MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dlatl Structured version   Visualization version   GIF version

Theorem dlatl 18230
Description: A distributive lattice is a lattice. (Contributed by Stefan O'Rear, 30-Jan-2015.)
Assertion
Ref Expression
dlatl (𝐾 ∈ DLat → 𝐾 ∈ Lat)

Proof of Theorem dlatl
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . 3 (Base‘𝐾) = (Base‘𝐾)
2 eqid 2738 . . 3 (join‘𝐾) = (join‘𝐾)
3 eqid 2738 . . 3 (meet‘𝐾) = (meet‘𝐾)
41, 2, 3isdlat 18228 . 2 (𝐾 ∈ DLat ↔ (𝐾 ∈ Lat ∧ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)∀𝑧 ∈ (Base‘𝐾)(𝑥(meet‘𝐾)(𝑦(join‘𝐾)𝑧)) = ((𝑥(meet‘𝐾)𝑦)(join‘𝐾)(𝑥(meet‘𝐾)𝑧))))
54simplbi 498 1 (𝐾 ∈ DLat → 𝐾 ∈ Lat)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  wral 3064  cfv 6427  (class class class)co 7268  Basecbs 16900  joincjn 18017  meetcmee 18018  Latclat 18137  DLatcdlat 18226
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-nul 5229
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3432  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4258  df-if 4461  df-sn 4563  df-pr 4565  df-op 4569  df-uni 4841  df-br 5075  df-iota 6385  df-fv 6435  df-ov 7271  df-dlat 18227
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator