MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clsconn Structured version   Visualization version   GIF version

Theorem clsconn 23333
Description: The closure of a connected set is connected. (Contributed by Mario Carneiro, 19-Mar-2015.)
Assertion
Ref Expression
clsconn ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) → (𝐽t ((cls‘𝐽)‘𝐴)) ∈ Conn)

Proof of Theorem clsconn
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll3 1215 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴)))) → (𝐽t 𝐴) ∈ Conn)
2 simpll1 1213 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) → 𝐽 ∈ (TopOn‘𝑋))
3 simpll2 1214 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) → 𝐴𝑋)
4 simplrl 776 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) → 𝑥𝐽)
5 simplrr 777 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) → 𝑦𝐽)
6 simprl1 1219 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) → (𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅)
7 n0 4306 . . . . . . . . 9 ((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ↔ ∃𝑧 𝑧 ∈ (𝑥 ∩ ((cls‘𝐽)‘𝐴)))
86, 7sylib 218 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) → ∃𝑧 𝑧 ∈ (𝑥 ∩ ((cls‘𝐽)‘𝐴)))
92adantr 480 . . . . . . . . . 10 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) ∧ 𝑧 ∈ (𝑥 ∩ ((cls‘𝐽)‘𝐴))) → 𝐽 ∈ (TopOn‘𝑋))
10 topontop 22816 . . . . . . . . . 10 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
119, 10syl 17 . . . . . . . . 9 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) ∧ 𝑧 ∈ (𝑥 ∩ ((cls‘𝐽)‘𝐴))) → 𝐽 ∈ Top)
123adantr 480 . . . . . . . . . 10 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) ∧ 𝑧 ∈ (𝑥 ∩ ((cls‘𝐽)‘𝐴))) → 𝐴𝑋)
13 toponuni 22817 . . . . . . . . . . 11 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
149, 13syl 17 . . . . . . . . . 10 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) ∧ 𝑧 ∈ (𝑥 ∩ ((cls‘𝐽)‘𝐴))) → 𝑋 = 𝐽)
1512, 14sseqtrd 3974 . . . . . . . . 9 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) ∧ 𝑧 ∈ (𝑥 ∩ ((cls‘𝐽)‘𝐴))) → 𝐴 𝐽)
16 simpr 484 . . . . . . . . . 10 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) ∧ 𝑧 ∈ (𝑥 ∩ ((cls‘𝐽)‘𝐴))) → 𝑧 ∈ (𝑥 ∩ ((cls‘𝐽)‘𝐴)))
1716elin2d 4158 . . . . . . . . 9 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) ∧ 𝑧 ∈ (𝑥 ∩ ((cls‘𝐽)‘𝐴))) → 𝑧 ∈ ((cls‘𝐽)‘𝐴))
184adantr 480 . . . . . . . . 9 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) ∧ 𝑧 ∈ (𝑥 ∩ ((cls‘𝐽)‘𝐴))) → 𝑥𝐽)
1916elin1d 4157 . . . . . . . . 9 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) ∧ 𝑧 ∈ (𝑥 ∩ ((cls‘𝐽)‘𝐴))) → 𝑧𝑥)
20 eqid 2729 . . . . . . . . . 10 𝐽 = 𝐽
2120clsndisj 22978 . . . . . . . . 9 (((𝐽 ∈ Top ∧ 𝐴 𝐽𝑧 ∈ ((cls‘𝐽)‘𝐴)) ∧ (𝑥𝐽𝑧𝑥)) → (𝑥𝐴) ≠ ∅)
2211, 15, 17, 18, 19, 21syl32anc 1380 . . . . . . . 8 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) ∧ 𝑧 ∈ (𝑥 ∩ ((cls‘𝐽)‘𝐴))) → (𝑥𝐴) ≠ ∅)
238, 22exlimddv 1935 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) → (𝑥𝐴) ≠ ∅)
24 simprl2 1220 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) → (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅)
25 n0 4306 . . . . . . . . 9 ((𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ↔ ∃𝑧 𝑧 ∈ (𝑦 ∩ ((cls‘𝐽)‘𝐴)))
2624, 25sylib 218 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) → ∃𝑧 𝑧 ∈ (𝑦 ∩ ((cls‘𝐽)‘𝐴)))
272adantr 480 . . . . . . . . . 10 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) ∧ 𝑧 ∈ (𝑦 ∩ ((cls‘𝐽)‘𝐴))) → 𝐽 ∈ (TopOn‘𝑋))
2827, 10syl 17 . . . . . . . . 9 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) ∧ 𝑧 ∈ (𝑦 ∩ ((cls‘𝐽)‘𝐴))) → 𝐽 ∈ Top)
293adantr 480 . . . . . . . . . 10 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) ∧ 𝑧 ∈ (𝑦 ∩ ((cls‘𝐽)‘𝐴))) → 𝐴𝑋)
3027, 13syl 17 . . . . . . . . . 10 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) ∧ 𝑧 ∈ (𝑦 ∩ ((cls‘𝐽)‘𝐴))) → 𝑋 = 𝐽)
3129, 30sseqtrd 3974 . . . . . . . . 9 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) ∧ 𝑧 ∈ (𝑦 ∩ ((cls‘𝐽)‘𝐴))) → 𝐴 𝐽)
32 simpr 484 . . . . . . . . . 10 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) ∧ 𝑧 ∈ (𝑦 ∩ ((cls‘𝐽)‘𝐴))) → 𝑧 ∈ (𝑦 ∩ ((cls‘𝐽)‘𝐴)))
3332elin2d 4158 . . . . . . . . 9 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) ∧ 𝑧 ∈ (𝑦 ∩ ((cls‘𝐽)‘𝐴))) → 𝑧 ∈ ((cls‘𝐽)‘𝐴))
345adantr 480 . . . . . . . . 9 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) ∧ 𝑧 ∈ (𝑦 ∩ ((cls‘𝐽)‘𝐴))) → 𝑦𝐽)
3532elin1d 4157 . . . . . . . . 9 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) ∧ 𝑧 ∈ (𝑦 ∩ ((cls‘𝐽)‘𝐴))) → 𝑧𝑦)
3620clsndisj 22978 . . . . . . . . 9 (((𝐽 ∈ Top ∧ 𝐴 𝐽𝑧 ∈ ((cls‘𝐽)‘𝐴)) ∧ (𝑦𝐽𝑧𝑦)) → (𝑦𝐴) ≠ ∅)
3728, 31, 33, 34, 35, 36syl32anc 1380 . . . . . . . 8 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) ∧ 𝑧 ∈ (𝑦 ∩ ((cls‘𝐽)‘𝐴))) → (𝑦𝐴) ≠ ∅)
3826, 37exlimddv 1935 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) → (𝑦𝐴) ≠ ∅)
39 simprl3 1221 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) → (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴)))
402, 10syl 17 . . . . . . . . . . . 12 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) → 𝐽 ∈ Top)
412, 13syl 17 . . . . . . . . . . . . 13 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) → 𝑋 = 𝐽)
423, 41sseqtrd 3974 . . . . . . . . . . . 12 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) → 𝐴 𝐽)
4320sscls 22959 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ 𝐴 𝐽) → 𝐴 ⊆ ((cls‘𝐽)‘𝐴))
4440, 42, 43syl2anc 584 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) → 𝐴 ⊆ ((cls‘𝐽)‘𝐴))
4544sscond 4099 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) → (𝑋 ∖ ((cls‘𝐽)‘𝐴)) ⊆ (𝑋𝐴))
4639, 45sstrd 3948 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) → (𝑥𝑦) ⊆ (𝑋𝐴))
47 ssv 3962 . . . . . . . . . 10 𝑋 ⊆ V
48 ssdif 4097 . . . . . . . . . 10 (𝑋 ⊆ V → (𝑋𝐴) ⊆ (V ∖ 𝐴))
4947, 48ax-mp 5 . . . . . . . . 9 (𝑋𝐴) ⊆ (V ∖ 𝐴)
5046, 49sstrdi 3950 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) → (𝑥𝑦) ⊆ (V ∖ 𝐴))
51 disj2 4411 . . . . . . . 8 (((𝑥𝑦) ∩ 𝐴) = ∅ ↔ (𝑥𝑦) ⊆ (V ∖ 𝐴))
5250, 51sylibr 234 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) → ((𝑥𝑦) ∩ 𝐴) = ∅)
53 simprr 772 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) → ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))
5444, 53sstrd 3948 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) → 𝐴 ⊆ (𝑥𝑦))
552, 3, 4, 5, 23, 38, 52, 54nconnsubb 23326 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) ∧ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))) → ¬ (𝐽t 𝐴) ∈ Conn)
5655expr 456 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴)))) → (((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦) → ¬ (𝐽t 𝐴) ∈ Conn))
571, 56mt2d 136 . . . 4 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴)))) → ¬ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))
5857ex 412 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) ∧ (𝑥𝐽𝑦𝐽)) → (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) → ¬ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦)))
5958ralrimivva 3172 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) → ∀𝑥𝐽𝑦𝐽 (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) → ¬ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦)))
60 simp1 1136 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) → 𝐽 ∈ (TopOn‘𝑋))
6113sseq2d 3970 . . . . . . 7 (𝐽 ∈ (TopOn‘𝑋) → (𝐴𝑋𝐴 𝐽))
6261biimpa 476 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → 𝐴 𝐽)
6320clsss3 22962 . . . . . 6 ((𝐽 ∈ Top ∧ 𝐴 𝐽) → ((cls‘𝐽)‘𝐴) ⊆ 𝐽)
6410, 62, 63syl2an2r 685 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → ((cls‘𝐽)‘𝐴) ⊆ 𝐽)
6513adantr 480 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → 𝑋 = 𝐽)
6664, 65sseqtrrd 3975 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → ((cls‘𝐽)‘𝐴) ⊆ 𝑋)
67663adant3 1132 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) → ((cls‘𝐽)‘𝐴) ⊆ 𝑋)
68 connsub 23324 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ ((cls‘𝐽)‘𝐴) ⊆ 𝑋) → ((𝐽t ((cls‘𝐽)‘𝐴)) ∈ Conn ↔ ∀𝑥𝐽𝑦𝐽 (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) → ¬ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))))
6960, 67, 68syl2anc 584 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) → ((𝐽t ((cls‘𝐽)‘𝐴)) ∈ Conn ↔ ∀𝑥𝐽𝑦𝐽 (((𝑥 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑦 ∩ ((cls‘𝐽)‘𝐴)) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋 ∖ ((cls‘𝐽)‘𝐴))) → ¬ ((cls‘𝐽)‘𝐴) ⊆ (𝑥𝑦))))
7059, 69mpbird 257 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋 ∧ (𝐽t 𝐴) ∈ Conn) → (𝐽t ((cls‘𝐽)‘𝐴)) ∈ Conn)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wne 2925  wral 3044  Vcvv 3438  cdif 3902  cun 3903  cin 3904  wss 3905  c0 4286   cuni 4861  cfv 6486  (class class class)co 7353  t crest 17342  Topctop 22796  TopOnctopon 22813  clsccl 22921  Conncconn 23314
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-en 8880  df-fin 8883  df-fi 9320  df-rest 17344  df-topgen 17365  df-top 22797  df-topon 22814  df-bases 22849  df-cld 22922  df-ntr 22923  df-cls 22924  df-conn 23315
This theorem is referenced by:  conncompcld  23337
  Copyright terms: Public domain W3C validator