MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odudlatb Structured version   Visualization version   GIF version

Theorem odudlatb 18224
Description: The dual of a distributive lattice is a distributive lattice and conversely. (Contributed by Stefan O'Rear, 30-Jan-2015.)
Hypothesis
Ref Expression
odudlat.d 𝐷 = (ODual‘𝐾)
Assertion
Ref Expression
odudlatb (𝐾𝑉 → (𝐾 ∈ DLat ↔ 𝐷 ∈ DLat))

Proof of Theorem odudlatb
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2739 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
2 eqid 2739 . . . . . 6 (join‘𝐾) = (join‘𝐾)
3 eqid 2739 . . . . . 6 (meet‘𝐾) = (meet‘𝐾)
41, 2, 3latdisd 18196 . . . . 5 (𝐾 ∈ Lat → (∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)∀𝑧 ∈ (Base‘𝐾)(𝑥(join‘𝐾)(𝑦(meet‘𝐾)𝑧)) = ((𝑥(join‘𝐾)𝑦)(meet‘𝐾)(𝑥(join‘𝐾)𝑧)) ↔ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)∀𝑧 ∈ (Base‘𝐾)(𝑥(meet‘𝐾)(𝑦(join‘𝐾)𝑧)) = ((𝑥(meet‘𝐾)𝑦)(join‘𝐾)(𝑥(meet‘𝐾)𝑧))))
54bicomd 222 . . . 4 (𝐾 ∈ Lat → (∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)∀𝑧 ∈ (Base‘𝐾)(𝑥(meet‘𝐾)(𝑦(join‘𝐾)𝑧)) = ((𝑥(meet‘𝐾)𝑦)(join‘𝐾)(𝑥(meet‘𝐾)𝑧)) ↔ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)∀𝑧 ∈ (Base‘𝐾)(𝑥(join‘𝐾)(𝑦(meet‘𝐾)𝑧)) = ((𝑥(join‘𝐾)𝑦)(meet‘𝐾)(𝑥(join‘𝐾)𝑧))))
65pm5.32i 574 . . 3 ((𝐾 ∈ Lat ∧ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)∀𝑧 ∈ (Base‘𝐾)(𝑥(meet‘𝐾)(𝑦(join‘𝐾)𝑧)) = ((𝑥(meet‘𝐾)𝑦)(join‘𝐾)(𝑥(meet‘𝐾)𝑧))) ↔ (𝐾 ∈ Lat ∧ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)∀𝑧 ∈ (Base‘𝐾)(𝑥(join‘𝐾)(𝑦(meet‘𝐾)𝑧)) = ((𝑥(join‘𝐾)𝑦)(meet‘𝐾)(𝑥(join‘𝐾)𝑧))))
7 odudlat.d . . . . 5 𝐷 = (ODual‘𝐾)
87odulatb 18133 . . . 4 (𝐾𝑉 → (𝐾 ∈ Lat ↔ 𝐷 ∈ Lat))
98anbi1d 629 . . 3 (𝐾𝑉 → ((𝐾 ∈ Lat ∧ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)∀𝑧 ∈ (Base‘𝐾)(𝑥(join‘𝐾)(𝑦(meet‘𝐾)𝑧)) = ((𝑥(join‘𝐾)𝑦)(meet‘𝐾)(𝑥(join‘𝐾)𝑧))) ↔ (𝐷 ∈ Lat ∧ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)∀𝑧 ∈ (Base‘𝐾)(𝑥(join‘𝐾)(𝑦(meet‘𝐾)𝑧)) = ((𝑥(join‘𝐾)𝑦)(meet‘𝐾)(𝑥(join‘𝐾)𝑧)))))
106, 9syl5bb 282 . 2 (𝐾𝑉 → ((𝐾 ∈ Lat ∧ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)∀𝑧 ∈ (Base‘𝐾)(𝑥(meet‘𝐾)(𝑦(join‘𝐾)𝑧)) = ((𝑥(meet‘𝐾)𝑦)(join‘𝐾)(𝑥(meet‘𝐾)𝑧))) ↔ (𝐷 ∈ Lat ∧ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)∀𝑧 ∈ (Base‘𝐾)(𝑥(join‘𝐾)(𝑦(meet‘𝐾)𝑧)) = ((𝑥(join‘𝐾)𝑦)(meet‘𝐾)(𝑥(join‘𝐾)𝑧)))))
111, 2, 3isdlat 18221 . 2 (𝐾 ∈ DLat ↔ (𝐾 ∈ Lat ∧ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)∀𝑧 ∈ (Base‘𝐾)(𝑥(meet‘𝐾)(𝑦(join‘𝐾)𝑧)) = ((𝑥(meet‘𝐾)𝑦)(join‘𝐾)(𝑥(meet‘𝐾)𝑧))))
127, 1odubas 17990 . . 3 (Base‘𝐾) = (Base‘𝐷)
137, 3odujoin 18107 . . 3 (meet‘𝐾) = (join‘𝐷)
147, 2odumeet 18109 . . 3 (join‘𝐾) = (meet‘𝐷)
1512, 13, 14isdlat 18221 . 2 (𝐷 ∈ DLat ↔ (𝐷 ∈ Lat ∧ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)∀𝑧 ∈ (Base‘𝐾)(𝑥(join‘𝐾)(𝑦(meet‘𝐾)𝑧)) = ((𝑥(join‘𝐾)𝑦)(meet‘𝐾)(𝑥(join‘𝐾)𝑧))))
1610, 11, 153bitr4g 313 1 (𝐾𝑉 → (𝐾 ∈ DLat ↔ 𝐷 ∈ DLat))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1541  wcel 2109  wral 3065  cfv 6430  (class class class)co 7268  Basecbs 16893  ODualcodu 17985  joincjn 18010  meetcmee 18011  Latclat 18130  DLatcdlat 18219
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rmo 3073  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7701  df-2nd 7818  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-er 8472  df-en 8708  df-dom 8709  df-sdom 8710  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-nn 11957  df-2 12019  df-3 12020  df-4 12021  df-5 12022  df-6 12023  df-7 12024  df-8 12025  df-9 12026  df-dec 12420  df-sets 16846  df-slot 16864  df-ndx 16876  df-base 16894  df-ple 16963  df-odu 17986  df-proset 17994  df-poset 18012  df-lub 18045  df-glb 18046  df-join 18047  df-meet 18048  df-lat 18131  df-dlat 18220
This theorem is referenced by:  dlatjmdi  18225
  Copyright terms: Public domain W3C validator