![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dmxpid | Structured version Visualization version GIF version |
Description: The domain of a Cartesian square. (Contributed by NM, 28-Jul-1995.) |
Ref | Expression |
---|---|
dmxpid | ⊢ dom (𝐴 × 𝐴) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dm0 5923 | . . 3 ⊢ dom ∅ = ∅ | |
2 | xpeq1 5692 | . . . . 5 ⊢ (𝐴 = ∅ → (𝐴 × 𝐴) = (∅ × 𝐴)) | |
3 | 0xp 5776 | . . . . 5 ⊢ (∅ × 𝐴) = ∅ | |
4 | 2, 3 | eqtrdi 2781 | . . . 4 ⊢ (𝐴 = ∅ → (𝐴 × 𝐴) = ∅) |
5 | 4 | dmeqd 5908 | . . 3 ⊢ (𝐴 = ∅ → dom (𝐴 × 𝐴) = dom ∅) |
6 | id 22 | . . 3 ⊢ (𝐴 = ∅ → 𝐴 = ∅) | |
7 | 1, 5, 6 | 3eqtr4a 2791 | . 2 ⊢ (𝐴 = ∅ → dom (𝐴 × 𝐴) = 𝐴) |
8 | dmxp 5931 | . 2 ⊢ (𝐴 ≠ ∅ → dom (𝐴 × 𝐴) = 𝐴) | |
9 | 7, 8 | pm2.61ine 3014 | 1 ⊢ dom (𝐴 × 𝐴) = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 ∅c0 4322 × cxp 5676 dom cdm 5678 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rab 3419 df-v 3463 df-dif 3947 df-un 3949 df-ss 3961 df-nul 4323 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-br 5150 df-opab 5212 df-xp 5684 df-dm 5688 |
This theorem is referenced by: dmxpin 5933 xpid11 5934 sofld 6193 xpider 8807 hartogslem1 9567 unxpwdom2 9613 infxpenlem 10038 fpwwe2lem12 10667 fpwwe2 10668 canth4 10672 dmrecnq 10993 homfeqbas 17679 sscfn1 17803 sscfn2 17804 ssclem 17805 isssc 17806 rescval2 17814 issubc2 17825 cofuval 17871 resfval2 17882 resf1st 17883 psssdm2 18576 tsrss 18584 decpmatval 22711 pmatcollpw3lem 22729 ustssco 24163 ustbas2 24174 psmetdmdm 24255 xmetdmdm 24285 setsmstopn 24430 tmsval 24433 tngtopn 24611 caufval 25247 grporndm 30392 dfhnorm2 31004 hhshsslem1 31149 metideq 33625 filnetlem4 35996 poimirlem3 37227 ssbnd 37392 bnd2lem 37395 ismtyval 37404 ismndo2 37478 exidreslem 37481 divrngcl 37561 isdrngo2 37562 rtrclex 43189 fnxpdmdm 47408 |
Copyright terms: Public domain | W3C validator |