![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dlatl | Structured version Visualization version GIF version |
Description: A distributive lattice is a lattice. (Contributed by Stefan O'Rear, 30-Jan-2015.) |
Ref | Expression |
---|---|
dlatl | โข (๐พ โ DLat โ ๐พ โ Lat) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2730 | . . 3 โข (Baseโ๐พ) = (Baseโ๐พ) | |
2 | eqid 2730 | . . 3 โข (joinโ๐พ) = (joinโ๐พ) | |
3 | eqid 2730 | . . 3 โข (meetโ๐พ) = (meetโ๐พ) | |
4 | 1, 2, 3 | isdlat 18481 | . 2 โข (๐พ โ DLat โ (๐พ โ Lat โง โ๐ฅ โ (Baseโ๐พ)โ๐ฆ โ (Baseโ๐พ)โ๐ง โ (Baseโ๐พ)(๐ฅ(meetโ๐พ)(๐ฆ(joinโ๐พ)๐ง)) = ((๐ฅ(meetโ๐พ)๐ฆ)(joinโ๐พ)(๐ฅ(meetโ๐พ)๐ง)))) |
5 | 4 | simplbi 496 | 1 โข (๐พ โ DLat โ ๐พ โ Lat) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 = wceq 1539 โ wcel 2104 โwral 3059 โcfv 6544 (class class class)co 7413 Basecbs 17150 joincjn 18270 meetcmee 18271 Latclat 18390 DLatcdlat 18479 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 ax-nul 5307 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-sbc 3779 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-iota 6496 df-fv 6552 df-ov 7416 df-dlat 18480 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |