| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > alephsuc3 | Structured version Visualization version GIF version | ||
| Description: An alternate representation of a successor aleph. Compare alephsuc 9962 and alephsuc2 9974. Equality can be obtained by taking the card of the right-hand side then using alephcard 9964 and carden 10445. (Contributed by NM, 23-Oct-2004.) |
| Ref | Expression |
|---|---|
| alephsuc3 | ⊢ (𝐴 ∈ On → (ℵ‘suc 𝐴) ≈ {𝑥 ∈ On ∣ 𝑥 ≈ (ℵ‘𝐴)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alephsuc2 9974 | . . . . 5 ⊢ (𝐴 ∈ On → (ℵ‘suc 𝐴) = {𝑥 ∈ On ∣ 𝑥 ≼ (ℵ‘𝐴)}) | |
| 2 | alephcard 9964 | . . . . . . 7 ⊢ (card‘(ℵ‘𝐴)) = (ℵ‘𝐴) | |
| 3 | alephon 9963 | . . . . . . . . 9 ⊢ (ℵ‘𝐴) ∈ On | |
| 4 | onenon 9845 | . . . . . . . . 9 ⊢ ((ℵ‘𝐴) ∈ On → (ℵ‘𝐴) ∈ dom card) | |
| 5 | 3, 4 | ax-mp 5 | . . . . . . . 8 ⊢ (ℵ‘𝐴) ∈ dom card |
| 6 | cardval2 9887 | . . . . . . . 8 ⊢ ((ℵ‘𝐴) ∈ dom card → (card‘(ℵ‘𝐴)) = {𝑥 ∈ On ∣ 𝑥 ≺ (ℵ‘𝐴)}) | |
| 7 | 5, 6 | ax-mp 5 | . . . . . . 7 ⊢ (card‘(ℵ‘𝐴)) = {𝑥 ∈ On ∣ 𝑥 ≺ (ℵ‘𝐴)} |
| 8 | 2, 7 | eqtr3i 2754 | . . . . . 6 ⊢ (ℵ‘𝐴) = {𝑥 ∈ On ∣ 𝑥 ≺ (ℵ‘𝐴)} |
| 9 | 8 | a1i 11 | . . . . 5 ⊢ (𝐴 ∈ On → (ℵ‘𝐴) = {𝑥 ∈ On ∣ 𝑥 ≺ (ℵ‘𝐴)}) |
| 10 | 1, 9 | difeq12d 4078 | . . . 4 ⊢ (𝐴 ∈ On → ((ℵ‘suc 𝐴) ∖ (ℵ‘𝐴)) = ({𝑥 ∈ On ∣ 𝑥 ≼ (ℵ‘𝐴)} ∖ {𝑥 ∈ On ∣ 𝑥 ≺ (ℵ‘𝐴)})) |
| 11 | difrab 4269 | . . . . 5 ⊢ ({𝑥 ∈ On ∣ 𝑥 ≼ (ℵ‘𝐴)} ∖ {𝑥 ∈ On ∣ 𝑥 ≺ (ℵ‘𝐴)}) = {𝑥 ∈ On ∣ (𝑥 ≼ (ℵ‘𝐴) ∧ ¬ 𝑥 ≺ (ℵ‘𝐴))} | |
| 12 | bren2 8908 | . . . . . 6 ⊢ (𝑥 ≈ (ℵ‘𝐴) ↔ (𝑥 ≼ (ℵ‘𝐴) ∧ ¬ 𝑥 ≺ (ℵ‘𝐴))) | |
| 13 | 12 | rabbii 3400 | . . . . 5 ⊢ {𝑥 ∈ On ∣ 𝑥 ≈ (ℵ‘𝐴)} = {𝑥 ∈ On ∣ (𝑥 ≼ (ℵ‘𝐴) ∧ ¬ 𝑥 ≺ (ℵ‘𝐴))} |
| 14 | 11, 13 | eqtr4i 2755 | . . . 4 ⊢ ({𝑥 ∈ On ∣ 𝑥 ≼ (ℵ‘𝐴)} ∖ {𝑥 ∈ On ∣ 𝑥 ≺ (ℵ‘𝐴)}) = {𝑥 ∈ On ∣ 𝑥 ≈ (ℵ‘𝐴)} |
| 15 | 10, 14 | eqtr2di 2781 | . . 3 ⊢ (𝐴 ∈ On → {𝑥 ∈ On ∣ 𝑥 ≈ (ℵ‘𝐴)} = ((ℵ‘suc 𝐴) ∖ (ℵ‘𝐴))) |
| 16 | alephon 9963 | . . . . 5 ⊢ (ℵ‘suc 𝐴) ∈ On | |
| 17 | onenon 9845 | . . . . 5 ⊢ ((ℵ‘suc 𝐴) ∈ On → (ℵ‘suc 𝐴) ∈ dom card) | |
| 18 | 16, 17 | mp1i 13 | . . . 4 ⊢ (𝐴 ∈ On → (ℵ‘suc 𝐴) ∈ dom card) |
| 19 | onsucb 7750 | . . . . . 6 ⊢ (𝐴 ∈ On ↔ suc 𝐴 ∈ On) | |
| 20 | alephgeom 9976 | . . . . . 6 ⊢ (suc 𝐴 ∈ On ↔ ω ⊆ (ℵ‘suc 𝐴)) | |
| 21 | 19, 20 | bitri 275 | . . . . 5 ⊢ (𝐴 ∈ On ↔ ω ⊆ (ℵ‘suc 𝐴)) |
| 22 | fvex 6835 | . . . . . 6 ⊢ (ℵ‘suc 𝐴) ∈ V | |
| 23 | ssdomg 8925 | . . . . . 6 ⊢ ((ℵ‘suc 𝐴) ∈ V → (ω ⊆ (ℵ‘suc 𝐴) → ω ≼ (ℵ‘suc 𝐴))) | |
| 24 | 22, 23 | ax-mp 5 | . . . . 5 ⊢ (ω ⊆ (ℵ‘suc 𝐴) → ω ≼ (ℵ‘suc 𝐴)) |
| 25 | 21, 24 | sylbi 217 | . . . 4 ⊢ (𝐴 ∈ On → ω ≼ (ℵ‘suc 𝐴)) |
| 26 | alephordilem1 9967 | . . . 4 ⊢ (𝐴 ∈ On → (ℵ‘𝐴) ≺ (ℵ‘suc 𝐴)) | |
| 27 | infdif 10102 | . . . 4 ⊢ (((ℵ‘suc 𝐴) ∈ dom card ∧ ω ≼ (ℵ‘suc 𝐴) ∧ (ℵ‘𝐴) ≺ (ℵ‘suc 𝐴)) → ((ℵ‘suc 𝐴) ∖ (ℵ‘𝐴)) ≈ (ℵ‘suc 𝐴)) | |
| 28 | 18, 25, 26, 27 | syl3anc 1373 | . . 3 ⊢ (𝐴 ∈ On → ((ℵ‘suc 𝐴) ∖ (ℵ‘𝐴)) ≈ (ℵ‘suc 𝐴)) |
| 29 | 15, 28 | eqbrtrd 5114 | . 2 ⊢ (𝐴 ∈ On → {𝑥 ∈ On ∣ 𝑥 ≈ (ℵ‘𝐴)} ≈ (ℵ‘suc 𝐴)) |
| 30 | 29 | ensymd 8930 | 1 ⊢ (𝐴 ∈ On → (ℵ‘suc 𝐴) ≈ {𝑥 ∈ On ∣ 𝑥 ≈ (ℵ‘𝐴)}) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3394 Vcvv 3436 ∖ cdif 3900 ⊆ wss 3903 class class class wbr 5092 dom cdm 5619 Oncon0 6307 suc csuc 6309 ‘cfv 6482 ωcom 7799 ≈ cen 8869 ≼ cdom 8870 ≺ csdm 8871 cardccrd 9831 ℵcale 9832 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-inf2 9537 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-oadd 8392 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-oi 9402 df-har 9449 df-dju 9797 df-card 9835 df-aleph 9836 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |