MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dlatmjdi Structured version   Visualization version   GIF version

Theorem dlatmjdi 18429
Description: In a distributive lattice, meets distribute over joins. (Contributed by Stefan O'Rear, 30-Jan-2015.)
Hypotheses
Ref Expression
isdlat.b 𝐵 = (Base‘𝐾)
isdlat.j = (join‘𝐾)
isdlat.m = (meet‘𝐾)
Assertion
Ref Expression
dlatmjdi ((𝐾 ∈ DLat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 (𝑌 𝑍)) = ((𝑋 𝑌) (𝑋 𝑍)))

Proof of Theorem dlatmjdi
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isdlat.b . . . 4 𝐵 = (Base‘𝐾)
2 isdlat.j . . . 4 = (join‘𝐾)
3 isdlat.m . . . 4 = (meet‘𝐾)
41, 2, 3isdlat 18428 . . 3 (𝐾 ∈ DLat ↔ (𝐾 ∈ Lat ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 (𝑦 𝑧)) = ((𝑥 𝑦) (𝑥 𝑧))))
54simprbi 496 . 2 (𝐾 ∈ DLat → ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 (𝑦 𝑧)) = ((𝑥 𝑦) (𝑥 𝑧)))
6 oveq1 7353 . . . 4 (𝑥 = 𝑋 → (𝑥 (𝑦 𝑧)) = (𝑋 (𝑦 𝑧)))
7 oveq1 7353 . . . . 5 (𝑥 = 𝑋 → (𝑥 𝑦) = (𝑋 𝑦))
8 oveq1 7353 . . . . 5 (𝑥 = 𝑋 → (𝑥 𝑧) = (𝑋 𝑧))
97, 8oveq12d 7364 . . . 4 (𝑥 = 𝑋 → ((𝑥 𝑦) (𝑥 𝑧)) = ((𝑋 𝑦) (𝑋 𝑧)))
106, 9eqeq12d 2747 . . 3 (𝑥 = 𝑋 → ((𝑥 (𝑦 𝑧)) = ((𝑥 𝑦) (𝑥 𝑧)) ↔ (𝑋 (𝑦 𝑧)) = ((𝑋 𝑦) (𝑋 𝑧))))
11 oveq1 7353 . . . . 5 (𝑦 = 𝑌 → (𝑦 𝑧) = (𝑌 𝑧))
1211oveq2d 7362 . . . 4 (𝑦 = 𝑌 → (𝑋 (𝑦 𝑧)) = (𝑋 (𝑌 𝑧)))
13 oveq2 7354 . . . . 5 (𝑦 = 𝑌 → (𝑋 𝑦) = (𝑋 𝑌))
1413oveq1d 7361 . . . 4 (𝑦 = 𝑌 → ((𝑋 𝑦) (𝑋 𝑧)) = ((𝑋 𝑌) (𝑋 𝑧)))
1512, 14eqeq12d 2747 . . 3 (𝑦 = 𝑌 → ((𝑋 (𝑦 𝑧)) = ((𝑋 𝑦) (𝑋 𝑧)) ↔ (𝑋 (𝑌 𝑧)) = ((𝑋 𝑌) (𝑋 𝑧))))
16 oveq2 7354 . . . . 5 (𝑧 = 𝑍 → (𝑌 𝑧) = (𝑌 𝑍))
1716oveq2d 7362 . . . 4 (𝑧 = 𝑍 → (𝑋 (𝑌 𝑧)) = (𝑋 (𝑌 𝑍)))
18 oveq2 7354 . . . . 5 (𝑧 = 𝑍 → (𝑋 𝑧) = (𝑋 𝑍))
1918oveq2d 7362 . . . 4 (𝑧 = 𝑍 → ((𝑋 𝑌) (𝑋 𝑧)) = ((𝑋 𝑌) (𝑋 𝑍)))
2017, 19eqeq12d 2747 . . 3 (𝑧 = 𝑍 → ((𝑋 (𝑌 𝑧)) = ((𝑋 𝑌) (𝑋 𝑧)) ↔ (𝑋 (𝑌 𝑍)) = ((𝑋 𝑌) (𝑋 𝑍))))
2110, 15, 20rspc3v 3588 . 2 ((𝑋𝐵𝑌𝐵𝑍𝐵) → (∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 (𝑦 𝑧)) = ((𝑥 𝑦) (𝑥 𝑧)) → (𝑋 (𝑌 𝑍)) = ((𝑋 𝑌) (𝑋 𝑍))))
225, 21mpan9 506 1 ((𝐾 ∈ DLat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 (𝑌 𝑍)) = ((𝑋 𝑌) (𝑋 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  cfv 6481  (class class class)co 7346  Basecbs 17120  joincjn 18217  meetcmee 18218  Latclat 18337  DLatcdlat 18426
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-nul 5242
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-iota 6437  df-fv 6489  df-ov 7349  df-dlat 18427
This theorem is referenced by:  dlatjmdi  18432
  Copyright terms: Public domain W3C validator