0)
104103adantr 481 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → (♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∈ ℕ0)
105104nn0zd 12525 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → (♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∈ ℤ)
106 elfz5 13433 . . . . . . . . . . 11 (((♯‘𝑠) ∈ (ℤ‘0) ∧ (♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∈ ℤ) → ((♯‘𝑠) ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})) ↔ (♯‘𝑠) ≤ (♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})))
107101, 105, 106syl2anc 584 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → ((♯‘𝑠) ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})) ↔ (♯‘𝑠) ≤ (♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})))
10897, 107mpbird 256 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → (♯‘𝑠) ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})))
109 eqidd 2737 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → (♯‘𝑠) = (♯‘𝑠))
110 eqeq2 2748 . . . . . . . . . 10 (𝑧 = (♯‘𝑠) → ((♯‘𝑠) = 𝑧 ↔ (♯‘𝑠) = (♯‘𝑠)))
111110rspcev 3581 . . . . . . . . 9 (((♯‘𝑠) ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})) ∧ (♯‘𝑠) = (♯‘𝑠)) → ∃𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))(♯‘𝑠) = 𝑧)
112108, 109, 111syl2anc 584 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → ∃𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))(♯‘𝑠) = 𝑧)
113112ralrimiva 3143 . . . . . . 7 (𝑁 ∈ ℕ → ∀𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}∃𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))(♯‘𝑠) = 𝑧)
114 rabid2 3436 . . . . . . 7 (𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} = {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ ∃𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))(♯‘𝑠) = 𝑧} ↔ ∀𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}∃𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))(♯‘𝑠) = 𝑧)
115113, 114sylibr 233 . . . . . 6 (𝑁 ∈ ℕ → 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} = {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ ∃𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))(♯‘𝑠) = 𝑧})
11687, 115eqtr4id 2795 . . . . 5 (𝑁 ∈ ℕ → 𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})){𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧} = 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})
117116sumeq1d 15586 . . . 4 (𝑁 ∈ ℕ → Σ𝑥 𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})){𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧} (-1↑(♯‘𝑥)) = Σ𝑥 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} (-1↑(♯‘𝑥)))
118 elfznn0 13534 . . . . . . . . . 10 (𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})) → 𝑧 ∈ ℕ0)
119118adantl 482 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))) → 𝑧 ∈ ℕ0)
120 expcl 13985 . . . . . . . . 9 ((-1 ∈ ℂ ∧ 𝑧 ∈ ℕ0) → (-1↑𝑧) ∈ ℂ)
12155, 119, 120sylancr 587 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))) → (-1↑𝑧) ∈ ℂ)
122 fsumconst 15675 . . . . . . . 8 (({𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧} ∈ Fin ∧ (-1↑𝑧) ∈ ℂ) → Σ𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧} (-1↑𝑧) = ((♯‘{𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧}) · (-1↑𝑧)))
12371, 121, 122syl2anc 584 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))) → Σ𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧} (-1↑𝑧) = ((♯‘{𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧}) · (-1↑𝑧)))
12475adantl 482 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))) ∧ 𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧}) → (♯‘𝑥) = 𝑧)
125124oveq2d 7373 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))) ∧ 𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧}) → (-1↑(♯‘𝑥)) = (-1↑𝑧))
126125sumeq2dv 15588 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))) → Σ𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧} (-1↑(♯‘𝑥)) = Σ𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧} (-1↑𝑧))
127 elfzelz 13441 . . . . . . . . 9 (𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})) → 𝑧 ∈ ℤ)
128 hashbc 14350 . . . . . . . . 9 (({𝑝 ∈ ℙ ∣ 𝑝𝑁} ∈ Fin ∧ 𝑧 ∈ ℤ) → ((♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})C𝑧) = (♯‘{𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧}))
12956, 127, 128syl2an 596 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))) → ((♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})C𝑧) = (♯‘{𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧}))
130129oveq1d 7372 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))) → (((♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})C𝑧) · (-1↑𝑧)) = ((♯‘{𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧}) · (-1↑𝑧)))
131123, 126, 1303eqtr4d 2786 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))) → Σ𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧} (-1↑(♯‘𝑥)) = (((♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})C𝑧) · (-1↑𝑧)))
132131sumeq2dv 15588 . . . . 5 (𝑁 ∈ ℕ → Σ𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))Σ𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧} (-1↑(♯‘𝑥)) = Σ𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))(((♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})C𝑧) · (-1↑𝑧)))
133 1pneg1e0 12272 . . . . . . 7 (1 + -1) = 0
134133oveq1i 7367 . . . . . 6 ((1 + -1)↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})) = (0↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))
135 binom1p 15716 . . . . . . 7 ((-1 ∈ ℂ ∧ (♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∈ ℕ0) → ((1 + -1)↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})) = Σ𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))(((♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})C𝑧) · (-1↑𝑧)))
13655, 103, 135sylancr 587 . . . . . 6 (𝑁 ∈ ℕ → ((1 + -1)↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})) = Σ𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))(((♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})C𝑧) · (-1↑𝑧)))
137134, 136eqtr3id 2790 . . . . 5 (𝑁 ∈ ℕ → (0↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})) = Σ𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))(((♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})C𝑧) · (-1↑𝑧)))
138 eqeq2 2748 . . . . . 6 (1 = if(𝑁 = 1, 1, 0) → ((0↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})) = 1 ↔ (0↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})) = if(𝑁 = 1, 1, 0)))
139 eqeq2 2748 . . . . . 6 (0 = if(𝑁 = 1, 1, 0) → ((0↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})) = 0 ↔ (0↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})) = if(𝑁 = 1, 1, 0)))
140 nprmdvds1 16582 . . . . . . . . . . . . 13 (𝑝 ∈ ℙ → ¬ 𝑝 ∥ 1)
141 simpr 485 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ 𝑁 = 1) → 𝑁 = 1)
142141breq2d 5117 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑁 = 1) → (𝑝𝑁𝑝 ∥ 1))
143142notbid 317 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑁 = 1) → (¬ 𝑝𝑁 ↔ ¬ 𝑝 ∥ 1))
144140, 143syl5ibr 245 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑁 = 1) → (𝑝 ∈ ℙ → ¬ 𝑝𝑁))
145144ralrimiv 3142 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑁 = 1) → ∀𝑝 ∈ ℙ ¬ 𝑝𝑁)
146 rabeq0 4344 . . . . . . . . . . 11 ({𝑝 ∈ ℙ ∣ 𝑝𝑁} = ∅ ↔ ∀𝑝 ∈ ℙ ¬ 𝑝𝑁)
147145, 146sylibr 233 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑁 = 1) → {𝑝 ∈ ℙ ∣ 𝑝𝑁} = ∅)
148147fveq2d 6846 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑁 = 1) → (♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}) = (♯‘∅))
149 hash0 14267 . . . . . . . . 9 (♯‘∅) = 0
150148, 149eqtrdi 2792 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑁 = 1) → (♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}) = 0)
151150oveq2d 7373 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑁 = 1) → (0↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})) = (0↑0))
152 0exp0e1 13972 . . . . . . 7 (0↑0) = 1
153151, 152eqtrdi 2792 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑁 = 1) → (0↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})) = 1)
154 df-ne 2944 . . . . . . . . . . 11 (𝑁 ≠ 1 ↔ ¬ 𝑁 = 1)
155 eluz2b3 12847 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘2) ↔ (𝑁 ∈ ℕ ∧ 𝑁 ≠ 1))
156155biimpri 227 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑁 ≠ 1) → 𝑁 ∈ (ℤ‘2))
157154, 156sylan2br 595 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ ¬ 𝑁 = 1) → 𝑁 ∈ (ℤ‘2))
158 exprmfct 16580 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝𝑁)
159157, 158syl 17 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ ¬ 𝑁 = 1) → ∃𝑝 ∈ ℙ 𝑝𝑁)
160 rabn0 4345 . . . . . . . . 9 ({𝑝 ∈ ℙ ∣ 𝑝𝑁} ≠ ∅ ↔ ∃𝑝 ∈ ℙ 𝑝𝑁)
161159, 160sylibr 233 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ ¬ 𝑁 = 1) → {𝑝 ∈ ℙ ∣ 𝑝𝑁} ≠ ∅)
16256adantr 481 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ ¬ 𝑁 = 1) → {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∈ Fin)
163 hashnncl 14266 . . . . . . . . 9 ({𝑝 ∈ ℙ ∣ 𝑝𝑁} ∈ Fin → ((♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∈ ℕ ↔ {𝑝 ∈ ℙ ∣ 𝑝𝑁} ≠ ∅))
164162, 163syl 17 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ ¬ 𝑁 = 1) → ((♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∈ ℕ ↔ {𝑝 ∈ ℙ ∣ 𝑝𝑁} ≠ ∅))
165161, 164mpbird 256 . . . . . . 7 ((𝑁 ∈ ℕ ∧ ¬ 𝑁 = 1) → (♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∈ ℕ)
1661650expd 14044 . . . . . 6 ((𝑁 ∈ ℕ ∧ ¬ 𝑁 = 1) → (0↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})) = 0)
167138, 139, 153, 166ifbothda 4524 . . . . 5 (𝑁 ∈ ℕ → (0↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})) = if(𝑁 = 1, 1, 0))
168132, 137, 1673eqtr2d 2782 . . . 4 (𝑁 ∈ ℕ → Σ𝑧 ∈ (0...(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))Σ𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (♯‘𝑠) = 𝑧} (-1↑(♯‘𝑥)) = if(𝑁 = 1, 1, 0))
16986, 117, 1683eqtr3d 2784 . . 3 (𝑁 ∈ ℕ → Σ𝑥 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} (-1↑(♯‘𝑥)) = if(𝑁 = 1, 1, 0))
17064, 169eqtr3d 2778 . 2 (𝑁 ∈ ℕ → Σ𝑘 ∈ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)} (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑘})) = if(𝑁 = 1, 1, 0))
17110, 36, 1703eqtr3d 2784 1 (𝑁 ∈ ℕ → Σ𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑁} (μ‘𝑘) = if(𝑁 = 1, 1, 0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wne 2943  wral 3064  wrex 3073  {crab 3407  cdif 3907  wss 3910  c0 4282  ifcif 4486  𝒫 cpw 4560   ciun 4954  Disj wdisj 5070   class class class wbr 5105  cmpt 5188  cfv 6496  (class class class)co 7357  cdom 8881  Fincfn 8883  cc 11049  0cc0 11051  1c1 11052   + caddc 11054   · cmul 11056  cle 11190  -cneg 11386  cn 12153  2c2 12208  0cn0 12413  cz 12499  cuz 12763  ...cfz 13424  cexp 13967  Ccbc 14202  chash 14230  Σcsu 15570  cdvds 16136  cprime 16547   pCnt cpc 16708  μcmu 26444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-disj 5071  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-oadd 8416  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-sup 9378  df-inf 9379  df-oi 9446  df-dju 9837  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-xnn0 12486  df-z 12500  df-uz 12764  df-q 12874  df-rp 12916  df-fz 13425  df-fzo 13568  df-fl 13697  df-mod 13775  df-seq 13907  df-exp 13968  df-fac 14174  df-bc 14203  df-hash 14231  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-clim 15370  df-sum 15571  df-dvds 16137  df-gcd 16375  df-prm 16548  df-pc 16709  df-mu 26450
This theorem is referenced by:  musumsum  26541  muinv  26542
  Copyright terms: Public domain W3C validator