MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odudlatb Structured version   Visualization version   GIF version

Theorem odudlatb 18460
Description: The dual of a distributive lattice is a distributive lattice and conversely. (Contributed by Stefan O'Rear, 30-Jan-2015.)
Hypothesis
Ref Expression
odudlat.d 𝐷 = (ODual‘𝐾)
Assertion
Ref Expression
odudlatb (𝐾𝑉 → (𝐾 ∈ DLat ↔ 𝐷 ∈ DLat))

Proof of Theorem odudlatb
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
2 eqid 2729 . . . . . 6 (join‘𝐾) = (join‘𝐾)
3 eqid 2729 . . . . . 6 (meet‘𝐾) = (meet‘𝐾)
41, 2, 3latdisd 18432 . . . . 5 (𝐾 ∈ Lat → (∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)∀𝑧 ∈ (Base‘𝐾)(𝑥(join‘𝐾)(𝑦(meet‘𝐾)𝑧)) = ((𝑥(join‘𝐾)𝑦)(meet‘𝐾)(𝑥(join‘𝐾)𝑧)) ↔ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)∀𝑧 ∈ (Base‘𝐾)(𝑥(meet‘𝐾)(𝑦(join‘𝐾)𝑧)) = ((𝑥(meet‘𝐾)𝑦)(join‘𝐾)(𝑥(meet‘𝐾)𝑧))))
54bicomd 223 . . . 4 (𝐾 ∈ Lat → (∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)∀𝑧 ∈ (Base‘𝐾)(𝑥(meet‘𝐾)(𝑦(join‘𝐾)𝑧)) = ((𝑥(meet‘𝐾)𝑦)(join‘𝐾)(𝑥(meet‘𝐾)𝑧)) ↔ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)∀𝑧 ∈ (Base‘𝐾)(𝑥(join‘𝐾)(𝑦(meet‘𝐾)𝑧)) = ((𝑥(join‘𝐾)𝑦)(meet‘𝐾)(𝑥(join‘𝐾)𝑧))))
65pm5.32i 574 . . 3 ((𝐾 ∈ Lat ∧ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)∀𝑧 ∈ (Base‘𝐾)(𝑥(meet‘𝐾)(𝑦(join‘𝐾)𝑧)) = ((𝑥(meet‘𝐾)𝑦)(join‘𝐾)(𝑥(meet‘𝐾)𝑧))) ↔ (𝐾 ∈ Lat ∧ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)∀𝑧 ∈ (Base‘𝐾)(𝑥(join‘𝐾)(𝑦(meet‘𝐾)𝑧)) = ((𝑥(join‘𝐾)𝑦)(meet‘𝐾)(𝑥(join‘𝐾)𝑧))))
7 odudlat.d . . . . 5 𝐷 = (ODual‘𝐾)
87odulatb 18369 . . . 4 (𝐾𝑉 → (𝐾 ∈ Lat ↔ 𝐷 ∈ Lat))
98anbi1d 631 . . 3 (𝐾𝑉 → ((𝐾 ∈ Lat ∧ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)∀𝑧 ∈ (Base‘𝐾)(𝑥(join‘𝐾)(𝑦(meet‘𝐾)𝑧)) = ((𝑥(join‘𝐾)𝑦)(meet‘𝐾)(𝑥(join‘𝐾)𝑧))) ↔ (𝐷 ∈ Lat ∧ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)∀𝑧 ∈ (Base‘𝐾)(𝑥(join‘𝐾)(𝑦(meet‘𝐾)𝑧)) = ((𝑥(join‘𝐾)𝑦)(meet‘𝐾)(𝑥(join‘𝐾)𝑧)))))
106, 9bitrid 283 . 2 (𝐾𝑉 → ((𝐾 ∈ Lat ∧ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)∀𝑧 ∈ (Base‘𝐾)(𝑥(meet‘𝐾)(𝑦(join‘𝐾)𝑧)) = ((𝑥(meet‘𝐾)𝑦)(join‘𝐾)(𝑥(meet‘𝐾)𝑧))) ↔ (𝐷 ∈ Lat ∧ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)∀𝑧 ∈ (Base‘𝐾)(𝑥(join‘𝐾)(𝑦(meet‘𝐾)𝑧)) = ((𝑥(join‘𝐾)𝑦)(meet‘𝐾)(𝑥(join‘𝐾)𝑧)))))
111, 2, 3isdlat 18457 . 2 (𝐾 ∈ DLat ↔ (𝐾 ∈ Lat ∧ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)∀𝑧 ∈ (Base‘𝐾)(𝑥(meet‘𝐾)(𝑦(join‘𝐾)𝑧)) = ((𝑥(meet‘𝐾)𝑦)(join‘𝐾)(𝑥(meet‘𝐾)𝑧))))
127, 1odubas 18228 . . 3 (Base‘𝐾) = (Base‘𝐷)
137, 3odujoin 18343 . . 3 (meet‘𝐾) = (join‘𝐷)
147, 2odumeet 18345 . . 3 (join‘𝐾) = (meet‘𝐷)
1512, 13, 14isdlat 18457 . 2 (𝐷 ∈ DLat ↔ (𝐷 ∈ Lat ∧ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)∀𝑧 ∈ (Base‘𝐾)(𝑥(join‘𝐾)(𝑦(meet‘𝐾)𝑧)) = ((𝑥(join‘𝐾)𝑦)(meet‘𝐾)(𝑥(join‘𝐾)𝑧))))
1610, 11, 153bitr4g 314 1 (𝐾𝑉 → (𝐾 ∈ DLat ↔ 𝐷 ∈ DLat))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  cfv 6499  (class class class)co 7369  Basecbs 17155  ODualcodu 18223  joincjn 18248  meetcmee 18249  Latclat 18366  DLatcdlat 18455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-dec 12626  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ple 17216  df-odu 18224  df-proset 18231  df-poset 18250  df-lub 18281  df-glb 18282  df-join 18283  df-meet 18284  df-lat 18367  df-dlat 18456
This theorem is referenced by:  dlatjmdi  18461
  Copyright terms: Public domain W3C validator