MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  shftmbl Structured version   Visualization version   GIF version

Theorem shftmbl 25446
Description: A shift of a measurable set is measurable. (Contributed by Mario Carneiro, 22-Mar-2014.)
Assertion
Ref Expression
shftmbl ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) → {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴} ∈ dom vol)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem shftmbl
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab2 4046 . . 3 {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴} ⊆ ℝ
21a1i 11 . 2 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) → {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴} ⊆ ℝ)
3 elpwi 4573 . . . 4 (𝑦 ∈ 𝒫 ℝ → 𝑦 ⊆ ℝ)
4 simpll 766 . . . . . . 7 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ⊆ ℝ ∧ (vol*‘𝑦) ∈ ℝ)) → 𝐴 ∈ dom vol)
5 ssrab2 4046 . . . . . . . 8 {𝑧 ∈ ℝ ∣ (𝑧 − -𝐵) ∈ 𝑦} ⊆ ℝ
65a1i 11 . . . . . . 7 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ⊆ ℝ ∧ (vol*‘𝑦) ∈ ℝ)) → {𝑧 ∈ ℝ ∣ (𝑧 − -𝐵) ∈ 𝑦} ⊆ ℝ)
7 simprl 770 . . . . . . . . 9 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ⊆ ℝ ∧ (vol*‘𝑦) ∈ ℝ)) → 𝑦 ⊆ ℝ)
8 simplr 768 . . . . . . . . . 10 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ⊆ ℝ ∧ (vol*‘𝑦) ∈ ℝ)) → 𝐵 ∈ ℝ)
98renegcld 11612 . . . . . . . . 9 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ⊆ ℝ ∧ (vol*‘𝑦) ∈ ℝ)) → -𝐵 ∈ ℝ)
10 eqidd 2731 . . . . . . . . 9 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ⊆ ℝ ∧ (vol*‘𝑦) ∈ ℝ)) → {𝑧 ∈ ℝ ∣ (𝑧 − -𝐵) ∈ 𝑦} = {𝑧 ∈ ℝ ∣ (𝑧 − -𝐵) ∈ 𝑦})
117, 9, 10ovolshft 25419 . . . . . . . 8 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ⊆ ℝ ∧ (vol*‘𝑦) ∈ ℝ)) → (vol*‘𝑦) = (vol*‘{𝑧 ∈ ℝ ∣ (𝑧 − -𝐵) ∈ 𝑦}))
12 simprr 772 . . . . . . . 8 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ⊆ ℝ ∧ (vol*‘𝑦) ∈ ℝ)) → (vol*‘𝑦) ∈ ℝ)
1311, 12eqeltrrd 2830 . . . . . . 7 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ⊆ ℝ ∧ (vol*‘𝑦) ∈ ℝ)) → (vol*‘{𝑧 ∈ ℝ ∣ (𝑧 − -𝐵) ∈ 𝑦}) ∈ ℝ)
14 mblsplit 25440 . . . . . . 7 ((𝐴 ∈ dom vol ∧ {𝑧 ∈ ℝ ∣ (𝑧 − -𝐵) ∈ 𝑦} ⊆ ℝ ∧ (vol*‘{𝑧 ∈ ℝ ∣ (𝑧 − -𝐵) ∈ 𝑦}) ∈ ℝ) → (vol*‘{𝑧 ∈ ℝ ∣ (𝑧 − -𝐵) ∈ 𝑦}) = ((vol*‘({𝑧 ∈ ℝ ∣ (𝑧 − -𝐵) ∈ 𝑦} ∩ 𝐴)) + (vol*‘({𝑧 ∈ ℝ ∣ (𝑧 − -𝐵) ∈ 𝑦} ∖ 𝐴))))
154, 6, 13, 14syl3anc 1373 . . . . . 6 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ⊆ ℝ ∧ (vol*‘𝑦) ∈ ℝ)) → (vol*‘{𝑧 ∈ ℝ ∣ (𝑧 − -𝐵) ∈ 𝑦}) = ((vol*‘({𝑧 ∈ ℝ ∣ (𝑧 − -𝐵) ∈ 𝑦} ∩ 𝐴)) + (vol*‘({𝑧 ∈ ℝ ∣ (𝑧 − -𝐵) ∈ 𝑦} ∖ 𝐴))))
16 inss1 4203 . . . . . . . . 9 (𝑦 ∩ {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴}) ⊆ 𝑦
1716, 7sstrid 3961 . . . . . . . 8 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ⊆ ℝ ∧ (vol*‘𝑦) ∈ ℝ)) → (𝑦 ∩ {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴}) ⊆ ℝ)
18 mblss 25439 . . . . . . . . . . . 12 (𝐴 ∈ dom vol → 𝐴 ⊆ ℝ)
194, 18syl 17 . . . . . . . . . . 11 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ⊆ ℝ ∧ (vol*‘𝑦) ∈ ℝ)) → 𝐴 ⊆ ℝ)
20 eqidd 2731 . . . . . . . . . . 11 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ⊆ ℝ ∧ (vol*‘𝑦) ∈ ℝ)) → {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴} = {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴})
2119, 8, 20shft2rab 25416 . . . . . . . . . 10 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ⊆ ℝ ∧ (vol*‘𝑦) ∈ ℝ)) → 𝐴 = {𝑧 ∈ ℝ ∣ (𝑧 − -𝐵) ∈ {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴}})
2221ineq2d 4186 . . . . . . . . 9 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ⊆ ℝ ∧ (vol*‘𝑦) ∈ ℝ)) → ({𝑧 ∈ ℝ ∣ (𝑧 − -𝐵) ∈ 𝑦} ∩ 𝐴) = ({𝑧 ∈ ℝ ∣ (𝑧 − -𝐵) ∈ 𝑦} ∩ {𝑧 ∈ ℝ ∣ (𝑧 − -𝐵) ∈ {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴}}))
23 inrab 4282 . . . . . . . . . 10 ({𝑧 ∈ ℝ ∣ (𝑧 − -𝐵) ∈ 𝑦} ∩ {𝑧 ∈ ℝ ∣ (𝑧 − -𝐵) ∈ {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴}}) = {𝑧 ∈ ℝ ∣ ((𝑧 − -𝐵) ∈ 𝑦 ∧ (𝑧 − -𝐵) ∈ {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴})}
24 elin 3933 . . . . . . . . . . 11 ((𝑧 − -𝐵) ∈ (𝑦 ∩ {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴}) ↔ ((𝑧 − -𝐵) ∈ 𝑦 ∧ (𝑧 − -𝐵) ∈ {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴}))
2524rabbii 3414 . . . . . . . . . 10 {𝑧 ∈ ℝ ∣ (𝑧 − -𝐵) ∈ (𝑦 ∩ {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴})} = {𝑧 ∈ ℝ ∣ ((𝑧 − -𝐵) ∈ 𝑦 ∧ (𝑧 − -𝐵) ∈ {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴})}
2623, 25eqtr4i 2756 . . . . . . . . 9 ({𝑧 ∈ ℝ ∣ (𝑧 − -𝐵) ∈ 𝑦} ∩ {𝑧 ∈ ℝ ∣ (𝑧 − -𝐵) ∈ {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴}}) = {𝑧 ∈ ℝ ∣ (𝑧 − -𝐵) ∈ (𝑦 ∩ {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴})}
2722, 26eqtrdi 2781 . . . . . . . 8 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ⊆ ℝ ∧ (vol*‘𝑦) ∈ ℝ)) → ({𝑧 ∈ ℝ ∣ (𝑧 − -𝐵) ∈ 𝑦} ∩ 𝐴) = {𝑧 ∈ ℝ ∣ (𝑧 − -𝐵) ∈ (𝑦 ∩ {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴})})
2817, 9, 27ovolshft 25419 . . . . . . 7 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ⊆ ℝ ∧ (vol*‘𝑦) ∈ ℝ)) → (vol*‘(𝑦 ∩ {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴})) = (vol*‘({𝑧 ∈ ℝ ∣ (𝑧 − -𝐵) ∈ 𝑦} ∩ 𝐴)))
297ssdifssd 4113 . . . . . . . 8 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ⊆ ℝ ∧ (vol*‘𝑦) ∈ ℝ)) → (𝑦 ∖ {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴}) ⊆ ℝ)
3021difeq2d 4092 . . . . . . . . 9 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ⊆ ℝ ∧ (vol*‘𝑦) ∈ ℝ)) → ({𝑧 ∈ ℝ ∣ (𝑧 − -𝐵) ∈ 𝑦} ∖ 𝐴) = ({𝑧 ∈ ℝ ∣ (𝑧 − -𝐵) ∈ 𝑦} ∖ {𝑧 ∈ ℝ ∣ (𝑧 − -𝐵) ∈ {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴}}))
31 difrab 4284 . . . . . . . . . 10 ({𝑧 ∈ ℝ ∣ (𝑧 − -𝐵) ∈ 𝑦} ∖ {𝑧 ∈ ℝ ∣ (𝑧 − -𝐵) ∈ {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴}}) = {𝑧 ∈ ℝ ∣ ((𝑧 − -𝐵) ∈ 𝑦 ∧ ¬ (𝑧 − -𝐵) ∈ {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴})}
32 eldif 3927 . . . . . . . . . . 11 ((𝑧 − -𝐵) ∈ (𝑦 ∖ {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴}) ↔ ((𝑧 − -𝐵) ∈ 𝑦 ∧ ¬ (𝑧 − -𝐵) ∈ {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴}))
3332rabbii 3414 . . . . . . . . . 10 {𝑧 ∈ ℝ ∣ (𝑧 − -𝐵) ∈ (𝑦 ∖ {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴})} = {𝑧 ∈ ℝ ∣ ((𝑧 − -𝐵) ∈ 𝑦 ∧ ¬ (𝑧 − -𝐵) ∈ {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴})}
3431, 33eqtr4i 2756 . . . . . . . . 9 ({𝑧 ∈ ℝ ∣ (𝑧 − -𝐵) ∈ 𝑦} ∖ {𝑧 ∈ ℝ ∣ (𝑧 − -𝐵) ∈ {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴}}) = {𝑧 ∈ ℝ ∣ (𝑧 − -𝐵) ∈ (𝑦 ∖ {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴})}
3530, 34eqtrdi 2781 . . . . . . . 8 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ⊆ ℝ ∧ (vol*‘𝑦) ∈ ℝ)) → ({𝑧 ∈ ℝ ∣ (𝑧 − -𝐵) ∈ 𝑦} ∖ 𝐴) = {𝑧 ∈ ℝ ∣ (𝑧 − -𝐵) ∈ (𝑦 ∖ {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴})})
3629, 9, 35ovolshft 25419 . . . . . . 7 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ⊆ ℝ ∧ (vol*‘𝑦) ∈ ℝ)) → (vol*‘(𝑦 ∖ {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴})) = (vol*‘({𝑧 ∈ ℝ ∣ (𝑧 − -𝐵) ∈ 𝑦} ∖ 𝐴)))
3728, 36oveq12d 7408 . . . . . 6 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ⊆ ℝ ∧ (vol*‘𝑦) ∈ ℝ)) → ((vol*‘(𝑦 ∩ {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴})) + (vol*‘(𝑦 ∖ {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴}))) = ((vol*‘({𝑧 ∈ ℝ ∣ (𝑧 − -𝐵) ∈ 𝑦} ∩ 𝐴)) + (vol*‘({𝑧 ∈ ℝ ∣ (𝑧 − -𝐵) ∈ 𝑦} ∖ 𝐴))))
3815, 11, 373eqtr4d 2775 . . . . 5 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ⊆ ℝ ∧ (vol*‘𝑦) ∈ ℝ)) → (vol*‘𝑦) = ((vol*‘(𝑦 ∩ {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴})) + (vol*‘(𝑦 ∖ {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴}))))
3938expr 456 . . . 4 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ⊆ ℝ) → ((vol*‘𝑦) ∈ ℝ → (vol*‘𝑦) = ((vol*‘(𝑦 ∩ {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴})) + (vol*‘(𝑦 ∖ {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴})))))
403, 39sylan2 593 . . 3 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ 𝒫 ℝ) → ((vol*‘𝑦) ∈ ℝ → (vol*‘𝑦) = ((vol*‘(𝑦 ∩ {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴})) + (vol*‘(𝑦 ∖ {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴})))))
4140ralrimiva 3126 . 2 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) → ∀𝑦 ∈ 𝒫 ℝ((vol*‘𝑦) ∈ ℝ → (vol*‘𝑦) = ((vol*‘(𝑦 ∩ {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴})) + (vol*‘(𝑦 ∖ {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴})))))
42 ismbl 25434 . 2 ({𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴} ∈ dom vol ↔ ({𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴} ⊆ ℝ ∧ ∀𝑦 ∈ 𝒫 ℝ((vol*‘𝑦) ∈ ℝ → (vol*‘𝑦) = ((vol*‘(𝑦 ∩ {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴})) + (vol*‘(𝑦 ∖ {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴}))))))
432, 41, 42sylanbrc 583 1 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) → {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴} ∈ dom vol)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3045  {crab 3408  cdif 3914  cin 3916  wss 3917  𝒫 cpw 4566  dom cdm 5641  cfv 6514  (class class class)co 7390  cr 11074   + caddc 11078  cmin 11412  -cneg 11413  vol*covol 25370  volcvol 25371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-ioo 13317  df-ico 13319  df-icc 13320  df-fz 13476  df-seq 13974  df-exp 14034  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-ovol 25372  df-vol 25373
This theorem is referenced by:  vitalilem4  25519  vitalilem5  25520
  Copyright terms: Public domain W3C validator