MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dlatmjdi Structured version   Visualization version   GIF version

Theorem dlatmjdi 18457
Description: In a distributive lattice, meets distribute over joins. (Contributed by Stefan O'Rear, 30-Jan-2015.)
Hypotheses
Ref Expression
isdlat.b 𝐡 = (Baseβ€˜πΎ)
isdlat.j ∨ = (joinβ€˜πΎ)
isdlat.m ∧ = (meetβ€˜πΎ)
Assertion
Ref Expression
dlatmjdi ((𝐾 ∈ DLat ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ 𝑍 ∈ 𝐡)) β†’ (𝑋 ∧ (π‘Œ ∨ 𝑍)) = ((𝑋 ∧ π‘Œ) ∨ (𝑋 ∧ 𝑍)))

Proof of Theorem dlatmjdi
Dummy variables π‘₯ 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isdlat.b . . . 4 𝐡 = (Baseβ€˜πΎ)
2 isdlat.j . . . 4 ∨ = (joinβ€˜πΎ)
3 isdlat.m . . . 4 ∧ = (meetβ€˜πΎ)
41, 2, 3isdlat 18456 . . 3 (𝐾 ∈ DLat ↔ (𝐾 ∈ Lat ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 βˆ€π‘§ ∈ 𝐡 (π‘₯ ∧ (𝑦 ∨ 𝑧)) = ((π‘₯ ∧ 𝑦) ∨ (π‘₯ ∧ 𝑧))))
54simprbi 497 . 2 (𝐾 ∈ DLat β†’ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 βˆ€π‘§ ∈ 𝐡 (π‘₯ ∧ (𝑦 ∨ 𝑧)) = ((π‘₯ ∧ 𝑦) ∨ (π‘₯ ∧ 𝑧)))
6 oveq1 7399 . . . 4 (π‘₯ = 𝑋 β†’ (π‘₯ ∧ (𝑦 ∨ 𝑧)) = (𝑋 ∧ (𝑦 ∨ 𝑧)))
7 oveq1 7399 . . . . 5 (π‘₯ = 𝑋 β†’ (π‘₯ ∧ 𝑦) = (𝑋 ∧ 𝑦))
8 oveq1 7399 . . . . 5 (π‘₯ = 𝑋 β†’ (π‘₯ ∧ 𝑧) = (𝑋 ∧ 𝑧))
97, 8oveq12d 7410 . . . 4 (π‘₯ = 𝑋 β†’ ((π‘₯ ∧ 𝑦) ∨ (π‘₯ ∧ 𝑧)) = ((𝑋 ∧ 𝑦) ∨ (𝑋 ∧ 𝑧)))
106, 9eqeq12d 2747 . . 3 (π‘₯ = 𝑋 β†’ ((π‘₯ ∧ (𝑦 ∨ 𝑧)) = ((π‘₯ ∧ 𝑦) ∨ (π‘₯ ∧ 𝑧)) ↔ (𝑋 ∧ (𝑦 ∨ 𝑧)) = ((𝑋 ∧ 𝑦) ∨ (𝑋 ∧ 𝑧))))
11 oveq1 7399 . . . . 5 (𝑦 = π‘Œ β†’ (𝑦 ∨ 𝑧) = (π‘Œ ∨ 𝑧))
1211oveq2d 7408 . . . 4 (𝑦 = π‘Œ β†’ (𝑋 ∧ (𝑦 ∨ 𝑧)) = (𝑋 ∧ (π‘Œ ∨ 𝑧)))
13 oveq2 7400 . . . . 5 (𝑦 = π‘Œ β†’ (𝑋 ∧ 𝑦) = (𝑋 ∧ π‘Œ))
1413oveq1d 7407 . . . 4 (𝑦 = π‘Œ β†’ ((𝑋 ∧ 𝑦) ∨ (𝑋 ∧ 𝑧)) = ((𝑋 ∧ π‘Œ) ∨ (𝑋 ∧ 𝑧)))
1512, 14eqeq12d 2747 . . 3 (𝑦 = π‘Œ β†’ ((𝑋 ∧ (𝑦 ∨ 𝑧)) = ((𝑋 ∧ 𝑦) ∨ (𝑋 ∧ 𝑧)) ↔ (𝑋 ∧ (π‘Œ ∨ 𝑧)) = ((𝑋 ∧ π‘Œ) ∨ (𝑋 ∧ 𝑧))))
16 oveq2 7400 . . . . 5 (𝑧 = 𝑍 β†’ (π‘Œ ∨ 𝑧) = (π‘Œ ∨ 𝑍))
1716oveq2d 7408 . . . 4 (𝑧 = 𝑍 β†’ (𝑋 ∧ (π‘Œ ∨ 𝑧)) = (𝑋 ∧ (π‘Œ ∨ 𝑍)))
18 oveq2 7400 . . . . 5 (𝑧 = 𝑍 β†’ (𝑋 ∧ 𝑧) = (𝑋 ∧ 𝑍))
1918oveq2d 7408 . . . 4 (𝑧 = 𝑍 β†’ ((𝑋 ∧ π‘Œ) ∨ (𝑋 ∧ 𝑧)) = ((𝑋 ∧ π‘Œ) ∨ (𝑋 ∧ 𝑍)))
2017, 19eqeq12d 2747 . . 3 (𝑧 = 𝑍 β†’ ((𝑋 ∧ (π‘Œ ∨ 𝑧)) = ((𝑋 ∧ π‘Œ) ∨ (𝑋 ∧ 𝑧)) ↔ (𝑋 ∧ (π‘Œ ∨ 𝑍)) = ((𝑋 ∧ π‘Œ) ∨ (𝑋 ∧ 𝑍))))
2110, 15, 20rspc3v 3622 . 2 ((𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ 𝑍 ∈ 𝐡) β†’ (βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 βˆ€π‘§ ∈ 𝐡 (π‘₯ ∧ (𝑦 ∨ 𝑧)) = ((π‘₯ ∧ 𝑦) ∨ (π‘₯ ∧ 𝑧)) β†’ (𝑋 ∧ (π‘Œ ∨ 𝑍)) = ((𝑋 ∧ π‘Œ) ∨ (𝑋 ∧ 𝑍))))
225, 21mpan9 507 1 ((𝐾 ∈ DLat ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ 𝑍 ∈ 𝐡)) β†’ (𝑋 ∧ (π‘Œ ∨ 𝑍)) = ((𝑋 ∧ π‘Œ) ∨ (𝑋 ∧ 𝑍)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106  βˆ€wral 3060  β€˜cfv 6531  (class class class)co 7392  Basecbs 17125  joincjn 18245  meetcmee 18246  Latclat 18365  DLatcdlat 18454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2702  ax-nul 5298
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2709  df-cleq 2723  df-clel 2809  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3474  df-sbc 3773  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4522  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-br 5141  df-iota 6483  df-fv 6539  df-ov 7395  df-dlat 18455
This theorem is referenced by:  dlatjmdi  18460
  Copyright terms: Public domain W3C validator