Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dmxpid | Structured version Visualization version GIF version |
Description: The domain of a Cartesian square. (Contributed by NM, 28-Jul-1995.) |
Ref | Expression |
---|---|
dmxpid | ⊢ dom (𝐴 × 𝐴) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dm0 5818 | . . 3 ⊢ dom ∅ = ∅ | |
2 | xpeq1 5594 | . . . . 5 ⊢ (𝐴 = ∅ → (𝐴 × 𝐴) = (∅ × 𝐴)) | |
3 | 0xp 5675 | . . . . 5 ⊢ (∅ × 𝐴) = ∅ | |
4 | 2, 3 | eqtrdi 2795 | . . . 4 ⊢ (𝐴 = ∅ → (𝐴 × 𝐴) = ∅) |
5 | 4 | dmeqd 5803 | . . 3 ⊢ (𝐴 = ∅ → dom (𝐴 × 𝐴) = dom ∅) |
6 | id 22 | . . 3 ⊢ (𝐴 = ∅ → 𝐴 = ∅) | |
7 | 1, 5, 6 | 3eqtr4a 2805 | . 2 ⊢ (𝐴 = ∅ → dom (𝐴 × 𝐴) = 𝐴) |
8 | dmxp 5827 | . 2 ⊢ (𝐴 ≠ ∅ → dom (𝐴 × 𝐴) = 𝐴) | |
9 | 7, 8 | pm2.61ine 3027 | 1 ⊢ dom (𝐴 × 𝐴) = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∅c0 4253 × cxp 5578 dom cdm 5580 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-dm 5590 |
This theorem is referenced by: dmxpin 5829 xpid11 5830 sofld 6079 xpider 8535 hartogslem1 9231 unxpwdom2 9277 infxpenlem 9700 fpwwe2lem12 10329 fpwwe2 10330 canth4 10334 dmrecnq 10655 homfeqbas 17322 sscfn1 17446 sscfn2 17447 ssclem 17448 isssc 17449 rescval2 17457 issubc2 17467 cofuval 17513 resfval2 17524 resf1st 17525 psssdm2 18214 tsrss 18222 decpmatval 21822 pmatcollpw3lem 21840 ustssco 23274 ustbas2 23285 psmetdmdm 23366 xmetdmdm 23396 setsmstopn 23539 tmsval 23542 tngtopn 23720 caufval 24344 grporndm 28773 dfhnorm2 29385 hhshsslem1 29530 metideq 31745 filnetlem4 34497 poimirlem3 35707 ssbnd 35873 bnd2lem 35876 ismtyval 35885 ismndo2 35959 exidreslem 35962 divrngcl 36042 isdrngo2 36043 rtrclex 41114 fnxpdmdm 45210 |
Copyright terms: Public domain | W3C validator |