|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > inrab2 | Structured version Visualization version GIF version | ||
| Description: Intersection with a restricted class abstraction. (Contributed by NM, 19-Nov-2007.) | 
| Ref | Expression | 
|---|---|
| inrab2 | ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∩ 𝐵) = {𝑥 ∈ (𝐴 ∩ 𝐵) ∣ 𝜑} | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-rab 3436 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
| 2 | abid1 2877 | . . 3 ⊢ 𝐵 = {𝑥 ∣ 𝑥 ∈ 𝐵} | |
| 3 | 1, 2 | ineq12i 4217 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∩ 𝐵) = ({𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ∩ {𝑥 ∣ 𝑥 ∈ 𝐵}) | 
| 4 | df-rab 3436 | . . 3 ⊢ {𝑥 ∈ (𝐴 ∩ 𝐵) ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ (𝐴 ∩ 𝐵) ∧ 𝜑)} | |
| 5 | inab 4308 | . . . 4 ⊢ ({𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ∩ {𝑥 ∣ 𝑥 ∈ 𝐵}) = {𝑥 ∣ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ 𝑥 ∈ 𝐵)} | |
| 6 | elin 3966 | . . . . . . 7 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) | |
| 7 | 6 | anbi1i 624 | . . . . . 6 ⊢ ((𝑥 ∈ (𝐴 ∩ 𝐵) ∧ 𝜑) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ∧ 𝜑)) | 
| 8 | an32 646 | . . . . . 6 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ∧ 𝜑) ↔ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ 𝑥 ∈ 𝐵)) | |
| 9 | 7, 8 | bitri 275 | . . . . 5 ⊢ ((𝑥 ∈ (𝐴 ∩ 𝐵) ∧ 𝜑) ↔ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ 𝑥 ∈ 𝐵)) | 
| 10 | 9 | abbii 2808 | . . . 4 ⊢ {𝑥 ∣ (𝑥 ∈ (𝐴 ∩ 𝐵) ∧ 𝜑)} = {𝑥 ∣ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ 𝑥 ∈ 𝐵)} | 
| 11 | 5, 10 | eqtr4i 2767 | . . 3 ⊢ ({𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ∩ {𝑥 ∣ 𝑥 ∈ 𝐵}) = {𝑥 ∣ (𝑥 ∈ (𝐴 ∩ 𝐵) ∧ 𝜑)} | 
| 12 | 4, 11 | eqtr4i 2767 | . 2 ⊢ {𝑥 ∈ (𝐴 ∩ 𝐵) ∣ 𝜑} = ({𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ∩ {𝑥 ∣ 𝑥 ∈ 𝐵}) | 
| 13 | 3, 12 | eqtr4i 2767 | 1 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∩ 𝐵) = {𝑥 ∈ (𝐴 ∩ 𝐵) ∣ 𝜑} | 
| Colors of variables: wff setvar class | 
| Syntax hints: ∧ wa 395 = wceq 1539 ∈ wcel 2107 {cab 2713 {crab 3435 ∩ cin 3949 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-rab 3436 df-v 3481 df-in 3957 | 
| This theorem is referenced by: iooval2 13421 fzval2 13551 smuval2 16520 smueqlem 16528 dfphi2 16812 ordtrest 23211 ordtrest2lem 23212 rspectopn 33867 ordtrestNEW 33921 ordtrest2NEWlem 33922 itg2addnclem2 37680 isubgr0uhgr 47864 dmatALTbas 48323 | 
| Copyright terms: Public domain | W3C validator |