MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clsconn Structured version   Visualization version   GIF version

Theorem clsconn 23258
Description: The closure of a connected set is connected. (Contributed by Mario Carneiro, 19-Mar-2015.)
Assertion
Ref Expression
clsconn ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) → (𝐽t ((cls‘𝐽)‘𝐴)) ∈ Conn)

Proof of Theorem clsconn
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll3 1211 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴)))) → (𝐽t 𝐴) ∈ Conn)
2 simpll1 1209 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) → 𝐽 ∈ (TopOn‘𝑋))
3 simpll2 1210 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) → 𝐴𝑋)
4 simplrl 774 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) → 𝑥𝐽)
5 simplrr 775 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) → 𝑦𝐽)
6 simprl1 1215 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) → (𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅)
7 n0 4339 . . . . . . . . 9 ((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ↔ ∃𝑧 𝑧 ∈ (𝑥 ∩ ((cls‘𝐽)‘𝐴)))
86, 7sylib 217 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) → ∃𝑧 𝑧 ∈ (𝑥 ∩ ((cls‘𝐽)‘𝐴)))
92adantr 480 . . . . . . . . . 10 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) ∧ 𝑧 ∈ (𝑥 ∩ ((cls‘𝐽)‘𝐴))) → 𝐽 ∈ (TopOn‘𝑋))
10 topontop 22739 . . . . . . . . . 10 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
119, 10syl 17 . . . . . . . . 9 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) ∧ 𝑧 ∈ (𝑥 ∩ ((cls‘𝐽)‘𝐴))) → 𝐽 ∈ Top)
123adantr 480 . . . . . . . . . 10 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) ∧ 𝑧 ∈ (𝑥 ∩ ((cls‘𝐽)‘𝐴))) → 𝐴𝑋)
13 toponuni 22740 . . . . . . . . . . 11 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
149, 13syl 17 . . . . . . . . . 10 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) ∧ 𝑧 ∈ (𝑥 ∩ ((cls‘𝐽)‘𝐴))) → 𝑋 = 𝐽)
1512, 14sseqtrd 4015 . . . . . . . . 9 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) ∧ 𝑧 ∈ (𝑥 ∩ ((cls‘𝐽)‘𝐴))) → 𝐴 𝐽)
16 simpr 484 . . . . . . . . . 10 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) ∧ 𝑧 ∈ (𝑥 ∩ ((cls‘𝐽)‘𝐴))) → 𝑧 ∈ (𝑥 ∩ ((cls‘𝐽)‘𝐴)))
1716elin2d 4192 . . . . . . . . 9 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) ∧ 𝑧 ∈ (𝑥 ∩ ((cls‘𝐽)‘𝐴))) → 𝑧 ∈ ((cls‘𝐽)‘𝐴))
184adantr 480 . . . . . . . . 9 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) ∧ 𝑧 ∈ (𝑥 ∩ ((cls‘𝐽)‘𝐴))) → 𝑥𝐽)
1916elin1d 4191 . . . . . . . . 9 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) ∧ 𝑧 ∈ (𝑥 ∩ ((cls‘𝐽)‘𝐴))) → 𝑧𝑥)
20 eqid 2724 . . . . . . . . . 10 𝐽 = 𝐽
2120clsndisj 22903 . . . . . . . . 9 (((𝐽 ∈ Top ∧ 𝐴 𝐽𝑧 ∈ ((cls‘𝐽)‘𝐴)) ∧ (𝑥𝐽𝑧𝑥)) → (𝑥𝐴) ≠ ∅)
2211, 15, 17, 18, 19, 21syl32anc 1375 . . . . . . . 8 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) ∧ 𝑧 ∈ (𝑥 ∩ ((cls‘𝐽)‘𝐴))) → (𝑥𝐴) ≠ ∅)
238, 22exlimddv 1930 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) → (𝑥𝐴) ≠ ∅)
24 simprl2 1216 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) → (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅)
25 n0 4339 . . . . . . . . 9 ((𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ↔ ∃𝑧 𝑧 ∈ (𝑦 ∩ ((cls‘𝐽)‘𝐴)))
2624, 25sylib 217 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) → ∃𝑧 𝑧 ∈ (𝑦 ∩ ((cls‘𝐽)‘𝐴)))
272adantr 480 . . . . . . . . . 10 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) ∧ 𝑧 ∈ (𝑦 ∩ ((cls‘𝐽)‘𝐴))) → 𝐽 ∈ (TopOn‘𝑋))
2827, 10syl 17 . . . . . . . . 9 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) ∧ 𝑧 ∈ (𝑦 ∩ ((cls‘𝐽)‘𝐴))) → 𝐽 ∈ Top)
293adantr 480 . . . . . . . . . 10 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) ∧ 𝑧 ∈ (𝑦 ∩ ((cls‘𝐽)‘𝐴))) → 𝐴𝑋)
3027, 13syl 17 . . . . . . . . . 10 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) ∧ 𝑧 ∈ (𝑦 ∩ ((cls‘𝐽)‘𝐴))) → 𝑋 = 𝐽)
3129, 30sseqtrd 4015 . . . . . . . . 9 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) ∧ 𝑧 ∈ (𝑦 ∩ ((cls‘𝐽)‘𝐴))) → 𝐴 𝐽)
32 simpr 484 . . . . . . . . . 10 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) ∧ 𝑧 ∈ (𝑦 ∩ ((cls‘𝐽)‘𝐴))) → 𝑧 ∈ (𝑦 ∩ ((cls‘𝐽)‘𝐴)))
3332elin2d 4192 . . . . . . . . 9 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) ∧ 𝑧 ∈ (𝑦 ∩ ((cls‘𝐽)‘𝐴))) → 𝑧 ∈ ((cls‘𝐽)‘𝐴))
345adantr 480 . . . . . . . . 9 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) ∧ 𝑧 ∈ (𝑦 ∩ ((cls‘𝐽)‘𝐴))) → 𝑦𝐽)
3532elin1d 4191 . . . . . . . . 9 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) ∧ 𝑧 ∈ (𝑦 ∩ ((cls‘𝐽)‘𝐴))) → 𝑧𝑦)
3620clsndisj 22903 . . . . . . . . 9 (((𝐽 ∈ Top ∧ 𝐴 𝐽𝑧 ∈ ((cls‘𝐽)‘𝐴)) ∧ (𝑦𝐽𝑧𝑦)) → (𝑦𝐴) ≠ ∅)
3728, 31, 33, 34, 35, 36syl32anc 1375 . . . . . . . 8 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) ∧ 𝑧 ∈ (𝑦 ∩ ((cls‘𝐽)‘𝐴))) → (𝑦𝐴) ≠ ∅)
3826, 37exlimddv 1930 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) → (𝑦𝐴) ≠ ∅)
39 simprl3 1217 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) → (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴)))
402, 10syl 17 . . . . . . . . . . . 12 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) → 𝐽 ∈ Top)
412, 13syl 17 . . . . . . . . . . . . 13 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) → 𝑋 = 𝐽)
423, 41sseqtrd 4015 . . . . . . . . . . . 12 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) → 𝐴 𝐽)
4320sscls 22884 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ 𝐴 𝐽) → 𝐴 ⊆ ((cls‘𝐽)‘𝐴))
4440, 42, 43syl2anc 583 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) → 𝐴 ⊆ ((cls‘𝐽)‘𝐴))
4544sscond 4134 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) → (𝑋 ∖ ((cls‘𝐽)‘𝐴)) ⊆ (𝑋𝐴))
4639, 45sstrd 3985 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) → (𝑥𝑦) ⊆ (𝑋𝐴))
47 ssv 3999 . . . . . . . . . 10 𝑋 ⊆ V
48 ssdif 4132 . . . . . . . . . 10 (𝑋 ⊆ V → (𝑋𝐴) ⊆ (V ∖ 𝐴))
4947, 48ax-mp 5 . . . . . . . . 9 (𝑋𝐴) ⊆ (V ∖ 𝐴)
5046, 49sstrdi 3987 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) → (𝑥𝑦) ⊆ (V ∖ 𝐴))
51 disj2 4450 . . . . . . . 8 (((𝑥𝑦) ∩ 𝐴) = ∅ ↔ (𝑥𝑦) ⊆ (V ∖ 𝐴))
5250, 51sylibr 233 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) → ((𝑥𝑦) ∩ 𝐴) = ∅)
53 simprr 770 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) → ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))
5444, 53sstrd 3985 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) → 𝐴 ⊆ (𝑥𝑦))
552, 3, 4, 5, 23, 38, 52, 54nconnsubb 23251 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) → ¬ (𝐽t 𝐴) ∈ Conn)
5655expr 456 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴)))) → (((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦) → ¬ (𝐽t 𝐴) ∈ Conn))
571, 56mt2d 136 . . . 4 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴)))) → ¬ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))
5857ex 412 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) → (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) → ¬ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦)))
5958ralrimivva 3192 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) → ∀𝑥𝐽𝑦𝐽 (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) → ¬ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦)))
60 simp1 1133 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) → 𝐽 ∈ (TopOn‘𝑋))
6113sseq2d 4007 . . . . . . 7 (𝐽 ∈ (TopOn‘𝑋) → (𝐴𝑋𝐴 𝐽))
6261biimpa 476 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → 𝐴 𝐽)
6320clsss3 22887 . . . . . 6 ((𝐽 ∈ Top ∧ 𝐴 𝐽) → ((cls‘𝐽)‘𝐴) ⊆ 𝐽)
6410, 62, 63syl2an2r 682 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → ((cls‘𝐽)‘𝐴) ⊆ 𝐽)
6513adantr 480 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → 𝑋 = 𝐽)
6664, 65sseqtrrd 4016 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → ((cls‘𝐽)‘𝐴) ⊆ 𝑋)
67663adant3 1129 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) → ((cls‘𝐽)‘𝐴) ⊆ 𝑋)
68 connsub 23249 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ ((cls‘𝐽)‘𝐴) ⊆ 𝑋) → ((𝐽t ((cls‘𝐽)‘𝐴)) ∈ Conn ↔ ∀𝑥𝐽𝑦𝐽 (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) → ¬ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))))
6960, 67, 68syl2anc 583 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) → ((𝐽t ((cls‘𝐽)‘𝐴)) ∈ Conn ↔ ∀𝑥𝐽𝑦𝐽 (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) → ¬ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))))
7059, 69mpbird 257 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) → (𝐽t ((cls‘𝐽)‘𝐴)) ∈ Conn)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1084   = wceq 1533  wex 1773  wcel 2098  wne 2932  wral 3053  Vcvv 3466  cdif 3938  cun 3939  cin 3940  wss 3941  c0 4315   cuni 4900  cfv 6534  (class class class)co 7402  t crest 17367  Topctop 22719  TopOnctopon 22736  clsccl 22846  Conncconn 23239
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5276  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3960  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-int 4942  df-iun 4990  df-iin 4991  df-br 5140  df-opab 5202  df-mpt 5223  df-tr 5257  df-id 5565  df-eprel 5571  df-po 5579  df-so 5580  df-fr 5622  df-we 5624  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-ord 6358  df-on 6359  df-lim 6360  df-suc 6361  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-ov 7405  df-oprab 7406  df-mpo 7407  df-om 7850  df-1st 7969  df-2nd 7970  df-en 8937  df-fin 8940  df-fi 9403  df-rest 17369  df-topgen 17390  df-top 22720  df-topon 22737  df-bases 22773  df-cld 22847  df-ntr 22848  df-cls 22849  df-conn 23240
This theorem is referenced by:  conncompcld  23262
  Copyright terms: Public domain W3C validator