Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > alephsuc3 | Structured version Visualization version GIF version |
Description: An alternate representation of a successor aleph. Compare alephsuc 9824 and alephsuc2 9836. Equality can be obtained by taking the card of the right-hand side then using alephcard 9826 and carden 10307. (Contributed by NM, 23-Oct-2004.) |
Ref | Expression |
---|---|
alephsuc3 | ⊢ (𝐴 ∈ On → (ℵ‘suc 𝐴) ≈ {𝑥 ∈ On ∣ 𝑥 ≈ (ℵ‘𝐴)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alephsuc2 9836 | . . . . 5 ⊢ (𝐴 ∈ On → (ℵ‘suc 𝐴) = {𝑥 ∈ On ∣ 𝑥 ≼ (ℵ‘𝐴)}) | |
2 | alephcard 9826 | . . . . . . 7 ⊢ (card‘(ℵ‘𝐴)) = (ℵ‘𝐴) | |
3 | alephon 9825 | . . . . . . . . 9 ⊢ (ℵ‘𝐴) ∈ On | |
4 | onenon 9707 | . . . . . . . . 9 ⊢ ((ℵ‘𝐴) ∈ On → (ℵ‘𝐴) ∈ dom card) | |
5 | 3, 4 | ax-mp 5 | . . . . . . . 8 ⊢ (ℵ‘𝐴) ∈ dom card |
6 | cardval2 9749 | . . . . . . . 8 ⊢ ((ℵ‘𝐴) ∈ dom card → (card‘(ℵ‘𝐴)) = {𝑥 ∈ On ∣ 𝑥 ≺ (ℵ‘𝐴)}) | |
7 | 5, 6 | ax-mp 5 | . . . . . . 7 ⊢ (card‘(ℵ‘𝐴)) = {𝑥 ∈ On ∣ 𝑥 ≺ (ℵ‘𝐴)} |
8 | 2, 7 | eqtr3i 2768 | . . . . . 6 ⊢ (ℵ‘𝐴) = {𝑥 ∈ On ∣ 𝑥 ≺ (ℵ‘𝐴)} |
9 | 8 | a1i 11 | . . . . 5 ⊢ (𝐴 ∈ On → (ℵ‘𝐴) = {𝑥 ∈ On ∣ 𝑥 ≺ (ℵ‘𝐴)}) |
10 | 1, 9 | difeq12d 4058 | . . . 4 ⊢ (𝐴 ∈ On → ((ℵ‘suc 𝐴) ∖ (ℵ‘𝐴)) = ({𝑥 ∈ On ∣ 𝑥 ≼ (ℵ‘𝐴)} ∖ {𝑥 ∈ On ∣ 𝑥 ≺ (ℵ‘𝐴)})) |
11 | difrab 4242 | . . . . 5 ⊢ ({𝑥 ∈ On ∣ 𝑥 ≼ (ℵ‘𝐴)} ∖ {𝑥 ∈ On ∣ 𝑥 ≺ (ℵ‘𝐴)}) = {𝑥 ∈ On ∣ (𝑥 ≼ (ℵ‘𝐴) ∧ ¬ 𝑥 ≺ (ℵ‘𝐴))} | |
12 | bren2 8771 | . . . . . 6 ⊢ (𝑥 ≈ (ℵ‘𝐴) ↔ (𝑥 ≼ (ℵ‘𝐴) ∧ ¬ 𝑥 ≺ (ℵ‘𝐴))) | |
13 | 12 | rabbii 3408 | . . . . 5 ⊢ {𝑥 ∈ On ∣ 𝑥 ≈ (ℵ‘𝐴)} = {𝑥 ∈ On ∣ (𝑥 ≼ (ℵ‘𝐴) ∧ ¬ 𝑥 ≺ (ℵ‘𝐴))} |
14 | 11, 13 | eqtr4i 2769 | . . . 4 ⊢ ({𝑥 ∈ On ∣ 𝑥 ≼ (ℵ‘𝐴)} ∖ {𝑥 ∈ On ∣ 𝑥 ≺ (ℵ‘𝐴)}) = {𝑥 ∈ On ∣ 𝑥 ≈ (ℵ‘𝐴)} |
15 | 10, 14 | eqtr2di 2795 | . . 3 ⊢ (𝐴 ∈ On → {𝑥 ∈ On ∣ 𝑥 ≈ (ℵ‘𝐴)} = ((ℵ‘suc 𝐴) ∖ (ℵ‘𝐴))) |
16 | alephon 9825 | . . . . 5 ⊢ (ℵ‘suc 𝐴) ∈ On | |
17 | onenon 9707 | . . . . 5 ⊢ ((ℵ‘suc 𝐴) ∈ On → (ℵ‘suc 𝐴) ∈ dom card) | |
18 | 16, 17 | mp1i 13 | . . . 4 ⊢ (𝐴 ∈ On → (ℵ‘suc 𝐴) ∈ dom card) |
19 | sucelon 7664 | . . . . . 6 ⊢ (𝐴 ∈ On ↔ suc 𝐴 ∈ On) | |
20 | alephgeom 9838 | . . . . . 6 ⊢ (suc 𝐴 ∈ On ↔ ω ⊆ (ℵ‘suc 𝐴)) | |
21 | 19, 20 | bitri 274 | . . . . 5 ⊢ (𝐴 ∈ On ↔ ω ⊆ (ℵ‘suc 𝐴)) |
22 | fvex 6787 | . . . . . 6 ⊢ (ℵ‘suc 𝐴) ∈ V | |
23 | ssdomg 8786 | . . . . . 6 ⊢ ((ℵ‘suc 𝐴) ∈ V → (ω ⊆ (ℵ‘suc 𝐴) → ω ≼ (ℵ‘suc 𝐴))) | |
24 | 22, 23 | ax-mp 5 | . . . . 5 ⊢ (ω ⊆ (ℵ‘suc 𝐴) → ω ≼ (ℵ‘suc 𝐴)) |
25 | 21, 24 | sylbi 216 | . . . 4 ⊢ (𝐴 ∈ On → ω ≼ (ℵ‘suc 𝐴)) |
26 | alephordilem1 9829 | . . . 4 ⊢ (𝐴 ∈ On → (ℵ‘𝐴) ≺ (ℵ‘suc 𝐴)) | |
27 | infdif 9965 | . . . 4 ⊢ (((ℵ‘suc 𝐴) ∈ dom card ∧ ω ≼ (ℵ‘suc 𝐴) ∧ (ℵ‘𝐴) ≺ (ℵ‘suc 𝐴)) → ((ℵ‘suc 𝐴) ∖ (ℵ‘𝐴)) ≈ (ℵ‘suc 𝐴)) | |
28 | 18, 25, 26, 27 | syl3anc 1370 | . . 3 ⊢ (𝐴 ∈ On → ((ℵ‘suc 𝐴) ∖ (ℵ‘𝐴)) ≈ (ℵ‘suc 𝐴)) |
29 | 15, 28 | eqbrtrd 5096 | . 2 ⊢ (𝐴 ∈ On → {𝑥 ∈ On ∣ 𝑥 ≈ (ℵ‘𝐴)} ≈ (ℵ‘suc 𝐴)) |
30 | 29 | ensymd 8791 | 1 ⊢ (𝐴 ∈ On → (ℵ‘suc 𝐴) ≈ {𝑥 ∈ On ∣ 𝑥 ≈ (ℵ‘𝐴)}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 {crab 3068 Vcvv 3432 ∖ cdif 3884 ⊆ wss 3887 class class class wbr 5074 dom cdm 5589 Oncon0 6266 suc csuc 6268 ‘cfv 6433 ωcom 7712 ≈ cen 8730 ≼ cdom 8731 ≺ csdm 8732 cardccrd 9693 ℵcale 9694 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-inf2 9399 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-2o 8298 df-oadd 8301 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-oi 9269 df-har 9316 df-dju 9659 df-card 9697 df-aleph 9698 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |