MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dlatl Structured version   Visualization version   GIF version

Theorem dlatl 18594
Description: A distributive lattice is a lattice. (Contributed by Stefan O'Rear, 30-Jan-2015.)
Assertion
Ref Expression
dlatl (𝐾 ∈ DLat → 𝐾 ∈ Lat)

Proof of Theorem dlatl
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2740 . . 3 (Base‘𝐾) = (Base‘𝐾)
2 eqid 2740 . . 3 (join‘𝐾) = (join‘𝐾)
3 eqid 2740 . . 3 (meet‘𝐾) = (meet‘𝐾)
41, 2, 3isdlat 18592 . 2 (𝐾 ∈ DLat ↔ (𝐾 ∈ Lat ∧ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)∀𝑧 ∈ (Base‘𝐾)(𝑥(meet‘𝐾)(𝑦(join‘𝐾)𝑧)) = ((𝑥(meet‘𝐾)𝑦)(join‘𝐾)(𝑥(meet‘𝐾)𝑧))))
54simplbi 497 1 (𝐾 ∈ DLat → 𝐾 ∈ Lat)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  wral 3067  cfv 6573  (class class class)co 7448  Basecbs 17258  joincjn 18381  meetcmee 18382  Latclat 18501  DLatcdlat 18590
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-nul 5324
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-iota 6525  df-fv 6581  df-ov 7451  df-dlat 18591
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator