MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephsuc3 Structured version   Visualization version   GIF version

Theorem alephsuc3 10471
Description: An alternate representation of a successor aleph. Compare alephsuc 9959 and alephsuc2 9971. Equality can be obtained by taking the card of the right-hand side then using alephcard 9961 and carden 10442. (Contributed by NM, 23-Oct-2004.)
Assertion
Ref Expression
alephsuc3 (𝐴 ∈ On → (ℵ‘suc 𝐴) ≈ {𝑥 ∈ On ∣ 𝑥 ≈ (ℵ‘𝐴)})
Distinct variable group:   𝑥,𝐴

Proof of Theorem alephsuc3
StepHypRef Expression
1 alephsuc2 9971 . . . . 5 (𝐴 ∈ On → (ℵ‘suc 𝐴) = {𝑥 ∈ On ∣ 𝑥 ≼ (ℵ‘𝐴)})
2 alephcard 9961 . . . . . . 7 (card‘(ℵ‘𝐴)) = (ℵ‘𝐴)
3 alephon 9960 . . . . . . . . 9 (ℵ‘𝐴) ∈ On
4 onenon 9842 . . . . . . . . 9 ((ℵ‘𝐴) ∈ On → (ℵ‘𝐴) ∈ dom card)
53, 4ax-mp 5 . . . . . . . 8 (ℵ‘𝐴) ∈ dom card
6 cardval2 9884 . . . . . . . 8 ((ℵ‘𝐴) ∈ dom card → (card‘(ℵ‘𝐴)) = {𝑥 ∈ On ∣ 𝑥 ≺ (ℵ‘𝐴)})
75, 6ax-mp 5 . . . . . . 7 (card‘(ℵ‘𝐴)) = {𝑥 ∈ On ∣ 𝑥 ≺ (ℵ‘𝐴)}
82, 7eqtr3i 2756 . . . . . 6 (ℵ‘𝐴) = {𝑥 ∈ On ∣ 𝑥 ≺ (ℵ‘𝐴)}
98a1i 11 . . . . 5 (𝐴 ∈ On → (ℵ‘𝐴) = {𝑥 ∈ On ∣ 𝑥 ≺ (ℵ‘𝐴)})
101, 9difeq12d 4074 . . . 4 (𝐴 ∈ On → ((ℵ‘suc 𝐴) ∖ (ℵ‘𝐴)) = ({𝑥 ∈ On ∣ 𝑥 ≼ (ℵ‘𝐴)} ∖ {𝑥 ∈ On ∣ 𝑥 ≺ (ℵ‘𝐴)}))
11 difrab 4265 . . . . 5 ({𝑥 ∈ On ∣ 𝑥 ≼ (ℵ‘𝐴)} ∖ {𝑥 ∈ On ∣ 𝑥 ≺ (ℵ‘𝐴)}) = {𝑥 ∈ On ∣ (𝑥 ≼ (ℵ‘𝐴) ∧ ¬ 𝑥 ≺ (ℵ‘𝐴))}
12 bren2 8905 . . . . . 6 (𝑥 ≈ (ℵ‘𝐴) ↔ (𝑥 ≼ (ℵ‘𝐴) ∧ ¬ 𝑥 ≺ (ℵ‘𝐴)))
1312rabbii 3400 . . . . 5 {𝑥 ∈ On ∣ 𝑥 ≈ (ℵ‘𝐴)} = {𝑥 ∈ On ∣ (𝑥 ≼ (ℵ‘𝐴) ∧ ¬ 𝑥 ≺ (ℵ‘𝐴))}
1411, 13eqtr4i 2757 . . . 4 ({𝑥 ∈ On ∣ 𝑥 ≼ (ℵ‘𝐴)} ∖ {𝑥 ∈ On ∣ 𝑥 ≺ (ℵ‘𝐴)}) = {𝑥 ∈ On ∣ 𝑥 ≈ (ℵ‘𝐴)}
1510, 14eqtr2di 2783 . . 3 (𝐴 ∈ On → {𝑥 ∈ On ∣ 𝑥 ≈ (ℵ‘𝐴)} = ((ℵ‘suc 𝐴) ∖ (ℵ‘𝐴)))
16 alephon 9960 . . . . 5 (ℵ‘suc 𝐴) ∈ On
17 onenon 9842 . . . . 5 ((ℵ‘suc 𝐴) ∈ On → (ℵ‘suc 𝐴) ∈ dom card)
1816, 17mp1i 13 . . . 4 (𝐴 ∈ On → (ℵ‘suc 𝐴) ∈ dom card)
19 onsucb 7747 . . . . . 6 (𝐴 ∈ On ↔ suc 𝐴 ∈ On)
20 alephgeom 9973 . . . . . 6 (suc 𝐴 ∈ On ↔ ω ⊆ (ℵ‘suc 𝐴))
2119, 20bitri 275 . . . . 5 (𝐴 ∈ On ↔ ω ⊆ (ℵ‘suc 𝐴))
22 fvex 6835 . . . . . 6 (ℵ‘suc 𝐴) ∈ V
23 ssdomg 8922 . . . . . 6 ((ℵ‘suc 𝐴) ∈ V → (ω ⊆ (ℵ‘suc 𝐴) → ω ≼ (ℵ‘suc 𝐴)))
2422, 23ax-mp 5 . . . . 5 (ω ⊆ (ℵ‘suc 𝐴) → ω ≼ (ℵ‘suc 𝐴))
2521, 24sylbi 217 . . . 4 (𝐴 ∈ On → ω ≼ (ℵ‘suc 𝐴))
26 alephordilem1 9964 . . . 4 (𝐴 ∈ On → (ℵ‘𝐴) ≺ (ℵ‘suc 𝐴))
27 infdif 10099 . . . 4 (((ℵ‘suc 𝐴) ∈ dom card ∧ ω ≼ (ℵ‘suc 𝐴) ∧ (ℵ‘𝐴) ≺ (ℵ‘suc 𝐴)) → ((ℵ‘suc 𝐴) ∖ (ℵ‘𝐴)) ≈ (ℵ‘suc 𝐴))
2818, 25, 26, 27syl3anc 1373 . . 3 (𝐴 ∈ On → ((ℵ‘suc 𝐴) ∖ (ℵ‘𝐴)) ≈ (ℵ‘suc 𝐴))
2915, 28eqbrtrd 5111 . 2 (𝐴 ∈ On → {𝑥 ∈ On ∣ 𝑥 ≈ (ℵ‘𝐴)} ≈ (ℵ‘suc 𝐴))
3029ensymd 8927 1 (𝐴 ∈ On → (ℵ‘suc 𝐴) ≈ {𝑥 ∈ On ∣ 𝑥 ≈ (ℵ‘𝐴)})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2111  {crab 3395  Vcvv 3436  cdif 3894  wss 3897   class class class wbr 5089  dom cdm 5614  Oncon0 6306  suc csuc 6308  cfv 6481  ωcom 7796  cen 8866  cdom 8867  csdm 8868  cardccrd 9828  cale 9829
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-oadd 8389  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-oi 9396  df-har 9443  df-dju 9794  df-card 9832  df-aleph 9833
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator