![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > alephsuc3 | Structured version Visualization version GIF version |
Description: An alternate representation of a successor aleph. Compare alephsuc 10137 and alephsuc2 10149. Equality can be obtained by taking the card of the right-hand side then using alephcard 10139 and carden 10620. (Contributed by NM, 23-Oct-2004.) |
Ref | Expression |
---|---|
alephsuc3 | ⊢ (𝐴 ∈ On → (ℵ‘suc 𝐴) ≈ {𝑥 ∈ On ∣ 𝑥 ≈ (ℵ‘𝐴)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alephsuc2 10149 | . . . . 5 ⊢ (𝐴 ∈ On → (ℵ‘suc 𝐴) = {𝑥 ∈ On ∣ 𝑥 ≼ (ℵ‘𝐴)}) | |
2 | alephcard 10139 | . . . . . . 7 ⊢ (card‘(ℵ‘𝐴)) = (ℵ‘𝐴) | |
3 | alephon 10138 | . . . . . . . . 9 ⊢ (ℵ‘𝐴) ∈ On | |
4 | onenon 10018 | . . . . . . . . 9 ⊢ ((ℵ‘𝐴) ∈ On → (ℵ‘𝐴) ∈ dom card) | |
5 | 3, 4 | ax-mp 5 | . . . . . . . 8 ⊢ (ℵ‘𝐴) ∈ dom card |
6 | cardval2 10060 | . . . . . . . 8 ⊢ ((ℵ‘𝐴) ∈ dom card → (card‘(ℵ‘𝐴)) = {𝑥 ∈ On ∣ 𝑥 ≺ (ℵ‘𝐴)}) | |
7 | 5, 6 | ax-mp 5 | . . . . . . 7 ⊢ (card‘(ℵ‘𝐴)) = {𝑥 ∈ On ∣ 𝑥 ≺ (ℵ‘𝐴)} |
8 | 2, 7 | eqtr3i 2770 | . . . . . 6 ⊢ (ℵ‘𝐴) = {𝑥 ∈ On ∣ 𝑥 ≺ (ℵ‘𝐴)} |
9 | 8 | a1i 11 | . . . . 5 ⊢ (𝐴 ∈ On → (ℵ‘𝐴) = {𝑥 ∈ On ∣ 𝑥 ≺ (ℵ‘𝐴)}) |
10 | 1, 9 | difeq12d 4150 | . . . 4 ⊢ (𝐴 ∈ On → ((ℵ‘suc 𝐴) ∖ (ℵ‘𝐴)) = ({𝑥 ∈ On ∣ 𝑥 ≼ (ℵ‘𝐴)} ∖ {𝑥 ∈ On ∣ 𝑥 ≺ (ℵ‘𝐴)})) |
11 | difrab 4337 | . . . . 5 ⊢ ({𝑥 ∈ On ∣ 𝑥 ≼ (ℵ‘𝐴)} ∖ {𝑥 ∈ On ∣ 𝑥 ≺ (ℵ‘𝐴)}) = {𝑥 ∈ On ∣ (𝑥 ≼ (ℵ‘𝐴) ∧ ¬ 𝑥 ≺ (ℵ‘𝐴))} | |
12 | bren2 9043 | . . . . . 6 ⊢ (𝑥 ≈ (ℵ‘𝐴) ↔ (𝑥 ≼ (ℵ‘𝐴) ∧ ¬ 𝑥 ≺ (ℵ‘𝐴))) | |
13 | 12 | rabbii 3449 | . . . . 5 ⊢ {𝑥 ∈ On ∣ 𝑥 ≈ (ℵ‘𝐴)} = {𝑥 ∈ On ∣ (𝑥 ≼ (ℵ‘𝐴) ∧ ¬ 𝑥 ≺ (ℵ‘𝐴))} |
14 | 11, 13 | eqtr4i 2771 | . . . 4 ⊢ ({𝑥 ∈ On ∣ 𝑥 ≼ (ℵ‘𝐴)} ∖ {𝑥 ∈ On ∣ 𝑥 ≺ (ℵ‘𝐴)}) = {𝑥 ∈ On ∣ 𝑥 ≈ (ℵ‘𝐴)} |
15 | 10, 14 | eqtr2di 2797 | . . 3 ⊢ (𝐴 ∈ On → {𝑥 ∈ On ∣ 𝑥 ≈ (ℵ‘𝐴)} = ((ℵ‘suc 𝐴) ∖ (ℵ‘𝐴))) |
16 | alephon 10138 | . . . . 5 ⊢ (ℵ‘suc 𝐴) ∈ On | |
17 | onenon 10018 | . . . . 5 ⊢ ((ℵ‘suc 𝐴) ∈ On → (ℵ‘suc 𝐴) ∈ dom card) | |
18 | 16, 17 | mp1i 13 | . . . 4 ⊢ (𝐴 ∈ On → (ℵ‘suc 𝐴) ∈ dom card) |
19 | onsucb 7853 | . . . . . 6 ⊢ (𝐴 ∈ On ↔ suc 𝐴 ∈ On) | |
20 | alephgeom 10151 | . . . . . 6 ⊢ (suc 𝐴 ∈ On ↔ ω ⊆ (ℵ‘suc 𝐴)) | |
21 | 19, 20 | bitri 275 | . . . . 5 ⊢ (𝐴 ∈ On ↔ ω ⊆ (ℵ‘suc 𝐴)) |
22 | fvex 6933 | . . . . . 6 ⊢ (ℵ‘suc 𝐴) ∈ V | |
23 | ssdomg 9060 | . . . . . 6 ⊢ ((ℵ‘suc 𝐴) ∈ V → (ω ⊆ (ℵ‘suc 𝐴) → ω ≼ (ℵ‘suc 𝐴))) | |
24 | 22, 23 | ax-mp 5 | . . . . 5 ⊢ (ω ⊆ (ℵ‘suc 𝐴) → ω ≼ (ℵ‘suc 𝐴)) |
25 | 21, 24 | sylbi 217 | . . . 4 ⊢ (𝐴 ∈ On → ω ≼ (ℵ‘suc 𝐴)) |
26 | alephordilem1 10142 | . . . 4 ⊢ (𝐴 ∈ On → (ℵ‘𝐴) ≺ (ℵ‘suc 𝐴)) | |
27 | infdif 10277 | . . . 4 ⊢ (((ℵ‘suc 𝐴) ∈ dom card ∧ ω ≼ (ℵ‘suc 𝐴) ∧ (ℵ‘𝐴) ≺ (ℵ‘suc 𝐴)) → ((ℵ‘suc 𝐴) ∖ (ℵ‘𝐴)) ≈ (ℵ‘suc 𝐴)) | |
28 | 18, 25, 26, 27 | syl3anc 1371 | . . 3 ⊢ (𝐴 ∈ On → ((ℵ‘suc 𝐴) ∖ (ℵ‘𝐴)) ≈ (ℵ‘suc 𝐴)) |
29 | 15, 28 | eqbrtrd 5188 | . 2 ⊢ (𝐴 ∈ On → {𝑥 ∈ On ∣ 𝑥 ≈ (ℵ‘𝐴)} ≈ (ℵ‘suc 𝐴)) |
30 | 29 | ensymd 9065 | 1 ⊢ (𝐴 ∈ On → (ℵ‘suc 𝐴) ≈ {𝑥 ∈ On ∣ 𝑥 ≈ (ℵ‘𝐴)}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 {crab 3443 Vcvv 3488 ∖ cdif 3973 ⊆ wss 3976 class class class wbr 5166 dom cdm 5700 Oncon0 6395 suc csuc 6397 ‘cfv 6573 ωcom 7903 ≈ cen 9000 ≼ cdom 9001 ≺ csdm 9002 cardccrd 10004 ℵcale 10005 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-oadd 8526 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-oi 9579 df-har 9626 df-dju 9970 df-card 10008 df-aleph 10009 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |