Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dmxpid | Structured version Visualization version GIF version |
Description: The domain of a Cartesian square. (Contributed by NM, 28-Jul-1995.) |
Ref | Expression |
---|---|
dmxpid | ⊢ dom (𝐴 × 𝐴) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dm0 5829 | . . 3 ⊢ dom ∅ = ∅ | |
2 | xpeq1 5603 | . . . . 5 ⊢ (𝐴 = ∅ → (𝐴 × 𝐴) = (∅ × 𝐴)) | |
3 | 0xp 5685 | . . . . 5 ⊢ (∅ × 𝐴) = ∅ | |
4 | 2, 3 | eqtrdi 2794 | . . . 4 ⊢ (𝐴 = ∅ → (𝐴 × 𝐴) = ∅) |
5 | 4 | dmeqd 5814 | . . 3 ⊢ (𝐴 = ∅ → dom (𝐴 × 𝐴) = dom ∅) |
6 | id 22 | . . 3 ⊢ (𝐴 = ∅ → 𝐴 = ∅) | |
7 | 1, 5, 6 | 3eqtr4a 2804 | . 2 ⊢ (𝐴 = ∅ → dom (𝐴 × 𝐴) = 𝐴) |
8 | dmxp 5838 | . 2 ⊢ (𝐴 ≠ ∅ → dom (𝐴 × 𝐴) = 𝐴) | |
9 | 7, 8 | pm2.61ine 3028 | 1 ⊢ dom (𝐴 × 𝐴) = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∅c0 4256 × cxp 5587 dom cdm 5589 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-xp 5595 df-dm 5599 |
This theorem is referenced by: dmxpin 5840 xpid11 5841 sofld 6090 xpider 8577 hartogslem1 9301 unxpwdom2 9347 infxpenlem 9769 fpwwe2lem12 10398 fpwwe2 10399 canth4 10403 dmrecnq 10724 homfeqbas 17405 sscfn1 17529 sscfn2 17530 ssclem 17531 isssc 17532 rescval2 17540 issubc2 17551 cofuval 17597 resfval2 17608 resf1st 17609 psssdm2 18299 tsrss 18307 decpmatval 21914 pmatcollpw3lem 21932 ustssco 23366 ustbas2 23377 psmetdmdm 23458 xmetdmdm 23488 setsmstopn 23633 tmsval 23636 tngtopn 23814 caufval 24439 grporndm 28872 dfhnorm2 29484 hhshsslem1 29629 metideq 31843 filnetlem4 34570 poimirlem3 35780 ssbnd 35946 bnd2lem 35949 ismtyval 35958 ismndo2 36032 exidreslem 36035 divrngcl 36115 isdrngo2 36116 rtrclex 41225 fnxpdmdm 45322 |
Copyright terms: Public domain | W3C validator |