MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dlatl Structured version   Visualization version   GIF version

Theorem dlatl 18483
Description: A distributive lattice is a lattice. (Contributed by Stefan O'Rear, 30-Jan-2015.)
Assertion
Ref Expression
dlatl (๐พ โˆˆ DLat โ†’ ๐พ โˆˆ Lat)

Proof of Theorem dlatl
Dummy variables ๐‘ฅ ๐‘ฆ ๐‘ง are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2730 . . 3 (Baseโ€˜๐พ) = (Baseโ€˜๐พ)
2 eqid 2730 . . 3 (joinโ€˜๐พ) = (joinโ€˜๐พ)
3 eqid 2730 . . 3 (meetโ€˜๐พ) = (meetโ€˜๐พ)
41, 2, 3isdlat 18481 . 2 (๐พ โˆˆ DLat โ†” (๐พ โˆˆ Lat โˆง โˆ€๐‘ฅ โˆˆ (Baseโ€˜๐พ)โˆ€๐‘ฆ โˆˆ (Baseโ€˜๐พ)โˆ€๐‘ง โˆˆ (Baseโ€˜๐พ)(๐‘ฅ(meetโ€˜๐พ)(๐‘ฆ(joinโ€˜๐พ)๐‘ง)) = ((๐‘ฅ(meetโ€˜๐พ)๐‘ฆ)(joinโ€˜๐พ)(๐‘ฅ(meetโ€˜๐พ)๐‘ง))))
54simplbi 496 1 (๐พ โˆˆ DLat โ†’ ๐พ โˆˆ Lat)
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   = wceq 1539   โˆˆ wcel 2104  โˆ€wral 3059  โ€˜cfv 6544  (class class class)co 7413  Basecbs 17150  joincjn 18270  meetcmee 18271  Latclat 18390  DLatcdlat 18479
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2701  ax-nul 5307
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-sbc 3779  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-iota 6496  df-fv 6552  df-ov 7416  df-dlat 18480
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator