| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dmdm | Structured version Visualization version GIF version | ||
| Description: The double domain of a function on a Cartesian square. (Contributed by Zhi Wang, 1-Nov-2025.) |
| Ref | Expression |
|---|---|
| dmdm | ⊢ (𝐴 Fn (𝐵 × 𝐵) → 𝐵 = dom dom 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fndm 6638 | . . 3 ⊢ (𝐴 Fn (𝐵 × 𝐵) → dom 𝐴 = (𝐵 × 𝐵)) | |
| 2 | 1 | dmeqd 5883 | . 2 ⊢ (𝐴 Fn (𝐵 × 𝐵) → dom dom 𝐴 = dom (𝐵 × 𝐵)) |
| 3 | dmxpid 5908 | . 2 ⊢ dom (𝐵 × 𝐵) = 𝐵 | |
| 4 | 2, 3 | eqtr2di 2786 | 1 ⊢ (𝐴 Fn (𝐵 × 𝐵) → 𝐵 = dom dom 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 × cxp 5650 dom cdm 5652 Fn wfn 6523 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-sep 5264 ax-nul 5274 ax-pr 5400 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3414 df-v 3459 df-dif 3927 df-un 3929 df-ss 3941 df-nul 4307 df-if 4499 df-sn 4600 df-pr 4602 df-op 4606 df-br 5118 df-opab 5180 df-xp 5658 df-dm 5662 df-fn 6531 |
| This theorem is referenced by: iinfconstbas 48927 |
| Copyright terms: Public domain | W3C validator |