MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephsuc3 Structured version   Visualization version   GIF version

Theorem alephsuc3 10320
Description: An alternate representation of a successor aleph. Compare alephsuc 9808 and alephsuc2 9820. Equality can be obtained by taking the card of the right-hand side then using alephcard 9810 and carden 10291. (Contributed by NM, 23-Oct-2004.)
Assertion
Ref Expression
alephsuc3 (𝐴 ∈ On → (ℵ‘suc 𝐴) ≈ {𝑥 ∈ On ∣ 𝑥 ≈ (ℵ‘𝐴)})
Distinct variable group:   𝑥,𝐴

Proof of Theorem alephsuc3
StepHypRef Expression
1 alephsuc2 9820 . . . . 5 (𝐴 ∈ On → (ℵ‘suc 𝐴) = {𝑥 ∈ On ∣ 𝑥 ≼ (ℵ‘𝐴)})
2 alephcard 9810 . . . . . . 7 (card‘(ℵ‘𝐴)) = (ℵ‘𝐴)
3 alephon 9809 . . . . . . . . 9 (ℵ‘𝐴) ∈ On
4 onenon 9691 . . . . . . . . 9 ((ℵ‘𝐴) ∈ On → (ℵ‘𝐴) ∈ dom card)
53, 4ax-mp 5 . . . . . . . 8 (ℵ‘𝐴) ∈ dom card
6 cardval2 9733 . . . . . . . 8 ((ℵ‘𝐴) ∈ dom card → (card‘(ℵ‘𝐴)) = {𝑥 ∈ On ∣ 𝑥 ≺ (ℵ‘𝐴)})
75, 6ax-mp 5 . . . . . . 7 (card‘(ℵ‘𝐴)) = {𝑥 ∈ On ∣ 𝑥 ≺ (ℵ‘𝐴)}
82, 7eqtr3i 2769 . . . . . 6 (ℵ‘𝐴) = {𝑥 ∈ On ∣ 𝑥 ≺ (ℵ‘𝐴)}
98a1i 11 . . . . 5 (𝐴 ∈ On → (ℵ‘𝐴) = {𝑥 ∈ On ∣ 𝑥 ≺ (ℵ‘𝐴)})
101, 9difeq12d 4062 . . . 4 (𝐴 ∈ On → ((ℵ‘suc 𝐴) ∖ (ℵ‘𝐴)) = ({𝑥 ∈ On ∣ 𝑥 ≼ (ℵ‘𝐴)} ∖ {𝑥 ∈ On ∣ 𝑥 ≺ (ℵ‘𝐴)}))
11 difrab 4247 . . . . 5 ({𝑥 ∈ On ∣ 𝑥 ≼ (ℵ‘𝐴)} ∖ {𝑥 ∈ On ∣ 𝑥 ≺ (ℵ‘𝐴)}) = {𝑥 ∈ On ∣ (𝑥 ≼ (ℵ‘𝐴) ∧ ¬ 𝑥 ≺ (ℵ‘𝐴))}
12 bren2 8742 . . . . . 6 (𝑥 ≈ (ℵ‘𝐴) ↔ (𝑥 ≼ (ℵ‘𝐴) ∧ ¬ 𝑥 ≺ (ℵ‘𝐴)))
1312rabbii 3405 . . . . 5 {𝑥 ∈ On ∣ 𝑥 ≈ (ℵ‘𝐴)} = {𝑥 ∈ On ∣ (𝑥 ≼ (ℵ‘𝐴) ∧ ¬ 𝑥 ≺ (ℵ‘𝐴))}
1411, 13eqtr4i 2770 . . . 4 ({𝑥 ∈ On ∣ 𝑥 ≼ (ℵ‘𝐴)} ∖ {𝑥 ∈ On ∣ 𝑥 ≺ (ℵ‘𝐴)}) = {𝑥 ∈ On ∣ 𝑥 ≈ (ℵ‘𝐴)}
1510, 14eqtr2di 2796 . . 3 (𝐴 ∈ On → {𝑥 ∈ On ∣ 𝑥 ≈ (ℵ‘𝐴)} = ((ℵ‘suc 𝐴) ∖ (ℵ‘𝐴)))
16 alephon 9809 . . . . 5 (ℵ‘suc 𝐴) ∈ On
17 onenon 9691 . . . . 5 ((ℵ‘suc 𝐴) ∈ On → (ℵ‘suc 𝐴) ∈ dom card)
1816, 17mp1i 13 . . . 4 (𝐴 ∈ On → (ℵ‘suc 𝐴) ∈ dom card)
19 sucelon 7652 . . . . . 6 (𝐴 ∈ On ↔ suc 𝐴 ∈ On)
20 alephgeom 9822 . . . . . 6 (suc 𝐴 ∈ On ↔ ω ⊆ (ℵ‘suc 𝐴))
2119, 20bitri 274 . . . . 5 (𝐴 ∈ On ↔ ω ⊆ (ℵ‘suc 𝐴))
22 fvex 6781 . . . . . 6 (ℵ‘suc 𝐴) ∈ V
23 ssdomg 8757 . . . . . 6 ((ℵ‘suc 𝐴) ∈ V → (ω ⊆ (ℵ‘suc 𝐴) → ω ≼ (ℵ‘suc 𝐴)))
2422, 23ax-mp 5 . . . . 5 (ω ⊆ (ℵ‘suc 𝐴) → ω ≼ (ℵ‘suc 𝐴))
2521, 24sylbi 216 . . . 4 (𝐴 ∈ On → ω ≼ (ℵ‘suc 𝐴))
26 alephordilem1 9813 . . . 4 (𝐴 ∈ On → (ℵ‘𝐴) ≺ (ℵ‘suc 𝐴))
27 infdif 9949 . . . 4 (((ℵ‘suc 𝐴) ∈ dom card ∧ ω ≼ (ℵ‘suc 𝐴) ∧ (ℵ‘𝐴) ≺ (ℵ‘suc 𝐴)) → ((ℵ‘suc 𝐴) ∖ (ℵ‘𝐴)) ≈ (ℵ‘suc 𝐴))
2818, 25, 26, 27syl3anc 1369 . . 3 (𝐴 ∈ On → ((ℵ‘suc 𝐴) ∖ (ℵ‘𝐴)) ≈ (ℵ‘suc 𝐴))
2915, 28eqbrtrd 5100 . 2 (𝐴 ∈ On → {𝑥 ∈ On ∣ 𝑥 ≈ (ℵ‘𝐴)} ≈ (ℵ‘suc 𝐴))
3029ensymd 8762 1 (𝐴 ∈ On → (ℵ‘suc 𝐴) ≈ {𝑥 ∈ On ∣ 𝑥 ≈ (ℵ‘𝐴)})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2109  {crab 3069  Vcvv 3430  cdif 3888  wss 3891   class class class wbr 5078  dom cdm 5588  Oncon0 6263  suc csuc 6265  cfv 6430  ωcom 7700  cen 8704  cdom 8705  csdm 8706  cardccrd 9677  cale 9678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-inf2 9360
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-reu 3072  df-rmo 3073  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-int 4885  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-se 5544  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-isom 6439  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7701  df-1st 7817  df-2nd 7818  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-1o 8281  df-2o 8282  df-oadd 8285  df-er 8472  df-en 8708  df-dom 8709  df-sdom 8710  df-fin 8711  df-oi 9230  df-har 9277  df-dju 9643  df-card 9681  df-aleph 9682
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator