| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dmdm | Structured version Visualization version GIF version | ||
| Description: The double domain of a function on a Cartesian square. (Contributed by Zhi Wang, 1-Nov-2025.) |
| Ref | Expression |
|---|---|
| dmdm | ⊢ (𝐴 Fn (𝐵 × 𝐵) → 𝐵 = dom dom 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fndm 6584 | . . 3 ⊢ (𝐴 Fn (𝐵 × 𝐵) → dom 𝐴 = (𝐵 × 𝐵)) | |
| 2 | 1 | dmeqd 5844 | . 2 ⊢ (𝐴 Fn (𝐵 × 𝐵) → dom dom 𝐴 = dom (𝐵 × 𝐵)) |
| 3 | dmxpid 5869 | . 2 ⊢ dom (𝐵 × 𝐵) = 𝐵 | |
| 4 | 2, 3 | eqtr2di 2783 | 1 ⊢ (𝐴 Fn (𝐵 × 𝐵) → 𝐵 = dom dom 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 × cxp 5612 dom cdm 5614 Fn wfn 6476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-xp 5620 df-dm 5624 df-fn 6484 |
| This theorem is referenced by: iinfconstbas 49177 |
| Copyright terms: Public domain | W3C validator |