| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dlatl | Structured version Visualization version GIF version | ||
| Description: A distributive lattice is a lattice. (Contributed by Stefan O'Rear, 30-Jan-2015.) |
| Ref | Expression |
|---|---|
| dlatl | ⊢ (𝐾 ∈ DLat → 𝐾 ∈ Lat) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 2 | eqid 2731 | . . 3 ⊢ (join‘𝐾) = (join‘𝐾) | |
| 3 | eqid 2731 | . . 3 ⊢ (meet‘𝐾) = (meet‘𝐾) | |
| 4 | 1, 2, 3 | isdlat 18428 | . 2 ⊢ (𝐾 ∈ DLat ↔ (𝐾 ∈ Lat ∧ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)∀𝑧 ∈ (Base‘𝐾)(𝑥(meet‘𝐾)(𝑦(join‘𝐾)𝑧)) = ((𝑥(meet‘𝐾)𝑦)(join‘𝐾)(𝑥(meet‘𝐾)𝑧)))) |
| 5 | 4 | simplbi 497 | 1 ⊢ (𝐾 ∈ DLat → 𝐾 ∈ Lat) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 joincjn 18217 meetcmee 18218 Latclat 18337 DLatcdlat 18426 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-nul 5242 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-iota 6437 df-fv 6489 df-ov 7349 df-dlat 18427 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |