MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dlatmjdi Structured version   Visualization version   GIF version

Theorem dlatmjdi 18476
Description: In a distributive lattice, meets distribute over joins. (Contributed by Stefan O'Rear, 30-Jan-2015.)
Hypotheses
Ref Expression
isdlat.b 𝐡 = (Baseβ€˜πΎ)
isdlat.j ∨ = (joinβ€˜πΎ)
isdlat.m ∧ = (meetβ€˜πΎ)
Assertion
Ref Expression
dlatmjdi ((𝐾 ∈ DLat ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ 𝑍 ∈ 𝐡)) β†’ (𝑋 ∧ (π‘Œ ∨ 𝑍)) = ((𝑋 ∧ π‘Œ) ∨ (𝑋 ∧ 𝑍)))

Proof of Theorem dlatmjdi
Dummy variables π‘₯ 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isdlat.b . . . 4 𝐡 = (Baseβ€˜πΎ)
2 isdlat.j . . . 4 ∨ = (joinβ€˜πΎ)
3 isdlat.m . . . 4 ∧ = (meetβ€˜πΎ)
41, 2, 3isdlat 18475 . . 3 (𝐾 ∈ DLat ↔ (𝐾 ∈ Lat ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 βˆ€π‘§ ∈ 𝐡 (π‘₯ ∧ (𝑦 ∨ 𝑧)) = ((π‘₯ ∧ 𝑦) ∨ (π‘₯ ∧ 𝑧))))
54simprbi 498 . 2 (𝐾 ∈ DLat β†’ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 βˆ€π‘§ ∈ 𝐡 (π‘₯ ∧ (𝑦 ∨ 𝑧)) = ((π‘₯ ∧ 𝑦) ∨ (π‘₯ ∧ 𝑧)))
6 oveq1 7416 . . . 4 (π‘₯ = 𝑋 β†’ (π‘₯ ∧ (𝑦 ∨ 𝑧)) = (𝑋 ∧ (𝑦 ∨ 𝑧)))
7 oveq1 7416 . . . . 5 (π‘₯ = 𝑋 β†’ (π‘₯ ∧ 𝑦) = (𝑋 ∧ 𝑦))
8 oveq1 7416 . . . . 5 (π‘₯ = 𝑋 β†’ (π‘₯ ∧ 𝑧) = (𝑋 ∧ 𝑧))
97, 8oveq12d 7427 . . . 4 (π‘₯ = 𝑋 β†’ ((π‘₯ ∧ 𝑦) ∨ (π‘₯ ∧ 𝑧)) = ((𝑋 ∧ 𝑦) ∨ (𝑋 ∧ 𝑧)))
106, 9eqeq12d 2749 . . 3 (π‘₯ = 𝑋 β†’ ((π‘₯ ∧ (𝑦 ∨ 𝑧)) = ((π‘₯ ∧ 𝑦) ∨ (π‘₯ ∧ 𝑧)) ↔ (𝑋 ∧ (𝑦 ∨ 𝑧)) = ((𝑋 ∧ 𝑦) ∨ (𝑋 ∧ 𝑧))))
11 oveq1 7416 . . . . 5 (𝑦 = π‘Œ β†’ (𝑦 ∨ 𝑧) = (π‘Œ ∨ 𝑧))
1211oveq2d 7425 . . . 4 (𝑦 = π‘Œ β†’ (𝑋 ∧ (𝑦 ∨ 𝑧)) = (𝑋 ∧ (π‘Œ ∨ 𝑧)))
13 oveq2 7417 . . . . 5 (𝑦 = π‘Œ β†’ (𝑋 ∧ 𝑦) = (𝑋 ∧ π‘Œ))
1413oveq1d 7424 . . . 4 (𝑦 = π‘Œ β†’ ((𝑋 ∧ 𝑦) ∨ (𝑋 ∧ 𝑧)) = ((𝑋 ∧ π‘Œ) ∨ (𝑋 ∧ 𝑧)))
1512, 14eqeq12d 2749 . . 3 (𝑦 = π‘Œ β†’ ((𝑋 ∧ (𝑦 ∨ 𝑧)) = ((𝑋 ∧ 𝑦) ∨ (𝑋 ∧ 𝑧)) ↔ (𝑋 ∧ (π‘Œ ∨ 𝑧)) = ((𝑋 ∧ π‘Œ) ∨ (𝑋 ∧ 𝑧))))
16 oveq2 7417 . . . . 5 (𝑧 = 𝑍 β†’ (π‘Œ ∨ 𝑧) = (π‘Œ ∨ 𝑍))
1716oveq2d 7425 . . . 4 (𝑧 = 𝑍 β†’ (𝑋 ∧ (π‘Œ ∨ 𝑧)) = (𝑋 ∧ (π‘Œ ∨ 𝑍)))
18 oveq2 7417 . . . . 5 (𝑧 = 𝑍 β†’ (𝑋 ∧ 𝑧) = (𝑋 ∧ 𝑍))
1918oveq2d 7425 . . . 4 (𝑧 = 𝑍 β†’ ((𝑋 ∧ π‘Œ) ∨ (𝑋 ∧ 𝑧)) = ((𝑋 ∧ π‘Œ) ∨ (𝑋 ∧ 𝑍)))
2017, 19eqeq12d 2749 . . 3 (𝑧 = 𝑍 β†’ ((𝑋 ∧ (π‘Œ ∨ 𝑧)) = ((𝑋 ∧ π‘Œ) ∨ (𝑋 ∧ 𝑧)) ↔ (𝑋 ∧ (π‘Œ ∨ 𝑍)) = ((𝑋 ∧ π‘Œ) ∨ (𝑋 ∧ 𝑍))))
2110, 15, 20rspc3v 3628 . 2 ((𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ 𝑍 ∈ 𝐡) β†’ (βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 βˆ€π‘§ ∈ 𝐡 (π‘₯ ∧ (𝑦 ∨ 𝑧)) = ((π‘₯ ∧ 𝑦) ∨ (π‘₯ ∧ 𝑧)) β†’ (𝑋 ∧ (π‘Œ ∨ 𝑍)) = ((𝑋 ∧ π‘Œ) ∨ (𝑋 ∧ 𝑍))))
225, 21mpan9 508 1 ((𝐾 ∈ DLat ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ 𝑍 ∈ 𝐡)) β†’ (𝑋 ∧ (π‘Œ ∨ 𝑍)) = ((𝑋 ∧ π‘Œ) ∨ (𝑋 ∧ 𝑍)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 397   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107  βˆ€wral 3062  β€˜cfv 6544  (class class class)co 7409  Basecbs 17144  joincjn 18264  meetcmee 18265  Latclat 18384  DLatcdlat 18473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-nul 5307
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-sbc 3779  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-iota 6496  df-fv 6552  df-ov 7412  df-dlat 18474
This theorem is referenced by:  dlatjmdi  18479
  Copyright terms: Public domain W3C validator