MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dlatmjdi Structured version   Visualization version   GIF version

Theorem dlatmjdi 18506
Description: In a distributive lattice, meets distribute over joins. (Contributed by Stefan O'Rear, 30-Jan-2015.)
Hypotheses
Ref Expression
isdlat.b 𝐵 = (Base‘𝐾)
isdlat.j = (join‘𝐾)
isdlat.m = (meet‘𝐾)
Assertion
Ref Expression
dlatmjdi ((𝐾 ∈ DLat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 (𝑌 𝑍)) = ((𝑋 𝑌) (𝑋 𝑍)))

Proof of Theorem dlatmjdi
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isdlat.b . . . 4 𝐵 = (Base‘𝐾)
2 isdlat.j . . . 4 = (join‘𝐾)
3 isdlat.m . . . 4 = (meet‘𝐾)
41, 2, 3isdlat 18505 . . 3 (𝐾 ∈ DLat ↔ (𝐾 ∈ Lat ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 (𝑦 𝑧)) = ((𝑥 𝑦) (𝑥 𝑧))))
54simprbi 496 . 2 (𝐾 ∈ DLat → ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 (𝑦 𝑧)) = ((𝑥 𝑦) (𝑥 𝑧)))
6 oveq1 7421 . . . 4 (𝑥 = 𝑋 → (𝑥 (𝑦 𝑧)) = (𝑋 (𝑦 𝑧)))
7 oveq1 7421 . . . . 5 (𝑥 = 𝑋 → (𝑥 𝑦) = (𝑋 𝑦))
8 oveq1 7421 . . . . 5 (𝑥 = 𝑋 → (𝑥 𝑧) = (𝑋 𝑧))
97, 8oveq12d 7432 . . . 4 (𝑥 = 𝑋 → ((𝑥 𝑦) (𝑥 𝑧)) = ((𝑋 𝑦) (𝑋 𝑧)))
106, 9eqeq12d 2743 . . 3 (𝑥 = 𝑋 → ((𝑥 (𝑦 𝑧)) = ((𝑥 𝑦) (𝑥 𝑧)) ↔ (𝑋 (𝑦 𝑧)) = ((𝑋 𝑦) (𝑋 𝑧))))
11 oveq1 7421 . . . . 5 (𝑦 = 𝑌 → (𝑦 𝑧) = (𝑌 𝑧))
1211oveq2d 7430 . . . 4 (𝑦 = 𝑌 → (𝑋 (𝑦 𝑧)) = (𝑋 (𝑌 𝑧)))
13 oveq2 7422 . . . . 5 (𝑦 = 𝑌 → (𝑋 𝑦) = (𝑋 𝑌))
1413oveq1d 7429 . . . 4 (𝑦 = 𝑌 → ((𝑋 𝑦) (𝑋 𝑧)) = ((𝑋 𝑌) (𝑋 𝑧)))
1512, 14eqeq12d 2743 . . 3 (𝑦 = 𝑌 → ((𝑋 (𝑦 𝑧)) = ((𝑋 𝑦) (𝑋 𝑧)) ↔ (𝑋 (𝑌 𝑧)) = ((𝑋 𝑌) (𝑋 𝑧))))
16 oveq2 7422 . . . . 5 (𝑧 = 𝑍 → (𝑌 𝑧) = (𝑌 𝑍))
1716oveq2d 7430 . . . 4 (𝑧 = 𝑍 → (𝑋 (𝑌 𝑧)) = (𝑋 (𝑌 𝑍)))
18 oveq2 7422 . . . . 5 (𝑧 = 𝑍 → (𝑋 𝑧) = (𝑋 𝑍))
1918oveq2d 7430 . . . 4 (𝑧 = 𝑍 → ((𝑋 𝑌) (𝑋 𝑧)) = ((𝑋 𝑌) (𝑋 𝑍)))
2017, 19eqeq12d 2743 . . 3 (𝑧 = 𝑍 → ((𝑋 (𝑌 𝑧)) = ((𝑋 𝑌) (𝑋 𝑧)) ↔ (𝑋 (𝑌 𝑍)) = ((𝑋 𝑌) (𝑋 𝑍))))
2110, 15, 20rspc3v 3623 . 2 ((𝑋𝐵𝑌𝐵𝑍𝐵) → (∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 (𝑦 𝑧)) = ((𝑥 𝑦) (𝑥 𝑧)) → (𝑋 (𝑌 𝑍)) = ((𝑋 𝑌) (𝑋 𝑍))))
225, 21mpan9 506 1 ((𝐾 ∈ DLat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 (𝑌 𝑍)) = ((𝑋 𝑌) (𝑋 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1534  wcel 2099  wral 3056  cfv 6542  (class class class)co 7414  Basecbs 17171  joincjn 18294  meetcmee 18295  Latclat 18414  DLatcdlat 18503
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2698  ax-nul 5300
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2705  df-cleq 2719  df-clel 2805  df-ne 2936  df-ral 3057  df-rex 3066  df-rab 3428  df-v 3471  df-sbc 3775  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5143  df-iota 6494  df-fv 6550  df-ov 7417  df-dlat 18504
This theorem is referenced by:  dlatjmdi  18509
  Copyright terms: Public domain W3C validator