| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > alephsuc3 | Structured version Visualization version GIF version | ||
| Description: An alternate representation of a successor aleph. Compare alephsuc 9997 and alephsuc2 10009. Equality can be obtained by taking the card of the right-hand side then using alephcard 9999 and carden 10480. (Contributed by NM, 23-Oct-2004.) |
| Ref | Expression |
|---|---|
| alephsuc3 | ⊢ (𝐴 ∈ On → (ℵ‘suc 𝐴) ≈ {𝑥 ∈ On ∣ 𝑥 ≈ (ℵ‘𝐴)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alephsuc2 10009 | . . . . 5 ⊢ (𝐴 ∈ On → (ℵ‘suc 𝐴) = {𝑥 ∈ On ∣ 𝑥 ≼ (ℵ‘𝐴)}) | |
| 2 | alephcard 9999 | . . . . . . 7 ⊢ (card‘(ℵ‘𝐴)) = (ℵ‘𝐴) | |
| 3 | alephon 9998 | . . . . . . . . 9 ⊢ (ℵ‘𝐴) ∈ On | |
| 4 | onenon 9878 | . . . . . . . . 9 ⊢ ((ℵ‘𝐴) ∈ On → (ℵ‘𝐴) ∈ dom card) | |
| 5 | 3, 4 | ax-mp 5 | . . . . . . . 8 ⊢ (ℵ‘𝐴) ∈ dom card |
| 6 | cardval2 9920 | . . . . . . . 8 ⊢ ((ℵ‘𝐴) ∈ dom card → (card‘(ℵ‘𝐴)) = {𝑥 ∈ On ∣ 𝑥 ≺ (ℵ‘𝐴)}) | |
| 7 | 5, 6 | ax-mp 5 | . . . . . . 7 ⊢ (card‘(ℵ‘𝐴)) = {𝑥 ∈ On ∣ 𝑥 ≺ (ℵ‘𝐴)} |
| 8 | 2, 7 | eqtr3i 2754 | . . . . . 6 ⊢ (ℵ‘𝐴) = {𝑥 ∈ On ∣ 𝑥 ≺ (ℵ‘𝐴)} |
| 9 | 8 | a1i 11 | . . . . 5 ⊢ (𝐴 ∈ On → (ℵ‘𝐴) = {𝑥 ∈ On ∣ 𝑥 ≺ (ℵ‘𝐴)}) |
| 10 | 1, 9 | difeq12d 4086 | . . . 4 ⊢ (𝐴 ∈ On → ((ℵ‘suc 𝐴) ∖ (ℵ‘𝐴)) = ({𝑥 ∈ On ∣ 𝑥 ≼ (ℵ‘𝐴)} ∖ {𝑥 ∈ On ∣ 𝑥 ≺ (ℵ‘𝐴)})) |
| 11 | difrab 4277 | . . . . 5 ⊢ ({𝑥 ∈ On ∣ 𝑥 ≼ (ℵ‘𝐴)} ∖ {𝑥 ∈ On ∣ 𝑥 ≺ (ℵ‘𝐴)}) = {𝑥 ∈ On ∣ (𝑥 ≼ (ℵ‘𝐴) ∧ ¬ 𝑥 ≺ (ℵ‘𝐴))} | |
| 12 | bren2 8931 | . . . . . 6 ⊢ (𝑥 ≈ (ℵ‘𝐴) ↔ (𝑥 ≼ (ℵ‘𝐴) ∧ ¬ 𝑥 ≺ (ℵ‘𝐴))) | |
| 13 | 12 | rabbii 3408 | . . . . 5 ⊢ {𝑥 ∈ On ∣ 𝑥 ≈ (ℵ‘𝐴)} = {𝑥 ∈ On ∣ (𝑥 ≼ (ℵ‘𝐴) ∧ ¬ 𝑥 ≺ (ℵ‘𝐴))} |
| 14 | 11, 13 | eqtr4i 2755 | . . . 4 ⊢ ({𝑥 ∈ On ∣ 𝑥 ≼ (ℵ‘𝐴)} ∖ {𝑥 ∈ On ∣ 𝑥 ≺ (ℵ‘𝐴)}) = {𝑥 ∈ On ∣ 𝑥 ≈ (ℵ‘𝐴)} |
| 15 | 10, 14 | eqtr2di 2781 | . . 3 ⊢ (𝐴 ∈ On → {𝑥 ∈ On ∣ 𝑥 ≈ (ℵ‘𝐴)} = ((ℵ‘suc 𝐴) ∖ (ℵ‘𝐴))) |
| 16 | alephon 9998 | . . . . 5 ⊢ (ℵ‘suc 𝐴) ∈ On | |
| 17 | onenon 9878 | . . . . 5 ⊢ ((ℵ‘suc 𝐴) ∈ On → (ℵ‘suc 𝐴) ∈ dom card) | |
| 18 | 16, 17 | mp1i 13 | . . . 4 ⊢ (𝐴 ∈ On → (ℵ‘suc 𝐴) ∈ dom card) |
| 19 | onsucb 7772 | . . . . . 6 ⊢ (𝐴 ∈ On ↔ suc 𝐴 ∈ On) | |
| 20 | alephgeom 10011 | . . . . . 6 ⊢ (suc 𝐴 ∈ On ↔ ω ⊆ (ℵ‘suc 𝐴)) | |
| 21 | 19, 20 | bitri 275 | . . . . 5 ⊢ (𝐴 ∈ On ↔ ω ⊆ (ℵ‘suc 𝐴)) |
| 22 | fvex 6853 | . . . . . 6 ⊢ (ℵ‘suc 𝐴) ∈ V | |
| 23 | ssdomg 8948 | . . . . . 6 ⊢ ((ℵ‘suc 𝐴) ∈ V → (ω ⊆ (ℵ‘suc 𝐴) → ω ≼ (ℵ‘suc 𝐴))) | |
| 24 | 22, 23 | ax-mp 5 | . . . . 5 ⊢ (ω ⊆ (ℵ‘suc 𝐴) → ω ≼ (ℵ‘suc 𝐴)) |
| 25 | 21, 24 | sylbi 217 | . . . 4 ⊢ (𝐴 ∈ On → ω ≼ (ℵ‘suc 𝐴)) |
| 26 | alephordilem1 10002 | . . . 4 ⊢ (𝐴 ∈ On → (ℵ‘𝐴) ≺ (ℵ‘suc 𝐴)) | |
| 27 | infdif 10137 | . . . 4 ⊢ (((ℵ‘suc 𝐴) ∈ dom card ∧ ω ≼ (ℵ‘suc 𝐴) ∧ (ℵ‘𝐴) ≺ (ℵ‘suc 𝐴)) → ((ℵ‘suc 𝐴) ∖ (ℵ‘𝐴)) ≈ (ℵ‘suc 𝐴)) | |
| 28 | 18, 25, 26, 27 | syl3anc 1373 | . . 3 ⊢ (𝐴 ∈ On → ((ℵ‘suc 𝐴) ∖ (ℵ‘𝐴)) ≈ (ℵ‘suc 𝐴)) |
| 29 | 15, 28 | eqbrtrd 5124 | . 2 ⊢ (𝐴 ∈ On → {𝑥 ∈ On ∣ 𝑥 ≈ (ℵ‘𝐴)} ≈ (ℵ‘suc 𝐴)) |
| 30 | 29 | ensymd 8953 | 1 ⊢ (𝐴 ∈ On → (ℵ‘suc 𝐴) ≈ {𝑥 ∈ On ∣ 𝑥 ≈ (ℵ‘𝐴)}) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3402 Vcvv 3444 ∖ cdif 3908 ⊆ wss 3911 class class class wbr 5102 dom cdm 5631 Oncon0 6320 suc csuc 6322 ‘cfv 6499 ωcom 7822 ≈ cen 8892 ≼ cdom 8893 ≺ csdm 8894 cardccrd 9864 ℵcale 9865 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-inf2 9570 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-oadd 8415 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-oi 9439 df-har 9486 df-dju 9830 df-card 9868 df-aleph 9869 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |