| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmxpid | Structured version Visualization version GIF version | ||
| Description: The domain of a Cartesian square. (Contributed by NM, 28-Jul-1995.) |
| Ref | Expression |
|---|---|
| dmxpid | ⊢ dom (𝐴 × 𝐴) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dm0 5867 | . . 3 ⊢ dom ∅ = ∅ | |
| 2 | xpeq1 5637 | . . . . 5 ⊢ (𝐴 = ∅ → (𝐴 × 𝐴) = (∅ × 𝐴)) | |
| 3 | 0xp 5722 | . . . . 5 ⊢ (∅ × 𝐴) = ∅ | |
| 4 | 2, 3 | eqtrdi 2780 | . . . 4 ⊢ (𝐴 = ∅ → (𝐴 × 𝐴) = ∅) |
| 5 | 4 | dmeqd 5852 | . . 3 ⊢ (𝐴 = ∅ → dom (𝐴 × 𝐴) = dom ∅) |
| 6 | id 22 | . . 3 ⊢ (𝐴 = ∅ → 𝐴 = ∅) | |
| 7 | 1, 5, 6 | 3eqtr4a 2790 | . 2 ⊢ (𝐴 = ∅ → dom (𝐴 × 𝐴) = 𝐴) |
| 8 | dmxp 5875 | . 2 ⊢ (𝐴 ≠ ∅ → dom (𝐴 × 𝐴) = 𝐴) | |
| 9 | 7, 8 | pm2.61ine 3008 | 1 ⊢ dom (𝐴 × 𝐴) = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∅c0 4286 × cxp 5621 dom cdm 5623 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-opab 5158 df-xp 5629 df-dm 5633 |
| This theorem is referenced by: dmxpin 5877 xpid11 5878 sofld 6140 xpider 8722 hartogslem1 9453 unxpwdom2 9499 infxpenlem 9926 fpwwe2lem12 10555 fpwwe2 10556 canth4 10560 dmrecnq 10881 homfeqbas 17620 sscfn1 17742 sscfn2 17743 ssclem 17744 isssc 17745 rescval2 17753 issubc2 17761 cofuval 17807 resfval2 17818 resf1st 17819 psssdm2 18505 tsrss 18513 decpmatval 22668 pmatcollpw3lem 22686 ustssco 24118 ustbas2 24129 psmetdmdm 24209 xmetdmdm 24239 setsmstopn 24382 tmsval 24385 tngtopn 24554 caufval 25191 grporndm 30472 dfhnorm2 31084 hhshsslem1 31229 metideq 33859 filnetlem4 36354 poimirlem3 37602 ssbnd 37767 bnd2lem 37770 ismtyval 37779 ismndo2 37853 exidreslem 37856 divrngcl 37936 isdrngo2 37937 rtrclex 43590 fnxpdmdm 48132 dmdm 49026 infsubc2d 49035 |
| Copyright terms: Public domain | W3C validator |