MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clsconn Structured version   Visualization version   GIF version

Theorem clsconn 23338
Description: The closure of a connected set is connected. (Contributed by Mario Carneiro, 19-Mar-2015.)
Assertion
Ref Expression
clsconn ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) → (𝐽t ((cls‘𝐽)‘𝐴)) ∈ Conn)

Proof of Theorem clsconn
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll3 1215 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴)))) → (𝐽t 𝐴) ∈ Conn)
2 simpll1 1213 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) → 𝐽 ∈ (TopOn‘𝑋))
3 simpll2 1214 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) → 𝐴𝑋)
4 simplrl 776 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) → 𝑥𝐽)
5 simplrr 777 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) → 𝑦𝐽)
6 simprl1 1219 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) → (𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅)
7 n0 4301 . . . . . . . . 9 ((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ↔ ∃𝑧 𝑧 ∈ (𝑥 ∩ ((cls‘𝐽)‘𝐴)))
86, 7sylib 218 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) → ∃𝑧 𝑧 ∈ (𝑥 ∩ ((cls‘𝐽)‘𝐴)))
92adantr 480 . . . . . . . . . 10 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) ∧ 𝑧 ∈ (𝑥 ∩ ((cls‘𝐽)‘𝐴))) → 𝐽 ∈ (TopOn‘𝑋))
10 topontop 22821 . . . . . . . . . 10 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
119, 10syl 17 . . . . . . . . 9 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) ∧ 𝑧 ∈ (𝑥 ∩ ((cls‘𝐽)‘𝐴))) → 𝐽 ∈ Top)
123adantr 480 . . . . . . . . . 10 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) ∧ 𝑧 ∈ (𝑥 ∩ ((cls‘𝐽)‘𝐴))) → 𝐴𝑋)
13 toponuni 22822 . . . . . . . . . . 11 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
149, 13syl 17 . . . . . . . . . 10 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) ∧ 𝑧 ∈ (𝑥 ∩ ((cls‘𝐽)‘𝐴))) → 𝑋 = 𝐽)
1512, 14sseqtrd 3969 . . . . . . . . 9 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) ∧ 𝑧 ∈ (𝑥 ∩ ((cls‘𝐽)‘𝐴))) → 𝐴 𝐽)
16 simpr 484 . . . . . . . . . 10 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) ∧ 𝑧 ∈ (𝑥 ∩ ((cls‘𝐽)‘𝐴))) → 𝑧 ∈ (𝑥 ∩ ((cls‘𝐽)‘𝐴)))
1716elin2d 4153 . . . . . . . . 9 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) ∧ 𝑧 ∈ (𝑥 ∩ ((cls‘𝐽)‘𝐴))) → 𝑧 ∈ ((cls‘𝐽)‘𝐴))
184adantr 480 . . . . . . . . 9 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) ∧ 𝑧 ∈ (𝑥 ∩ ((cls‘𝐽)‘𝐴))) → 𝑥𝐽)
1916elin1d 4152 . . . . . . . . 9 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) ∧ 𝑧 ∈ (𝑥 ∩ ((cls‘𝐽)‘𝐴))) → 𝑧𝑥)
20 eqid 2730 . . . . . . . . . 10 𝐽 = 𝐽
2120clsndisj 22983 . . . . . . . . 9 (((𝐽 ∈ Top ∧ 𝐴 𝐽𝑧 ∈ ((cls‘𝐽)‘𝐴)) ∧ (𝑥𝐽𝑧𝑥)) → (𝑥𝐴) ≠ ∅)
2211, 15, 17, 18, 19, 21syl32anc 1380 . . . . . . . 8 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) ∧ 𝑧 ∈ (𝑥 ∩ ((cls‘𝐽)‘𝐴))) → (𝑥𝐴) ≠ ∅)
238, 22exlimddv 1936 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) → (𝑥𝐴) ≠ ∅)
24 simprl2 1220 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) → (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅)
25 n0 4301 . . . . . . . . 9 ((𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ↔ ∃𝑧 𝑧 ∈ (𝑦 ∩ ((cls‘𝐽)‘𝐴)))
2624, 25sylib 218 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) → ∃𝑧 𝑧 ∈ (𝑦 ∩ ((cls‘𝐽)‘𝐴)))
272adantr 480 . . . . . . . . . 10 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) ∧ 𝑧 ∈ (𝑦 ∩ ((cls‘𝐽)‘𝐴))) → 𝐽 ∈ (TopOn‘𝑋))
2827, 10syl 17 . . . . . . . . 9 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) ∧ 𝑧 ∈ (𝑦 ∩ ((cls‘𝐽)‘𝐴))) → 𝐽 ∈ Top)
293adantr 480 . . . . . . . . . 10 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) ∧ 𝑧 ∈ (𝑦 ∩ ((cls‘𝐽)‘𝐴))) → 𝐴𝑋)
3027, 13syl 17 . . . . . . . . . 10 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) ∧ 𝑧 ∈ (𝑦 ∩ ((cls‘𝐽)‘𝐴))) → 𝑋 = 𝐽)
3129, 30sseqtrd 3969 . . . . . . . . 9 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) ∧ 𝑧 ∈ (𝑦 ∩ ((cls‘𝐽)‘𝐴))) → 𝐴 𝐽)
32 simpr 484 . . . . . . . . . 10 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) ∧ 𝑧 ∈ (𝑦 ∩ ((cls‘𝐽)‘𝐴))) → 𝑧 ∈ (𝑦 ∩ ((cls‘𝐽)‘𝐴)))
3332elin2d 4153 . . . . . . . . 9 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) ∧ 𝑧 ∈ (𝑦 ∩ ((cls‘𝐽)‘𝐴))) → 𝑧 ∈ ((cls‘𝐽)‘𝐴))
345adantr 480 . . . . . . . . 9 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) ∧ 𝑧 ∈ (𝑦 ∩ ((cls‘𝐽)‘𝐴))) → 𝑦𝐽)
3532elin1d 4152 . . . . . . . . 9 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) ∧ 𝑧 ∈ (𝑦 ∩ ((cls‘𝐽)‘𝐴))) → 𝑧𝑦)
3620clsndisj 22983 . . . . . . . . 9 (((𝐽 ∈ Top ∧ 𝐴 𝐽𝑧 ∈ ((cls‘𝐽)‘𝐴)) ∧ (𝑦𝐽𝑧𝑦)) → (𝑦𝐴) ≠ ∅)
3728, 31, 33, 34, 35, 36syl32anc 1380 . . . . . . . 8 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) ∧ 𝑧 ∈ (𝑦 ∩ ((cls‘𝐽)‘𝐴))) → (𝑦𝐴) ≠ ∅)
3826, 37exlimddv 1936 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) → (𝑦𝐴) ≠ ∅)
39 simprl3 1221 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) → (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴)))
402, 10syl 17 . . . . . . . . . . . 12 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) → 𝐽 ∈ Top)
412, 13syl 17 . . . . . . . . . . . . 13 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) → 𝑋 = 𝐽)
423, 41sseqtrd 3969 . . . . . . . . . . . 12 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) → 𝐴 𝐽)
4320sscls 22964 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ 𝐴 𝐽) → 𝐴 ⊆ ((cls‘𝐽)‘𝐴))
4440, 42, 43syl2anc 584 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) → 𝐴 ⊆ ((cls‘𝐽)‘𝐴))
4544sscond 4094 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) → (𝑋 ∖ ((cls‘𝐽)‘𝐴)) ⊆ (𝑋𝐴))
4639, 45sstrd 3943 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) → (𝑥𝑦) ⊆ (𝑋𝐴))
47 ssv 3957 . . . . . . . . . 10 𝑋 ⊆ V
48 ssdif 4092 . . . . . . . . . 10 (𝑋 ⊆ V → (𝑋𝐴) ⊆ (V ∖ 𝐴))
4947, 48ax-mp 5 . . . . . . . . 9 (𝑋𝐴) ⊆ (V ∖ 𝐴)
5046, 49sstrdi 3945 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) → (𝑥𝑦) ⊆ (V ∖ 𝐴))
51 disj2 4406 . . . . . . . 8 (((𝑥𝑦) ∩ 𝐴) = ∅ ↔ (𝑥𝑦) ⊆ (V ∖ 𝐴))
5250, 51sylibr 234 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) → ((𝑥𝑦) ∩ 𝐴) = ∅)
53 simprr 772 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) → ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))
5444, 53sstrd 3943 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) → 𝐴 ⊆ (𝑥𝑦))
552, 3, 4, 5, 23, 38, 52, 54nconnsubb 23331 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) → ¬ (𝐽t 𝐴) ∈ Conn)
5655expr 456 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴)))) → (((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦) → ¬ (𝐽t 𝐴) ∈ Conn))
571, 56mt2d 136 . . . 4 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴)))) → ¬ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))
5857ex 412 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) → (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) → ¬ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦)))
5958ralrimivva 3173 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) → ∀𝑥𝐽𝑦𝐽 (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) → ¬ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦)))
60 simp1 1136 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) → 𝐽 ∈ (TopOn‘𝑋))
6113sseq2d 3965 . . . . . . 7 (𝐽 ∈ (TopOn‘𝑋) → (𝐴𝑋𝐴 𝐽))
6261biimpa 476 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → 𝐴 𝐽)
6320clsss3 22967 . . . . . 6 ((𝐽 ∈ Top ∧ 𝐴 𝐽) → ((cls‘𝐽)‘𝐴) ⊆ 𝐽)
6410, 62, 63syl2an2r 685 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → ((cls‘𝐽)‘𝐴) ⊆ 𝐽)
6513adantr 480 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → 𝑋 = 𝐽)
6664, 65sseqtrrd 3970 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → ((cls‘𝐽)‘𝐴) ⊆ 𝑋)
67663adant3 1132 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) → ((cls‘𝐽)‘𝐴) ⊆ 𝑋)
68 connsub 23329 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ ((cls‘𝐽)‘𝐴) ⊆ 𝑋) → ((𝐽t ((cls‘𝐽)‘𝐴)) ∈ Conn ↔ ∀𝑥𝐽𝑦𝐽 (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) → ¬ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))))
6960, 67, 68syl2anc 584 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) → ((𝐽t ((cls‘𝐽)‘𝐴)) ∈ Conn ↔ ∀𝑥𝐽𝑦𝐽 (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) → ¬ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))))
7059, 69mpbird 257 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) → (𝐽t ((cls‘𝐽)‘𝐴)) ∈ Conn)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wex 1780  wcel 2110  wne 2926  wral 3045  Vcvv 3434  cdif 3897  cun 3898  cin 3899  wss 3900  c0 4281   cuni 4857  cfv 6477  (class class class)co 7341  t crest 17316  Topctop 22801  TopOnctopon 22818  clsccl 22926  Conncconn 23319
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-en 8865  df-fin 8868  df-fi 9290  df-rest 17318  df-topgen 17339  df-top 22802  df-topon 22819  df-bases 22854  df-cld 22927  df-ntr 22928  df-cls 22929  df-conn 23320
This theorem is referenced by:  conncompcld  23342
  Copyright terms: Public domain W3C validator