Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > odudlatb | Structured version Visualization version GIF version |
Description: The dual of a distributive lattice is a distributive lattice and conversely. (Contributed by Stefan O'Rear, 30-Jan-2015.) |
Ref | Expression |
---|---|
odudlat.d | ⊢ 𝐷 = (ODual‘𝐾) |
Ref | Expression |
---|---|
odudlatb | ⊢ (𝐾 ∈ 𝑉 → (𝐾 ∈ DLat ↔ 𝐷 ∈ DLat)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2739 | . . . . . 6 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
2 | eqid 2739 | . . . . . 6 ⊢ (join‘𝐾) = (join‘𝐾) | |
3 | eqid 2739 | . . . . . 6 ⊢ (meet‘𝐾) = (meet‘𝐾) | |
4 | 1, 2, 3 | latdisd 18196 | . . . . 5 ⊢ (𝐾 ∈ Lat → (∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)∀𝑧 ∈ (Base‘𝐾)(𝑥(join‘𝐾)(𝑦(meet‘𝐾)𝑧)) = ((𝑥(join‘𝐾)𝑦)(meet‘𝐾)(𝑥(join‘𝐾)𝑧)) ↔ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)∀𝑧 ∈ (Base‘𝐾)(𝑥(meet‘𝐾)(𝑦(join‘𝐾)𝑧)) = ((𝑥(meet‘𝐾)𝑦)(join‘𝐾)(𝑥(meet‘𝐾)𝑧)))) |
5 | 4 | bicomd 222 | . . . 4 ⊢ (𝐾 ∈ Lat → (∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)∀𝑧 ∈ (Base‘𝐾)(𝑥(meet‘𝐾)(𝑦(join‘𝐾)𝑧)) = ((𝑥(meet‘𝐾)𝑦)(join‘𝐾)(𝑥(meet‘𝐾)𝑧)) ↔ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)∀𝑧 ∈ (Base‘𝐾)(𝑥(join‘𝐾)(𝑦(meet‘𝐾)𝑧)) = ((𝑥(join‘𝐾)𝑦)(meet‘𝐾)(𝑥(join‘𝐾)𝑧)))) |
6 | 5 | pm5.32i 574 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)∀𝑧 ∈ (Base‘𝐾)(𝑥(meet‘𝐾)(𝑦(join‘𝐾)𝑧)) = ((𝑥(meet‘𝐾)𝑦)(join‘𝐾)(𝑥(meet‘𝐾)𝑧))) ↔ (𝐾 ∈ Lat ∧ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)∀𝑧 ∈ (Base‘𝐾)(𝑥(join‘𝐾)(𝑦(meet‘𝐾)𝑧)) = ((𝑥(join‘𝐾)𝑦)(meet‘𝐾)(𝑥(join‘𝐾)𝑧)))) |
7 | odudlat.d | . . . . 5 ⊢ 𝐷 = (ODual‘𝐾) | |
8 | 7 | odulatb 18133 | . . . 4 ⊢ (𝐾 ∈ 𝑉 → (𝐾 ∈ Lat ↔ 𝐷 ∈ Lat)) |
9 | 8 | anbi1d 629 | . . 3 ⊢ (𝐾 ∈ 𝑉 → ((𝐾 ∈ Lat ∧ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)∀𝑧 ∈ (Base‘𝐾)(𝑥(join‘𝐾)(𝑦(meet‘𝐾)𝑧)) = ((𝑥(join‘𝐾)𝑦)(meet‘𝐾)(𝑥(join‘𝐾)𝑧))) ↔ (𝐷 ∈ Lat ∧ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)∀𝑧 ∈ (Base‘𝐾)(𝑥(join‘𝐾)(𝑦(meet‘𝐾)𝑧)) = ((𝑥(join‘𝐾)𝑦)(meet‘𝐾)(𝑥(join‘𝐾)𝑧))))) |
10 | 6, 9 | syl5bb 282 | . 2 ⊢ (𝐾 ∈ 𝑉 → ((𝐾 ∈ Lat ∧ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)∀𝑧 ∈ (Base‘𝐾)(𝑥(meet‘𝐾)(𝑦(join‘𝐾)𝑧)) = ((𝑥(meet‘𝐾)𝑦)(join‘𝐾)(𝑥(meet‘𝐾)𝑧))) ↔ (𝐷 ∈ Lat ∧ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)∀𝑧 ∈ (Base‘𝐾)(𝑥(join‘𝐾)(𝑦(meet‘𝐾)𝑧)) = ((𝑥(join‘𝐾)𝑦)(meet‘𝐾)(𝑥(join‘𝐾)𝑧))))) |
11 | 1, 2, 3 | isdlat 18221 | . 2 ⊢ (𝐾 ∈ DLat ↔ (𝐾 ∈ Lat ∧ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)∀𝑧 ∈ (Base‘𝐾)(𝑥(meet‘𝐾)(𝑦(join‘𝐾)𝑧)) = ((𝑥(meet‘𝐾)𝑦)(join‘𝐾)(𝑥(meet‘𝐾)𝑧)))) |
12 | 7, 1 | odubas 17990 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐷) |
13 | 7, 3 | odujoin 18107 | . . 3 ⊢ (meet‘𝐾) = (join‘𝐷) |
14 | 7, 2 | odumeet 18109 | . . 3 ⊢ (join‘𝐾) = (meet‘𝐷) |
15 | 12, 13, 14 | isdlat 18221 | . 2 ⊢ (𝐷 ∈ DLat ↔ (𝐷 ∈ Lat ∧ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)∀𝑧 ∈ (Base‘𝐾)(𝑥(join‘𝐾)(𝑦(meet‘𝐾)𝑧)) = ((𝑥(join‘𝐾)𝑦)(meet‘𝐾)(𝑥(join‘𝐾)𝑧)))) |
16 | 10, 11, 15 | 3bitr4g 313 | 1 ⊢ (𝐾 ∈ 𝑉 → (𝐾 ∈ DLat ↔ 𝐷 ∈ DLat)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1541 ∈ wcel 2109 ∀wral 3065 ‘cfv 6430 (class class class)co 7268 Basecbs 16893 ODualcodu 17985 joincjn 18010 meetcmee 18011 Latclat 18130 DLatcdlat 18219 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-er 8472 df-en 8708 df-dom 8709 df-sdom 8710 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-nn 11957 df-2 12019 df-3 12020 df-4 12021 df-5 12022 df-6 12023 df-7 12024 df-8 12025 df-9 12026 df-dec 12420 df-sets 16846 df-slot 16864 df-ndx 16876 df-base 16894 df-ple 16963 df-odu 17986 df-proset 17994 df-poset 18012 df-lub 18045 df-glb 18046 df-join 18047 df-meet 18048 df-lat 18131 df-dlat 18220 |
This theorem is referenced by: dlatjmdi 18225 |
Copyright terms: Public domain | W3C validator |