Step | Hyp | Ref
| Expression |
1 | | simpll3 1213 |
. . . . 5
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ (𝐽 ↾t 𝐴) ∈ Conn) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ ((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥 ∩ 𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴)))) → (𝐽 ↾t 𝐴) ∈ Conn) |
2 | | simpll1 1211 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ (𝐽 ↾t 𝐴) ∈ Conn) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥 ∩ 𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥 ∪ 𝑦))) → 𝐽 ∈ (TopOn‘𝑋)) |
3 | | simpll2 1212 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ (𝐽 ↾t 𝐴) ∈ Conn) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥 ∩ 𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥 ∪ 𝑦))) → 𝐴 ⊆ 𝑋) |
4 | | simplrl 774 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ (𝐽 ↾t 𝐴) ∈ Conn) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥 ∩ 𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥 ∪ 𝑦))) → 𝑥 ∈ 𝐽) |
5 | | simplrr 775 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ (𝐽 ↾t 𝐴) ∈ Conn) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥 ∩ 𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥 ∪ 𝑦))) → 𝑦 ∈ 𝐽) |
6 | | simprl1 1217 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ (𝐽 ↾t 𝐴) ∈ Conn) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥 ∩ 𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥 ∪ 𝑦))) → (𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅) |
7 | | n0 4281 |
. . . . . . . . 9
⊢ ((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ↔ ∃𝑧 𝑧 ∈ (𝑥 ∩ ((cls‘𝐽)‘𝐴))) |
8 | 6, 7 | sylib 217 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ (𝐽 ↾t 𝐴) ∈ Conn) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥 ∩ 𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥 ∪ 𝑦))) → ∃𝑧 𝑧 ∈ (𝑥 ∩ ((cls‘𝐽)‘𝐴))) |
9 | 2 | adantr 481 |
. . . . . . . . . 10
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ (𝐽 ↾t 𝐴) ∈ Conn) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥 ∩ 𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥 ∪ 𝑦))) ∧ 𝑧 ∈ (𝑥 ∩ ((cls‘𝐽)‘𝐴))) → 𝐽 ∈ (TopOn‘𝑋)) |
10 | | topontop 22071 |
. . . . . . . . . 10
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) |
11 | 9, 10 | syl 17 |
. . . . . . . . 9
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ (𝐽 ↾t 𝐴) ∈ Conn) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥 ∩ 𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥 ∪ 𝑦))) ∧ 𝑧 ∈ (𝑥 ∩ ((cls‘𝐽)‘𝐴))) → 𝐽 ∈ Top) |
12 | 3 | adantr 481 |
. . . . . . . . . 10
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ (𝐽 ↾t 𝐴) ∈ Conn) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥 ∩ 𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥 ∪ 𝑦))) ∧ 𝑧 ∈ (𝑥 ∩ ((cls‘𝐽)‘𝐴))) → 𝐴 ⊆ 𝑋) |
13 | | toponuni 22072 |
. . . . . . . . . . 11
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) |
14 | 9, 13 | syl 17 |
. . . . . . . . . 10
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ (𝐽 ↾t 𝐴) ∈ Conn) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥 ∩ 𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥 ∪ 𝑦))) ∧ 𝑧 ∈ (𝑥 ∩ ((cls‘𝐽)‘𝐴))) → 𝑋 = ∪ 𝐽) |
15 | 12, 14 | sseqtrd 3962 |
. . . . . . . . 9
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ (𝐽 ↾t 𝐴) ∈ Conn) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥 ∩ 𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥 ∪ 𝑦))) ∧ 𝑧 ∈ (𝑥 ∩ ((cls‘𝐽)‘𝐴))) → 𝐴 ⊆ ∪ 𝐽) |
16 | | simpr 485 |
. . . . . . . . . 10
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ (𝐽 ↾t 𝐴) ∈ Conn) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥 ∩ 𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥 ∪ 𝑦))) ∧ 𝑧 ∈ (𝑥 ∩ ((cls‘𝐽)‘𝐴))) → 𝑧 ∈ (𝑥 ∩ ((cls‘𝐽)‘𝐴))) |
17 | 16 | elin2d 4134 |
. . . . . . . . 9
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ (𝐽 ↾t 𝐴) ∈ Conn) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥 ∩ 𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥 ∪ 𝑦))) ∧ 𝑧 ∈ (𝑥 ∩ ((cls‘𝐽)‘𝐴))) → 𝑧 ∈ ((cls‘𝐽)‘𝐴)) |
18 | 4 | adantr 481 |
. . . . . . . . 9
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ (𝐽 ↾t 𝐴) ∈ Conn) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥 ∩ 𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥 ∪ 𝑦))) ∧ 𝑧 ∈ (𝑥 ∩ ((cls‘𝐽)‘𝐴))) → 𝑥 ∈ 𝐽) |
19 | 16 | elin1d 4133 |
. . . . . . . . 9
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ (𝐽 ↾t 𝐴) ∈ Conn) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥 ∩ 𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥 ∪ 𝑦))) ∧ 𝑧 ∈ (𝑥 ∩ ((cls‘𝐽)‘𝐴))) → 𝑧 ∈ 𝑥) |
20 | | eqid 2739 |
. . . . . . . . . 10
⊢ ∪ 𝐽 =
∪ 𝐽 |
21 | 20 | clsndisj 22235 |
. . . . . . . . 9
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ ∪ 𝐽
∧ 𝑧 ∈
((cls‘𝐽)‘𝐴)) ∧ (𝑥 ∈ 𝐽 ∧ 𝑧 ∈ 𝑥)) → (𝑥 ∩ 𝐴) ≠ ∅) |
22 | 11, 15, 17, 18, 19, 21 | syl32anc 1377 |
. . . . . . . 8
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ (𝐽 ↾t 𝐴) ∈ Conn) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥 ∩ 𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥 ∪ 𝑦))) ∧ 𝑧 ∈ (𝑥 ∩ ((cls‘𝐽)‘𝐴))) → (𝑥 ∩ 𝐴) ≠ ∅) |
23 | 8, 22 | exlimddv 1939 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ (𝐽 ↾t 𝐴) ∈ Conn) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥 ∩ 𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥 ∪ 𝑦))) → (𝑥 ∩ 𝐴) ≠ ∅) |
24 | | simprl2 1218 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ (𝐽 ↾t 𝐴) ∈ Conn) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥 ∩ 𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥 ∪ 𝑦))) → (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅) |
25 | | n0 4281 |
. . . . . . . . 9
⊢ ((𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ↔ ∃𝑧 𝑧 ∈ (𝑦 ∩ ((cls‘𝐽)‘𝐴))) |
26 | 24, 25 | sylib 217 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ (𝐽 ↾t 𝐴) ∈ Conn) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥 ∩ 𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥 ∪ 𝑦))) → ∃𝑧 𝑧 ∈ (𝑦 ∩ ((cls‘𝐽)‘𝐴))) |
27 | 2 | adantr 481 |
. . . . . . . . . 10
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ (𝐽 ↾t 𝐴) ∈ Conn) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥 ∩ 𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥 ∪ 𝑦))) ∧ 𝑧 ∈ (𝑦 ∩ ((cls‘𝐽)‘𝐴))) → 𝐽 ∈ (TopOn‘𝑋)) |
28 | 27, 10 | syl 17 |
. . . . . . . . 9
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ (𝐽 ↾t 𝐴) ∈ Conn) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥 ∩ 𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥 ∪ 𝑦))) ∧ 𝑧 ∈ (𝑦 ∩ ((cls‘𝐽)‘𝐴))) → 𝐽 ∈ Top) |
29 | 3 | adantr 481 |
. . . . . . . . . 10
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ (𝐽 ↾t 𝐴) ∈ Conn) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥 ∩ 𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥 ∪ 𝑦))) ∧ 𝑧 ∈ (𝑦 ∩ ((cls‘𝐽)‘𝐴))) → 𝐴 ⊆ 𝑋) |
30 | 27, 13 | syl 17 |
. . . . . . . . . 10
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ (𝐽 ↾t 𝐴) ∈ Conn) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥 ∩ 𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥 ∪ 𝑦))) ∧ 𝑧 ∈ (𝑦 ∩ ((cls‘𝐽)‘𝐴))) → 𝑋 = ∪ 𝐽) |
31 | 29, 30 | sseqtrd 3962 |
. . . . . . . . 9
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ (𝐽 ↾t 𝐴) ∈ Conn) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥 ∩ 𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥 ∪ 𝑦))) ∧ 𝑧 ∈ (𝑦 ∩ ((cls‘𝐽)‘𝐴))) → 𝐴 ⊆ ∪ 𝐽) |
32 | | simpr 485 |
. . . . . . . . . 10
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ (𝐽 ↾t 𝐴) ∈ Conn) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥 ∩ 𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥 ∪ 𝑦))) ∧ 𝑧 ∈ (𝑦 ∩ ((cls‘𝐽)‘𝐴))) → 𝑧 ∈ (𝑦 ∩ ((cls‘𝐽)‘𝐴))) |
33 | 32 | elin2d 4134 |
. . . . . . . . 9
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ (𝐽 ↾t 𝐴) ∈ Conn) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥 ∩ 𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥 ∪ 𝑦))) ∧ 𝑧 ∈ (𝑦 ∩ ((cls‘𝐽)‘𝐴))) → 𝑧 ∈ ((cls‘𝐽)‘𝐴)) |
34 | 5 | adantr 481 |
. . . . . . . . 9
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ (𝐽 ↾t 𝐴) ∈ Conn) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥 ∩ 𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥 ∪ 𝑦))) ∧ 𝑧 ∈ (𝑦 ∩ ((cls‘𝐽)‘𝐴))) → 𝑦 ∈ 𝐽) |
35 | 32 | elin1d 4133 |
. . . . . . . . 9
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ (𝐽 ↾t 𝐴) ∈ Conn) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥 ∩ 𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥 ∪ 𝑦))) ∧ 𝑧 ∈ (𝑦 ∩ ((cls‘𝐽)‘𝐴))) → 𝑧 ∈ 𝑦) |
36 | 20 | clsndisj 22235 |
. . . . . . . . 9
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ ∪ 𝐽
∧ 𝑧 ∈
((cls‘𝐽)‘𝐴)) ∧ (𝑦 ∈ 𝐽 ∧ 𝑧 ∈ 𝑦)) → (𝑦 ∩ 𝐴) ≠ ∅) |
37 | 28, 31, 33, 34, 35, 36 | syl32anc 1377 |
. . . . . . . 8
⊢
(((((𝐽 ∈
(TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ (𝐽 ↾t 𝐴) ∈ Conn) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥 ∩ 𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥 ∪ 𝑦))) ∧ 𝑧 ∈ (𝑦 ∩ ((cls‘𝐽)‘𝐴))) → (𝑦 ∩ 𝐴) ≠ ∅) |
38 | 26, 37 | exlimddv 1939 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ (𝐽 ↾t 𝐴) ∈ Conn) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥 ∩ 𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥 ∪ 𝑦))) → (𝑦 ∩ 𝐴) ≠ ∅) |
39 | | simprl3 1219 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ (𝐽 ↾t 𝐴) ∈ Conn) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥 ∩ 𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥 ∪ 𝑦))) → (𝑥 ∩ 𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) |
40 | 2, 10 | syl 17 |
. . . . . . . . . . . 12
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ (𝐽 ↾t 𝐴) ∈ Conn) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥 ∩ 𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥 ∪ 𝑦))) → 𝐽 ∈ Top) |
41 | 2, 13 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ (𝐽 ↾t 𝐴) ∈ Conn) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥 ∩ 𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥 ∪ 𝑦))) → 𝑋 = ∪ 𝐽) |
42 | 3, 41 | sseqtrd 3962 |
. . . . . . . . . . . 12
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ (𝐽 ↾t 𝐴) ∈ Conn) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥 ∩ 𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥 ∪ 𝑦))) → 𝐴 ⊆ ∪ 𝐽) |
43 | 20 | sscls 22216 |
. . . . . . . . . . . 12
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ ∪ 𝐽)
→ 𝐴 ⊆
((cls‘𝐽)‘𝐴)) |
44 | 40, 42, 43 | syl2anc 584 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ (𝐽 ↾t 𝐴) ∈ Conn) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥 ∩ 𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥 ∪ 𝑦))) → 𝐴 ⊆ ((cls‘𝐽)‘𝐴)) |
45 | 44 | sscond 4077 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ (𝐽 ↾t 𝐴) ∈ Conn) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥 ∩ 𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥 ∪ 𝑦))) → (𝑋 ∖ ((cls‘𝐽)‘𝐴)) ⊆ (𝑋 ∖ 𝐴)) |
46 | 39, 45 | sstrd 3932 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ (𝐽 ↾t 𝐴) ∈ Conn) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥 ∩ 𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥 ∪ 𝑦))) → (𝑥 ∩ 𝑦) ⊆ (𝑋 ∖ 𝐴)) |
47 | | ssv 3946 |
. . . . . . . . . 10
⊢ 𝑋 ⊆ V |
48 | | ssdif 4075 |
. . . . . . . . . 10
⊢ (𝑋 ⊆ V → (𝑋 ∖ 𝐴) ⊆ (V ∖ 𝐴)) |
49 | 47, 48 | ax-mp 5 |
. . . . . . . . 9
⊢ (𝑋 ∖ 𝐴) ⊆ (V ∖ 𝐴) |
50 | 46, 49 | sstrdi 3934 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ (𝐽 ↾t 𝐴) ∈ Conn) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥 ∩ 𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥 ∪ 𝑦))) → (𝑥 ∩ 𝑦) ⊆ (V ∖ 𝐴)) |
51 | | disj2 4392 |
. . . . . . . 8
⊢ (((𝑥 ∩ 𝑦) ∩ 𝐴) = ∅ ↔ (𝑥 ∩ 𝑦) ⊆ (V ∖ 𝐴)) |
52 | 50, 51 | sylibr 233 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ (𝐽 ↾t 𝐴) ∈ Conn) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥 ∩ 𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥 ∪ 𝑦))) → ((𝑥 ∩ 𝑦) ∩ 𝐴) = ∅) |
53 | | simprr 770 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ (𝐽 ↾t 𝐴) ∈ Conn) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥 ∩ 𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥 ∪ 𝑦))) → ((cls‘𝐽)‘𝐴) ⊆ (𝑥 ∪ 𝑦)) |
54 | 44, 53 | sstrd 3932 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ (𝐽 ↾t 𝐴) ∈ Conn) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥 ∩ 𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥 ∪ 𝑦))) → 𝐴 ⊆ (𝑥 ∪ 𝑦)) |
55 | 2, 3, 4, 5, 23, 38, 52, 54 | nconnsubb 22583 |
. . . . . 6
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ (𝐽 ↾t 𝐴) ∈ Conn) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥 ∩ 𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥 ∪ 𝑦))) → ¬ (𝐽 ↾t 𝐴) ∈ Conn) |
56 | 55 | expr 457 |
. . . . 5
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ (𝐽 ↾t 𝐴) ∈ Conn) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ ((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥 ∩ 𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴)))) → (((cls‘𝐽)‘𝐴) ⊆ (𝑥 ∪ 𝑦) → ¬ (𝐽 ↾t 𝐴) ∈ Conn)) |
57 | 1, 56 | mt2d 136 |
. . . 4
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ (𝐽 ↾t 𝐴) ∈ Conn) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ ((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥 ∩ 𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴)))) → ¬ ((cls‘𝐽)‘𝐴) ⊆ (𝑥 ∪ 𝑦)) |
58 | 57 | ex 413 |
. . 3
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ (𝐽 ↾t 𝐴) ∈ Conn) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) → (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥 ∩ 𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) → ¬ ((cls‘𝐽)‘𝐴) ⊆ (𝑥 ∪ 𝑦))) |
59 | 58 | ralrimivva 3124 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ (𝐽 ↾t 𝐴) ∈ Conn) → ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐽 (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥 ∩ 𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) → ¬ ((cls‘𝐽)‘𝐴) ⊆ (𝑥 ∪ 𝑦))) |
60 | | simp1 1135 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ (𝐽 ↾t 𝐴) ∈ Conn) → 𝐽 ∈ (TopOn‘𝑋)) |
61 | 13 | sseq2d 3954 |
. . . . . . 7
⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐴 ⊆ 𝑋 ↔ 𝐴 ⊆ ∪ 𝐽)) |
62 | 61 | biimpa 477 |
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → 𝐴 ⊆ ∪ 𝐽) |
63 | 20 | clsss3 22219 |
. . . . . 6
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ ∪ 𝐽)
→ ((cls‘𝐽)‘𝐴) ⊆ ∪ 𝐽) |
64 | 10, 62, 63 | syl2an2r 682 |
. . . . 5
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → ((cls‘𝐽)‘𝐴) ⊆ ∪ 𝐽) |
65 | 13 | adantr 481 |
. . . . 5
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → 𝑋 = ∪ 𝐽) |
66 | 64, 65 | sseqtrrd 3963 |
. . . 4
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → ((cls‘𝐽)‘𝐴) ⊆ 𝑋) |
67 | 66 | 3adant3 1131 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ (𝐽 ↾t 𝐴) ∈ Conn) → ((cls‘𝐽)‘𝐴) ⊆ 𝑋) |
68 | | connsub 22581 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ ((cls‘𝐽)‘𝐴) ⊆ 𝑋) → ((𝐽 ↾t ((cls‘𝐽)‘𝐴)) ∈ Conn ↔ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐽 (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥 ∩ 𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) → ¬ ((cls‘𝐽)‘𝐴) ⊆ (𝑥 ∪ 𝑦)))) |
69 | 60, 67, 68 | syl2anc 584 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ (𝐽 ↾t 𝐴) ∈ Conn) → ((𝐽 ↾t ((cls‘𝐽)‘𝐴)) ∈ Conn ↔ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐽 (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥 ∩ 𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) → ¬ ((cls‘𝐽)‘𝐴) ⊆ (𝑥 ∪ 𝑦)))) |
70 | 59, 69 | mpbird 256 |
1
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ (𝐽 ↾t 𝐴) ∈ Conn) → (𝐽 ↾t ((cls‘𝐽)‘𝐴)) ∈ Conn) |