MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inrab2 Structured version   Visualization version   GIF version

Theorem inrab2 4238
Description: Intersection with a restricted class abstraction. (Contributed by NM, 19-Nov-2007.)
Assertion
Ref Expression
inrab2 ({𝑥𝐴𝜑} ∩ 𝐵) = {𝑥 ∈ (𝐴𝐵) ∣ 𝜑}
Distinct variable group:   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)

Proof of Theorem inrab2
StepHypRef Expression
1 df-rab 3072 . . 3 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
2 abid1 2880 . . 3 𝐵 = {𝑥𝑥𝐵}
31, 2ineq12i 4141 . 2 ({𝑥𝐴𝜑} ∩ 𝐵) = ({𝑥 ∣ (𝑥𝐴𝜑)} ∩ {𝑥𝑥𝐵})
4 df-rab 3072 . . 3 {𝑥 ∈ (𝐴𝐵) ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ (𝐴𝐵) ∧ 𝜑)}
5 inab 4230 . . . 4 ({𝑥 ∣ (𝑥𝐴𝜑)} ∩ {𝑥𝑥𝐵}) = {𝑥 ∣ ((𝑥𝐴𝜑) ∧ 𝑥𝐵)}
6 elin 3899 . . . . . . 7 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
76anbi1i 623 . . . . . 6 ((𝑥 ∈ (𝐴𝐵) ∧ 𝜑) ↔ ((𝑥𝐴𝑥𝐵) ∧ 𝜑))
8 an32 642 . . . . . 6 (((𝑥𝐴𝑥𝐵) ∧ 𝜑) ↔ ((𝑥𝐴𝜑) ∧ 𝑥𝐵))
97, 8bitri 274 . . . . 5 ((𝑥 ∈ (𝐴𝐵) ∧ 𝜑) ↔ ((𝑥𝐴𝜑) ∧ 𝑥𝐵))
109abbii 2809 . . . 4 {𝑥 ∣ (𝑥 ∈ (𝐴𝐵) ∧ 𝜑)} = {𝑥 ∣ ((𝑥𝐴𝜑) ∧ 𝑥𝐵)}
115, 10eqtr4i 2769 . . 3 ({𝑥 ∣ (𝑥𝐴𝜑)} ∩ {𝑥𝑥𝐵}) = {𝑥 ∣ (𝑥 ∈ (𝐴𝐵) ∧ 𝜑)}
124, 11eqtr4i 2769 . 2 {𝑥 ∈ (𝐴𝐵) ∣ 𝜑} = ({𝑥 ∣ (𝑥𝐴𝜑)} ∩ {𝑥𝑥𝐵})
133, 12eqtr4i 2769 1 ({𝑥𝐴𝜑} ∩ 𝐵) = {𝑥 ∈ (𝐴𝐵) ∣ 𝜑}
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1539  wcel 2108  {cab 2715  {crab 3067  cin 3882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-in 3890
This theorem is referenced by:  iooval2  13041  fzval2  13171  smuval2  16117  smueqlem  16125  dfphi2  16403  ordtrest  22261  ordtrest2lem  22262  rspectopn  31719  ordtrestNEW  31773  ordtrest2NEWlem  31774  itg2addnclem2  35756  dmatALTbas  45630
  Copyright terms: Public domain W3C validator