Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dmxpid | Structured version Visualization version GIF version |
Description: The domain of a Cartesian square. (Contributed by NM, 28-Jul-1995.) |
Ref | Expression |
---|---|
dmxpid | ⊢ dom (𝐴 × 𝐴) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dm0 5823 | . . 3 ⊢ dom ∅ = ∅ | |
2 | xpeq1 5599 | . . . . 5 ⊢ (𝐴 = ∅ → (𝐴 × 𝐴) = (∅ × 𝐴)) | |
3 | 0xp 5680 | . . . . 5 ⊢ (∅ × 𝐴) = ∅ | |
4 | 2, 3 | eqtrdi 2794 | . . . 4 ⊢ (𝐴 = ∅ → (𝐴 × 𝐴) = ∅) |
5 | 4 | dmeqd 5808 | . . 3 ⊢ (𝐴 = ∅ → dom (𝐴 × 𝐴) = dom ∅) |
6 | id 22 | . . 3 ⊢ (𝐴 = ∅ → 𝐴 = ∅) | |
7 | 1, 5, 6 | 3eqtr4a 2804 | . 2 ⊢ (𝐴 = ∅ → dom (𝐴 × 𝐴) = 𝐴) |
8 | dmxp 5832 | . 2 ⊢ (𝐴 ≠ ∅ → dom (𝐴 × 𝐴) = 𝐴) | |
9 | 7, 8 | pm2.61ine 3028 | 1 ⊢ dom (𝐴 × 𝐴) = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∅c0 4257 × cxp 5583 dom cdm 5585 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5222 ax-nul 5229 ax-pr 5351 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rab 3073 df-v 3432 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4258 df-if 4461 df-sn 4563 df-pr 4565 df-op 4569 df-br 5075 df-opab 5137 df-xp 5591 df-dm 5595 |
This theorem is referenced by: dmxpin 5834 xpid11 5835 sofld 6084 xpider 8565 hartogslem1 9289 unxpwdom2 9335 infxpenlem 9757 fpwwe2lem12 10386 fpwwe2 10387 canth4 10391 dmrecnq 10712 homfeqbas 17393 sscfn1 17517 sscfn2 17518 ssclem 17519 isssc 17520 rescval2 17528 issubc2 17539 cofuval 17585 resfval2 17596 resf1st 17597 psssdm2 18287 tsrss 18295 decpmatval 21902 pmatcollpw3lem 21920 ustssco 23354 ustbas2 23365 psmetdmdm 23446 xmetdmdm 23476 setsmstopn 23621 tmsval 23624 tngtopn 23802 caufval 24427 grporndm 28858 dfhnorm2 29470 hhshsslem1 29615 metideq 31829 filnetlem4 34556 poimirlem3 35766 ssbnd 35932 bnd2lem 35935 ismtyval 35944 ismndo2 36018 exidreslem 36021 divrngcl 36101 isdrngo2 36102 rtrclex 41184 fnxpdmdm 45278 |
Copyright terms: Public domain | W3C validator |