MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inrab2 Structured version   Visualization version   GIF version

Theorem inrab2 4066
Description: Intersection with a restricted class abstraction. (Contributed by NM, 19-Nov-2007.)
Assertion
Ref Expression
inrab2 ({𝑥𝐴𝜑} ∩ 𝐵) = {𝑥 ∈ (𝐴𝐵) ∣ 𝜑}
Distinct variable group:   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)

Proof of Theorem inrab2
StepHypRef Expression
1 df-rab 3064 . . 3 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
2 abid1 2887 . . 3 𝐵 = {𝑥𝑥𝐵}
31, 2ineq12i 3976 . 2 ({𝑥𝐴𝜑} ∩ 𝐵) = ({𝑥 ∣ (𝑥𝐴𝜑)} ∩ {𝑥𝑥𝐵})
4 df-rab 3064 . . 3 {𝑥 ∈ (𝐴𝐵) ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ (𝐴𝐵) ∧ 𝜑)}
5 inab 4061 . . . 4 ({𝑥 ∣ (𝑥𝐴𝜑)} ∩ {𝑥𝑥𝐵}) = {𝑥 ∣ ((𝑥𝐴𝜑) ∧ 𝑥𝐵)}
6 elin 3960 . . . . . . 7 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
76anbi1i 617 . . . . . 6 ((𝑥 ∈ (𝐴𝐵) ∧ 𝜑) ↔ ((𝑥𝐴𝑥𝐵) ∧ 𝜑))
8 an32 636 . . . . . 6 (((𝑥𝐴𝑥𝐵) ∧ 𝜑) ↔ ((𝑥𝐴𝜑) ∧ 𝑥𝐵))
97, 8bitri 266 . . . . 5 ((𝑥 ∈ (𝐴𝐵) ∧ 𝜑) ↔ ((𝑥𝐴𝜑) ∧ 𝑥𝐵))
109abbii 2882 . . . 4 {𝑥 ∣ (𝑥 ∈ (𝐴𝐵) ∧ 𝜑)} = {𝑥 ∣ ((𝑥𝐴𝜑) ∧ 𝑥𝐵)}
115, 10eqtr4i 2790 . . 3 ({𝑥 ∣ (𝑥𝐴𝜑)} ∩ {𝑥𝑥𝐵}) = {𝑥 ∣ (𝑥 ∈ (𝐴𝐵) ∧ 𝜑)}
124, 11eqtr4i 2790 . 2 {𝑥 ∈ (𝐴𝐵) ∣ 𝜑} = ({𝑥 ∣ (𝑥𝐴𝜑)} ∩ {𝑥𝑥𝐵})
133, 12eqtr4i 2790 1 ({𝑥𝐴𝜑} ∩ 𝐵) = {𝑥 ∈ (𝐴𝐵) ∣ 𝜑}
Colors of variables: wff setvar class
Syntax hints:  wa 384   = wceq 1652  wcel 2155  {cab 2751  {crab 3059  cin 3733
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-rab 3064  df-v 3352  df-in 3741
This theorem is referenced by:  iooval2  12415  fzval2  12541  smuval2  15499  smueqlem  15507  dfphi2  15772  ordtrest  21300  ordtrest2lem  21301  ordtrestNEW  30435  ordtrest2NEWlem  30436  itg2addnclem2  33906  dmatALTbas  42883
  Copyright terms: Public domain W3C validator