MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  setsres Structured version   Visualization version   GIF version

Theorem setsres 17058
Description: The structure replacement function does not affect the value of 𝑆 away from 𝐴. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Mario Carneiro, 30-Apr-2015.)
Assertion
Ref Expression
setsres (𝑆𝑉 → ((𝑆 sSet ⟨𝐴, 𝐵⟩) ↾ (V ∖ {𝐴})) = (𝑆 ↾ (V ∖ {𝐴})))

Proof of Theorem setsres
StepHypRef Expression
1 opex 5425 . . . 4 𝐴, 𝐵⟩ ∈ V
2 setsvalg 17046 . . . 4 ((𝑆𝑉 ∧ ⟨𝐴, 𝐵⟩ ∈ V) → (𝑆 sSet ⟨𝐴, 𝐵⟩) = ((𝑆 ↾ (V ∖ dom {⟨𝐴, 𝐵⟩})) ∪ {⟨𝐴, 𝐵⟩}))
31, 2mpan2 690 . . 3 (𝑆𝑉 → (𝑆 sSet ⟨𝐴, 𝐵⟩) = ((𝑆 ↾ (V ∖ dom {⟨𝐴, 𝐵⟩})) ∪ {⟨𝐴, 𝐵⟩}))
43reseq1d 5940 . 2 (𝑆𝑉 → ((𝑆 sSet ⟨𝐴, 𝐵⟩) ↾ (V ∖ {𝐴})) = (((𝑆 ↾ (V ∖ dom {⟨𝐴, 𝐵⟩})) ∪ {⟨𝐴, 𝐵⟩}) ↾ (V ∖ {𝐴})))
5 resundir 5956 . . 3 (((𝑆 ↾ (V ∖ dom {⟨𝐴, 𝐵⟩})) ∪ {⟨𝐴, 𝐵⟩}) ↾ (V ∖ {𝐴})) = (((𝑆 ↾ (V ∖ dom {⟨𝐴, 𝐵⟩})) ↾ (V ∖ {𝐴})) ∪ ({⟨𝐴, 𝐵⟩} ↾ (V ∖ {𝐴})))
6 dmsnopss 6170 . . . . . . 7 dom {⟨𝐴, 𝐵⟩} ⊆ {𝐴}
7 sscon 4102 . . . . . . 7 (dom {⟨𝐴, 𝐵⟩} ⊆ {𝐴} → (V ∖ {𝐴}) ⊆ (V ∖ dom {⟨𝐴, 𝐵⟩}))
86, 7ax-mp 5 . . . . . 6 (V ∖ {𝐴}) ⊆ (V ∖ dom {⟨𝐴, 𝐵⟩})
9 resabs1 5971 . . . . . 6 ((V ∖ {𝐴}) ⊆ (V ∖ dom {⟨𝐴, 𝐵⟩}) → ((𝑆 ↾ (V ∖ dom {⟨𝐴, 𝐵⟩})) ↾ (V ∖ {𝐴})) = (𝑆 ↾ (V ∖ {𝐴})))
108, 9ax-mp 5 . . . . 5 ((𝑆 ↾ (V ∖ dom {⟨𝐴, 𝐵⟩})) ↾ (V ∖ {𝐴})) = (𝑆 ↾ (V ∖ {𝐴}))
11 dmres 5963 . . . . . . 7 dom ({⟨𝐴, 𝐵⟩} ↾ (V ∖ {𝐴})) = ((V ∖ {𝐴}) ∩ dom {⟨𝐴, 𝐵⟩})
12 disj2 4421 . . . . . . . 8 (((V ∖ {𝐴}) ∩ dom {⟨𝐴, 𝐵⟩}) = ∅ ↔ (V ∖ {𝐴}) ⊆ (V ∖ dom {⟨𝐴, 𝐵⟩}))
138, 12mpbir 230 . . . . . . 7 ((V ∖ {𝐴}) ∩ dom {⟨𝐴, 𝐵⟩}) = ∅
1411, 13eqtri 2761 . . . . . 6 dom ({⟨𝐴, 𝐵⟩} ↾ (V ∖ {𝐴})) = ∅
15 relres 5970 . . . . . . 7 Rel ({⟨𝐴, 𝐵⟩} ↾ (V ∖ {𝐴}))
16 reldm0 5887 . . . . . . 7 (Rel ({⟨𝐴, 𝐵⟩} ↾ (V ∖ {𝐴})) → (({⟨𝐴, 𝐵⟩} ↾ (V ∖ {𝐴})) = ∅ ↔ dom ({⟨𝐴, 𝐵⟩} ↾ (V ∖ {𝐴})) = ∅))
1715, 16ax-mp 5 . . . . . 6 (({⟨𝐴, 𝐵⟩} ↾ (V ∖ {𝐴})) = ∅ ↔ dom ({⟨𝐴, 𝐵⟩} ↾ (V ∖ {𝐴})) = ∅)
1814, 17mpbir 230 . . . . 5 ({⟨𝐴, 𝐵⟩} ↾ (V ∖ {𝐴})) = ∅
1910, 18uneq12i 4125 . . . 4 (((𝑆 ↾ (V ∖ dom {⟨𝐴, 𝐵⟩})) ↾ (V ∖ {𝐴})) ∪ ({⟨𝐴, 𝐵⟩} ↾ (V ∖ {𝐴}))) = ((𝑆 ↾ (V ∖ {𝐴})) ∪ ∅)
20 un0 4354 . . . 4 ((𝑆 ↾ (V ∖ {𝐴})) ∪ ∅) = (𝑆 ↾ (V ∖ {𝐴}))
2119, 20eqtri 2761 . . 3 (((𝑆 ↾ (V ∖ dom {⟨𝐴, 𝐵⟩})) ↾ (V ∖ {𝐴})) ∪ ({⟨𝐴, 𝐵⟩} ↾ (V ∖ {𝐴}))) = (𝑆 ↾ (V ∖ {𝐴}))
225, 21eqtri 2761 . 2 (((𝑆 ↾ (V ∖ dom {⟨𝐴, 𝐵⟩})) ∪ {⟨𝐴, 𝐵⟩}) ↾ (V ∖ {𝐴})) = (𝑆 ↾ (V ∖ {𝐴}))
234, 22eqtrdi 2789 1 (𝑆𝑉 → ((𝑆 sSet ⟨𝐴, 𝐵⟩) ↾ (V ∖ {𝐴})) = (𝑆 ↾ (V ∖ {𝐴})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1542  wcel 2107  Vcvv 3447  cdif 3911  cun 3912  cin 3913  wss 3914  c0 4286  {csn 4590  cop 4596  dom cdm 5637  cres 5639  Rel wrel 5642  (class class class)co 7361   sSet csts 17043
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5260  ax-nul 5267  ax-pr 5388  ax-un 7676
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3407  df-v 3449  df-sbc 3744  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4287  df-if 4491  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-br 5110  df-opab 5172  df-id 5535  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-res 5649  df-iota 6452  df-fun 6502  df-fv 6508  df-ov 7364  df-oprab 7365  df-mpo 7366  df-sets 17044
This theorem is referenced by:  setsabs  17059  setsnid  17089  setsnidOLD  17090  mdetunilem9  21992
  Copyright terms: Public domain W3C validator