| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > inrab2 | Structured version Visualization version GIF version | ||
| Description: Intersection with a restricted class abstraction. (Contributed by NM, 19-Nov-2007.) |
| Ref | Expression |
|---|---|
| inrab2 | ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∩ 𝐵) = {𝑥 ∈ (𝐴 ∩ 𝐵) ∣ 𝜑} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rab 3421 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
| 2 | abid1 2872 | . . 3 ⊢ 𝐵 = {𝑥 ∣ 𝑥 ∈ 𝐵} | |
| 3 | 1, 2 | ineq12i 4198 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∩ 𝐵) = ({𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ∩ {𝑥 ∣ 𝑥 ∈ 𝐵}) |
| 4 | df-rab 3421 | . . 3 ⊢ {𝑥 ∈ (𝐴 ∩ 𝐵) ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ (𝐴 ∩ 𝐵) ∧ 𝜑)} | |
| 5 | inab 4289 | . . . 4 ⊢ ({𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ∩ {𝑥 ∣ 𝑥 ∈ 𝐵}) = {𝑥 ∣ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ 𝑥 ∈ 𝐵)} | |
| 6 | elin 3947 | . . . . . . 7 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) | |
| 7 | 6 | anbi1i 624 | . . . . . 6 ⊢ ((𝑥 ∈ (𝐴 ∩ 𝐵) ∧ 𝜑) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ∧ 𝜑)) |
| 8 | an32 646 | . . . . . 6 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ∧ 𝜑) ↔ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ 𝑥 ∈ 𝐵)) | |
| 9 | 7, 8 | bitri 275 | . . . . 5 ⊢ ((𝑥 ∈ (𝐴 ∩ 𝐵) ∧ 𝜑) ↔ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ 𝑥 ∈ 𝐵)) |
| 10 | 9 | abbii 2803 | . . . 4 ⊢ {𝑥 ∣ (𝑥 ∈ (𝐴 ∩ 𝐵) ∧ 𝜑)} = {𝑥 ∣ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ 𝑥 ∈ 𝐵)} |
| 11 | 5, 10 | eqtr4i 2762 | . . 3 ⊢ ({𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ∩ {𝑥 ∣ 𝑥 ∈ 𝐵}) = {𝑥 ∣ (𝑥 ∈ (𝐴 ∩ 𝐵) ∧ 𝜑)} |
| 12 | 4, 11 | eqtr4i 2762 | . 2 ⊢ {𝑥 ∈ (𝐴 ∩ 𝐵) ∣ 𝜑} = ({𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ∩ {𝑥 ∣ 𝑥 ∈ 𝐵}) |
| 13 | 3, 12 | eqtr4i 2762 | 1 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∩ 𝐵) = {𝑥 ∈ (𝐴 ∩ 𝐵) ∣ 𝜑} |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2714 {crab 3420 ∩ cin 3930 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-v 3466 df-in 3938 |
| This theorem is referenced by: iooval2 13400 fzval2 13532 smuval2 16506 smueqlem 16514 dfphi2 16798 ordtrest 23145 ordtrest2lem 23146 rspectopn 33903 ordtrestNEW 33957 ordtrest2NEWlem 33958 itg2addnclem2 37701 isubgr0uhgr 47853 dmatALTbas 48344 |
| Copyright terms: Public domain | W3C validator |