MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  shftmbl Structured version   Visualization version   GIF version

Theorem shftmbl 24231
Description: A shift of a measurable set is measurable. (Contributed by Mario Carneiro, 22-Mar-2014.)
Assertion
Ref Expression
shftmbl ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) → {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴} ∈ dom vol)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem shftmbl
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab2 3985 . . 3 {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴} ⊆ ℝ
21a1i 11 . 2 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) → {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴} ⊆ ℝ)
3 elpwi 4504 . . . 4 (𝑦 ∈ 𝒫 ℝ → 𝑦 ⊆ ℝ)
4 simpll 767 . . . . . . 7 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ⊆ ℝ ∧ (vol*‘𝑦) ∈ ℝ)) → 𝐴 ∈ dom vol)
5 ssrab2 3985 . . . . . . . 8 {𝑧 ∈ ℝ ∣ (𝑧 − -𝐵) ∈ 𝑦} ⊆ ℝ
65a1i 11 . . . . . . 7 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ⊆ ℝ ∧ (vol*‘𝑦) ∈ ℝ)) → {𝑧 ∈ ℝ ∣ (𝑧 − -𝐵) ∈ 𝑦} ⊆ ℝ)
7 simprl 771 . . . . . . . . 9 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ⊆ ℝ ∧ (vol*‘𝑦) ∈ ℝ)) → 𝑦 ⊆ ℝ)
8 simplr 769 . . . . . . . . . 10 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ⊆ ℝ ∧ (vol*‘𝑦) ∈ ℝ)) → 𝐵 ∈ ℝ)
98renegcld 11098 . . . . . . . . 9 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ⊆ ℝ ∧ (vol*‘𝑦) ∈ ℝ)) → -𝐵 ∈ ℝ)
10 eqidd 2760 . . . . . . . . 9 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ⊆ ℝ ∧ (vol*‘𝑦) ∈ ℝ)) → {𝑧 ∈ ℝ ∣ (𝑧 − -𝐵) ∈ 𝑦} = {𝑧 ∈ ℝ ∣ (𝑧 − -𝐵) ∈ 𝑦})
117, 9, 10ovolshft 24204 . . . . . . . 8 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ⊆ ℝ ∧ (vol*‘𝑦) ∈ ℝ)) → (vol*‘𝑦) = (vol*‘{𝑧 ∈ ℝ ∣ (𝑧 − -𝐵) ∈ 𝑦}))
12 simprr 773 . . . . . . . 8 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ⊆ ℝ ∧ (vol*‘𝑦) ∈ ℝ)) → (vol*‘𝑦) ∈ ℝ)
1311, 12eqeltrrd 2854 . . . . . . 7 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ⊆ ℝ ∧ (vol*‘𝑦) ∈ ℝ)) → (vol*‘{𝑧 ∈ ℝ ∣ (𝑧 − -𝐵) ∈ 𝑦}) ∈ ℝ)
14 mblsplit 24225 . . . . . . 7 ((𝐴 ∈ dom vol ∧ {𝑧 ∈ ℝ ∣ (𝑧 − -𝐵) ∈ 𝑦} ⊆ ℝ ∧ (vol*‘{𝑧 ∈ ℝ ∣ (𝑧 − -𝐵) ∈ 𝑦}) ∈ ℝ) → (vol*‘{𝑧 ∈ ℝ ∣ (𝑧 − -𝐵) ∈ 𝑦}) = ((vol*‘({𝑧 ∈ ℝ ∣ (𝑧 − -𝐵) ∈ 𝑦} ∩ 𝐴)) + (vol*‘({𝑧 ∈ ℝ ∣ (𝑧 − -𝐵) ∈ 𝑦} ∖ 𝐴))))
154, 6, 13, 14syl3anc 1369 . . . . . 6 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ⊆ ℝ ∧ (vol*‘𝑦) ∈ ℝ)) → (vol*‘{𝑧 ∈ ℝ ∣ (𝑧 − -𝐵) ∈ 𝑦}) = ((vol*‘({𝑧 ∈ ℝ ∣ (𝑧 − -𝐵) ∈ 𝑦} ∩ 𝐴)) + (vol*‘({𝑧 ∈ ℝ ∣ (𝑧 − -𝐵) ∈ 𝑦} ∖ 𝐴))))
16 inss1 4134 . . . . . . . . 9 (𝑦 ∩ {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴}) ⊆ 𝑦
1716, 7sstrid 3904 . . . . . . . 8 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ⊆ ℝ ∧ (vol*‘𝑦) ∈ ℝ)) → (𝑦 ∩ {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴}) ⊆ ℝ)
18 mblss 24224 . . . . . . . . . . . 12 (𝐴 ∈ dom vol → 𝐴 ⊆ ℝ)
194, 18syl 17 . . . . . . . . . . 11 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ⊆ ℝ ∧ (vol*‘𝑦) ∈ ℝ)) → 𝐴 ⊆ ℝ)
20 eqidd 2760 . . . . . . . . . . 11 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ⊆ ℝ ∧ (vol*‘𝑦) ∈ ℝ)) → {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴} = {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴})
2119, 8, 20shft2rab 24201 . . . . . . . . . 10 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ⊆ ℝ ∧ (vol*‘𝑦) ∈ ℝ)) → 𝐴 = {𝑧 ∈ ℝ ∣ (𝑧 − -𝐵) ∈ {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴}})
2221ineq2d 4118 . . . . . . . . 9 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ⊆ ℝ ∧ (vol*‘𝑦) ∈ ℝ)) → ({𝑧 ∈ ℝ ∣ (𝑧 − -𝐵) ∈ 𝑦} ∩ 𝐴) = ({𝑧 ∈ ℝ ∣ (𝑧 − -𝐵) ∈ 𝑦} ∩ {𝑧 ∈ ℝ ∣ (𝑧 − -𝐵) ∈ {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴}}))
23 inrab 4210 . . . . . . . . . 10 ({𝑧 ∈ ℝ ∣ (𝑧 − -𝐵) ∈ 𝑦} ∩ {𝑧 ∈ ℝ ∣ (𝑧 − -𝐵) ∈ {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴}}) = {𝑧 ∈ ℝ ∣ ((𝑧 − -𝐵) ∈ 𝑦 ∧ (𝑧 − -𝐵) ∈ {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴})}
24 elin 3875 . . . . . . . . . . 11 ((𝑧 − -𝐵) ∈ (𝑦 ∩ {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴}) ↔ ((𝑧 − -𝐵) ∈ 𝑦 ∧ (𝑧 − -𝐵) ∈ {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴}))
2524rabbii 3386 . . . . . . . . . 10 {𝑧 ∈ ℝ ∣ (𝑧 − -𝐵) ∈ (𝑦 ∩ {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴})} = {𝑧 ∈ ℝ ∣ ((𝑧 − -𝐵) ∈ 𝑦 ∧ (𝑧 − -𝐵) ∈ {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴})}
2623, 25eqtr4i 2785 . . . . . . . . 9 ({𝑧 ∈ ℝ ∣ (𝑧 − -𝐵) ∈ 𝑦} ∩ {𝑧 ∈ ℝ ∣ (𝑧 − -𝐵) ∈ {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴}}) = {𝑧 ∈ ℝ ∣ (𝑧 − -𝐵) ∈ (𝑦 ∩ {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴})}
2722, 26eqtrdi 2810 . . . . . . . 8 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ⊆ ℝ ∧ (vol*‘𝑦) ∈ ℝ)) → ({𝑧 ∈ ℝ ∣ (𝑧 − -𝐵) ∈ 𝑦} ∩ 𝐴) = {𝑧 ∈ ℝ ∣ (𝑧 − -𝐵) ∈ (𝑦 ∩ {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴})})
2817, 9, 27ovolshft 24204 . . . . . . 7 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ⊆ ℝ ∧ (vol*‘𝑦) ∈ ℝ)) → (vol*‘(𝑦 ∩ {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴})) = (vol*‘({𝑧 ∈ ℝ ∣ (𝑧 − -𝐵) ∈ 𝑦} ∩ 𝐴)))
297ssdifssd 4049 . . . . . . . 8 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ⊆ ℝ ∧ (vol*‘𝑦) ∈ ℝ)) → (𝑦 ∖ {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴}) ⊆ ℝ)
3021difeq2d 4029 . . . . . . . . 9 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ⊆ ℝ ∧ (vol*‘𝑦) ∈ ℝ)) → ({𝑧 ∈ ℝ ∣ (𝑧 − -𝐵) ∈ 𝑦} ∖ 𝐴) = ({𝑧 ∈ ℝ ∣ (𝑧 − -𝐵) ∈ 𝑦} ∖ {𝑧 ∈ ℝ ∣ (𝑧 − -𝐵) ∈ {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴}}))
31 difrab 4212 . . . . . . . . . 10 ({𝑧 ∈ ℝ ∣ (𝑧 − -𝐵) ∈ 𝑦} ∖ {𝑧 ∈ ℝ ∣ (𝑧 − -𝐵) ∈ {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴}}) = {𝑧 ∈ ℝ ∣ ((𝑧 − -𝐵) ∈ 𝑦 ∧ ¬ (𝑧 − -𝐵) ∈ {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴})}
32 eldif 3869 . . . . . . . . . . 11 ((𝑧 − -𝐵) ∈ (𝑦 ∖ {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴}) ↔ ((𝑧 − -𝐵) ∈ 𝑦 ∧ ¬ (𝑧 − -𝐵) ∈ {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴}))
3332rabbii 3386 . . . . . . . . . 10 {𝑧 ∈ ℝ ∣ (𝑧 − -𝐵) ∈ (𝑦 ∖ {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴})} = {𝑧 ∈ ℝ ∣ ((𝑧 − -𝐵) ∈ 𝑦 ∧ ¬ (𝑧 − -𝐵) ∈ {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴})}
3431, 33eqtr4i 2785 . . . . . . . . 9 ({𝑧 ∈ ℝ ∣ (𝑧 − -𝐵) ∈ 𝑦} ∖ {𝑧 ∈ ℝ ∣ (𝑧 − -𝐵) ∈ {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴}}) = {𝑧 ∈ ℝ ∣ (𝑧 − -𝐵) ∈ (𝑦 ∖ {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴})}
3530, 34eqtrdi 2810 . . . . . . . 8 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ⊆ ℝ ∧ (vol*‘𝑦) ∈ ℝ)) → ({𝑧 ∈ ℝ ∣ (𝑧 − -𝐵) ∈ 𝑦} ∖ 𝐴) = {𝑧 ∈ ℝ ∣ (𝑧 − -𝐵) ∈ (𝑦 ∖ {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴})})
3629, 9, 35ovolshft 24204 . . . . . . 7 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ⊆ ℝ ∧ (vol*‘𝑦) ∈ ℝ)) → (vol*‘(𝑦 ∖ {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴})) = (vol*‘({𝑧 ∈ ℝ ∣ (𝑧 − -𝐵) ∈ 𝑦} ∖ 𝐴)))
3728, 36oveq12d 7169 . . . . . 6 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ⊆ ℝ ∧ (vol*‘𝑦) ∈ ℝ)) → ((vol*‘(𝑦 ∩ {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴})) + (vol*‘(𝑦 ∖ {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴}))) = ((vol*‘({𝑧 ∈ ℝ ∣ (𝑧 − -𝐵) ∈ 𝑦} ∩ 𝐴)) + (vol*‘({𝑧 ∈ ℝ ∣ (𝑧 − -𝐵) ∈ 𝑦} ∖ 𝐴))))
3815, 11, 373eqtr4d 2804 . . . . 5 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ (𝑦 ⊆ ℝ ∧ (vol*‘𝑦) ∈ ℝ)) → (vol*‘𝑦) = ((vol*‘(𝑦 ∩ {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴})) + (vol*‘(𝑦 ∖ {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴}))))
3938expr 461 . . . 4 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ⊆ ℝ) → ((vol*‘𝑦) ∈ ℝ → (vol*‘𝑦) = ((vol*‘(𝑦 ∩ {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴})) + (vol*‘(𝑦 ∖ {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴})))))
403, 39sylan2 596 . . 3 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) ∧ 𝑦 ∈ 𝒫 ℝ) → ((vol*‘𝑦) ∈ ℝ → (vol*‘𝑦) = ((vol*‘(𝑦 ∩ {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴})) + (vol*‘(𝑦 ∖ {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴})))))
4140ralrimiva 3114 . 2 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) → ∀𝑦 ∈ 𝒫 ℝ((vol*‘𝑦) ∈ ℝ → (vol*‘𝑦) = ((vol*‘(𝑦 ∩ {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴})) + (vol*‘(𝑦 ∖ {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴})))))
42 ismbl 24219 . 2 ({𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴} ∈ dom vol ↔ ({𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴} ⊆ ℝ ∧ ∀𝑦 ∈ 𝒫 ℝ((vol*‘𝑦) ∈ ℝ → (vol*‘𝑦) = ((vol*‘(𝑦 ∩ {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴})) + (vol*‘(𝑦 ∖ {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴}))))))
432, 41, 42sylanbrc 587 1 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) → {𝑥 ∈ ℝ ∣ (𝑥𝐵) ∈ 𝐴} ∈ dom vol)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 400   = wceq 1539  wcel 2112  wral 3071  {crab 3075  cdif 3856  cin 3858  wss 3859  𝒫 cpw 4495  dom cdm 5525  cfv 6336  (class class class)co 7151  cr 10567   + caddc 10571  cmin 10901  -cneg 10902  vol*covol 24155  volcvol 24156
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-sep 5170  ax-nul 5177  ax-pow 5235  ax-pr 5299  ax-un 7460  ax-cnex 10624  ax-resscn 10625  ax-1cn 10626  ax-icn 10627  ax-addcl 10628  ax-addrcl 10629  ax-mulcl 10630  ax-mulrcl 10631  ax-mulcom 10632  ax-addass 10633  ax-mulass 10634  ax-distr 10635  ax-i2m1 10636  ax-1ne0 10637  ax-1rid 10638  ax-rnegex 10639  ax-rrecex 10640  ax-cnre 10641  ax-pre-lttri 10642  ax-pre-lttrn 10643  ax-pre-ltadd 10644  ax-pre-mulgt0 10645  ax-pre-sup 10646
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-nel 3057  df-ral 3076  df-rex 3077  df-reu 3078  df-rmo 3079  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-pss 3878  df-nul 4227  df-if 4422  df-pw 4497  df-sn 4524  df-pr 4526  df-tp 4528  df-op 4530  df-uni 4800  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5431  df-eprel 5436  df-po 5444  df-so 5445  df-fr 5484  df-we 5486  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6127  df-ord 6173  df-on 6174  df-lim 6175  df-suc 6176  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7581  df-1st 7694  df-2nd 7695  df-wrecs 7958  df-recs 8019  df-rdg 8057  df-er 8300  df-map 8419  df-en 8529  df-dom 8530  df-sdom 8531  df-sup 8932  df-inf 8933  df-pnf 10708  df-mnf 10709  df-xr 10710  df-ltxr 10711  df-le 10712  df-sub 10903  df-neg 10904  df-div 11329  df-nn 11668  df-2 11730  df-3 11731  df-n0 11928  df-z 12014  df-uz 12276  df-rp 12424  df-ioo 12776  df-ico 12778  df-icc 12779  df-fz 12933  df-seq 13412  df-exp 13473  df-cj 14499  df-re 14500  df-im 14501  df-sqrt 14635  df-abs 14636  df-ovol 24157  df-vol 24158
This theorem is referenced by:  vitalilem4  24304  vitalilem5  24305
  Copyright terms: Public domain W3C validator