Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dmdm Structured version   Visualization version   GIF version

Theorem dmdm 48914
Description: The double domain of a function on a Cartesian square. (Contributed by Zhi Wang, 1-Nov-2025.)
Assertion
Ref Expression
dmdm (𝐴 Fn (𝐵 × 𝐵) → 𝐵 = dom dom 𝐴)

Proof of Theorem dmdm
StepHypRef Expression
1 fndm 6638 . . 3 (𝐴 Fn (𝐵 × 𝐵) → dom 𝐴 = (𝐵 × 𝐵))
21dmeqd 5883 . 2 (𝐴 Fn (𝐵 × 𝐵) → dom dom 𝐴 = dom (𝐵 × 𝐵))
3 dmxpid 5908 . 2 dom (𝐵 × 𝐵) = 𝐵
42, 3eqtr2di 2786 1 (𝐴 Fn (𝐵 × 𝐵) → 𝐵 = dom dom 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539   × cxp 5650  dom cdm 5652   Fn wfn 6523
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706  ax-sep 5264  ax-nul 5274  ax-pr 5400
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3414  df-v 3459  df-dif 3927  df-un 3929  df-ss 3941  df-nul 4307  df-if 4499  df-sn 4600  df-pr 4602  df-op 4606  df-br 5118  df-opab 5180  df-xp 5658  df-dm 5662  df-fn 6531
This theorem is referenced by:  iinfconstbas  48927
  Copyright terms: Public domain W3C validator