MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  setsres Structured version   Visualization version   GIF version

Theorem setsres 16301
Description: The structure replacement function does not affect the value of 𝑆 away from 𝐴. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Mario Carneiro, 30-Apr-2015.)
Assertion
Ref Expression
setsres (𝑆𝑉 → ((𝑆 sSet ⟨𝐴, 𝐵⟩) ↾ (V ∖ {𝐴})) = (𝑆 ↾ (V ∖ {𝐴})))

Proof of Theorem setsres
StepHypRef Expression
1 opex 5166 . . . 4 𝐴, 𝐵⟩ ∈ V
2 setsvalg 16288 . . . 4 ((𝑆𝑉 ∧ ⟨𝐴, 𝐵⟩ ∈ V) → (𝑆 sSet ⟨𝐴, 𝐵⟩) = ((𝑆 ↾ (V ∖ dom {⟨𝐴, 𝐵⟩})) ∪ {⟨𝐴, 𝐵⟩}))
31, 2mpan2 681 . . 3 (𝑆𝑉 → (𝑆 sSet ⟨𝐴, 𝐵⟩) = ((𝑆 ↾ (V ∖ dom {⟨𝐴, 𝐵⟩})) ∪ {⟨𝐴, 𝐵⟩}))
43reseq1d 5643 . 2 (𝑆𝑉 → ((𝑆 sSet ⟨𝐴, 𝐵⟩) ↾ (V ∖ {𝐴})) = (((𝑆 ↾ (V ∖ dom {⟨𝐴, 𝐵⟩})) ∪ {⟨𝐴, 𝐵⟩}) ↾ (V ∖ {𝐴})))
5 resundir 5663 . . 3 (((𝑆 ↾ (V ∖ dom {⟨𝐴, 𝐵⟩})) ∪ {⟨𝐴, 𝐵⟩}) ↾ (V ∖ {𝐴})) = (((𝑆 ↾ (V ∖ dom {⟨𝐴, 𝐵⟩})) ↾ (V ∖ {𝐴})) ∪ ({⟨𝐴, 𝐵⟩} ↾ (V ∖ {𝐴})))
6 dmsnopss 5863 . . . . . . 7 dom {⟨𝐴, 𝐵⟩} ⊆ {𝐴}
7 sscon 3967 . . . . . . 7 (dom {⟨𝐴, 𝐵⟩} ⊆ {𝐴} → (V ∖ {𝐴}) ⊆ (V ∖ dom {⟨𝐴, 𝐵⟩}))
86, 7ax-mp 5 . . . . . 6 (V ∖ {𝐴}) ⊆ (V ∖ dom {⟨𝐴, 𝐵⟩})
9 resabs1 5678 . . . . . 6 ((V ∖ {𝐴}) ⊆ (V ∖ dom {⟨𝐴, 𝐵⟩}) → ((𝑆 ↾ (V ∖ dom {⟨𝐴, 𝐵⟩})) ↾ (V ∖ {𝐴})) = (𝑆 ↾ (V ∖ {𝐴})))
108, 9ax-mp 5 . . . . 5 ((𝑆 ↾ (V ∖ dom {⟨𝐴, 𝐵⟩})) ↾ (V ∖ {𝐴})) = (𝑆 ↾ (V ∖ {𝐴}))
11 dmres 5670 . . . . . . 7 dom ({⟨𝐴, 𝐵⟩} ↾ (V ∖ {𝐴})) = ((V ∖ {𝐴}) ∩ dom {⟨𝐴, 𝐵⟩})
12 disj2 4250 . . . . . . . 8 (((V ∖ {𝐴}) ∩ dom {⟨𝐴, 𝐵⟩}) = ∅ ↔ (V ∖ {𝐴}) ⊆ (V ∖ dom {⟨𝐴, 𝐵⟩}))
138, 12mpbir 223 . . . . . . 7 ((V ∖ {𝐴}) ∩ dom {⟨𝐴, 𝐵⟩}) = ∅
1411, 13eqtri 2802 . . . . . 6 dom ({⟨𝐴, 𝐵⟩} ↾ (V ∖ {𝐴})) = ∅
15 relres 5677 . . . . . . 7 Rel ({⟨𝐴, 𝐵⟩} ↾ (V ∖ {𝐴}))
16 reldm0 5590 . . . . . . 7 (Rel ({⟨𝐴, 𝐵⟩} ↾ (V ∖ {𝐴})) → (({⟨𝐴, 𝐵⟩} ↾ (V ∖ {𝐴})) = ∅ ↔ dom ({⟨𝐴, 𝐵⟩} ↾ (V ∖ {𝐴})) = ∅))
1715, 16ax-mp 5 . . . . . 6 (({⟨𝐴, 𝐵⟩} ↾ (V ∖ {𝐴})) = ∅ ↔ dom ({⟨𝐴, 𝐵⟩} ↾ (V ∖ {𝐴})) = ∅)
1814, 17mpbir 223 . . . . 5 ({⟨𝐴, 𝐵⟩} ↾ (V ∖ {𝐴})) = ∅
1910, 18uneq12i 3988 . . . 4 (((𝑆 ↾ (V ∖ dom {⟨𝐴, 𝐵⟩})) ↾ (V ∖ {𝐴})) ∪ ({⟨𝐴, 𝐵⟩} ↾ (V ∖ {𝐴}))) = ((𝑆 ↾ (V ∖ {𝐴})) ∪ ∅)
20 un0 4193 . . . 4 ((𝑆 ↾ (V ∖ {𝐴})) ∪ ∅) = (𝑆 ↾ (V ∖ {𝐴}))
2119, 20eqtri 2802 . . 3 (((𝑆 ↾ (V ∖ dom {⟨𝐴, 𝐵⟩})) ↾ (V ∖ {𝐴})) ∪ ({⟨𝐴, 𝐵⟩} ↾ (V ∖ {𝐴}))) = (𝑆 ↾ (V ∖ {𝐴}))
225, 21eqtri 2802 . 2 (((𝑆 ↾ (V ∖ dom {⟨𝐴, 𝐵⟩})) ∪ {⟨𝐴, 𝐵⟩}) ↾ (V ∖ {𝐴})) = (𝑆 ↾ (V ∖ {𝐴}))
234, 22syl6eq 2830 1 (𝑆𝑉 → ((𝑆 sSet ⟨𝐴, 𝐵⟩) ↾ (V ∖ {𝐴})) = (𝑆 ↾ (V ∖ {𝐴})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198   = wceq 1601  wcel 2107  Vcvv 3398  cdif 3789  cun 3790  cin 3791  wss 3792  c0 4141  {csn 4398  cop 4404  dom cdm 5357  cres 5359  Rel wrel 5362  (class class class)co 6924   sSet csts 16257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5019  ax-nul 5027  ax-pr 5140  ax-un 7228
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-ral 3095  df-rex 3096  df-rab 3099  df-v 3400  df-sbc 3653  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4674  df-br 4889  df-opab 4951  df-id 5263  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-res 5369  df-iota 6101  df-fun 6139  df-fv 6145  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-sets 16266
This theorem is referenced by:  setsabs  16302  setsnid  16315  mdetunilem9  20835
  Copyright terms: Public domain W3C validator