| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmxpid | Structured version Visualization version GIF version | ||
| Description: The domain of a Cartesian square. (Contributed by NM, 28-Jul-1995.) |
| Ref | Expression |
|---|---|
| dmxpid | ⊢ dom (𝐴 × 𝐴) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dm0 5900 | . . 3 ⊢ dom ∅ = ∅ | |
| 2 | xpeq1 5668 | . . . . 5 ⊢ (𝐴 = ∅ → (𝐴 × 𝐴) = (∅ × 𝐴)) | |
| 3 | 0xp 5753 | . . . . 5 ⊢ (∅ × 𝐴) = ∅ | |
| 4 | 2, 3 | eqtrdi 2786 | . . . 4 ⊢ (𝐴 = ∅ → (𝐴 × 𝐴) = ∅) |
| 5 | 4 | dmeqd 5885 | . . 3 ⊢ (𝐴 = ∅ → dom (𝐴 × 𝐴) = dom ∅) |
| 6 | id 22 | . . 3 ⊢ (𝐴 = ∅ → 𝐴 = ∅) | |
| 7 | 1, 5, 6 | 3eqtr4a 2796 | . 2 ⊢ (𝐴 = ∅ → dom (𝐴 × 𝐴) = 𝐴) |
| 8 | dmxp 5908 | . 2 ⊢ (𝐴 ≠ ∅ → dom (𝐴 × 𝐴) = 𝐴) | |
| 9 | 7, 8 | pm2.61ine 3015 | 1 ⊢ dom (𝐴 × 𝐴) = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∅c0 4308 × cxp 5652 dom cdm 5654 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-xp 5660 df-dm 5664 |
| This theorem is referenced by: dmxpin 5911 xpid11 5912 sofld 6176 xpider 8802 hartogslem1 9556 unxpwdom2 9602 infxpenlem 10027 fpwwe2lem12 10656 fpwwe2 10657 canth4 10661 dmrecnq 10982 homfeqbas 17708 sscfn1 17830 sscfn2 17831 ssclem 17832 isssc 17833 rescval2 17841 issubc2 17849 cofuval 17895 resfval2 17906 resf1st 17907 psssdm2 18591 tsrss 18599 decpmatval 22703 pmatcollpw3lem 22721 ustssco 24153 ustbas2 24164 psmetdmdm 24244 xmetdmdm 24274 setsmstopn 24417 tmsval 24420 tngtopn 24589 caufval 25227 grporndm 30491 dfhnorm2 31103 hhshsslem1 31248 metideq 33924 filnetlem4 36399 poimirlem3 37647 ssbnd 37812 bnd2lem 37815 ismtyval 37824 ismndo2 37898 exidreslem 37901 divrngcl 37981 isdrngo2 37982 rtrclex 43641 fnxpdmdm 48135 dmdm 49020 infsubc2d 49029 |
| Copyright terms: Public domain | W3C validator |