MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dlatl Structured version   Visualization version   GIF version

Theorem dlatl 18430
Description: A distributive lattice is a lattice. (Contributed by Stefan O'Rear, 30-Jan-2015.)
Assertion
Ref Expression
dlatl (𝐾 ∈ DLat → 𝐾 ∈ Lat)

Proof of Theorem dlatl
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . 3 (Base‘𝐾) = (Base‘𝐾)
2 eqid 2731 . . 3 (join‘𝐾) = (join‘𝐾)
3 eqid 2731 . . 3 (meet‘𝐾) = (meet‘𝐾)
41, 2, 3isdlat 18428 . 2 (𝐾 ∈ DLat ↔ (𝐾 ∈ Lat ∧ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)∀𝑧 ∈ (Base‘𝐾)(𝑥(meet‘𝐾)(𝑦(join‘𝐾)𝑧)) = ((𝑥(meet‘𝐾)𝑦)(join‘𝐾)(𝑥(meet‘𝐾)𝑧))))
54simplbi 497 1 (𝐾 ∈ DLat → 𝐾 ∈ Lat)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  wral 3047  cfv 6481  (class class class)co 7346  Basecbs 17120  joincjn 18217  meetcmee 18218  Latclat 18337  DLatcdlat 18426
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-nul 5242
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-iota 6437  df-fv 6489  df-ov 7349  df-dlat 18427
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator