| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmxpid | Structured version Visualization version GIF version | ||
| Description: The domain of a Cartesian square. (Contributed by NM, 28-Jul-1995.) |
| Ref | Expression |
|---|---|
| dmxpid | ⊢ dom (𝐴 × 𝐴) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dm0 5886 | . . 3 ⊢ dom ∅ = ∅ | |
| 2 | xpeq1 5654 | . . . . 5 ⊢ (𝐴 = ∅ → (𝐴 × 𝐴) = (∅ × 𝐴)) | |
| 3 | 0xp 5739 | . . . . 5 ⊢ (∅ × 𝐴) = ∅ | |
| 4 | 2, 3 | eqtrdi 2781 | . . . 4 ⊢ (𝐴 = ∅ → (𝐴 × 𝐴) = ∅) |
| 5 | 4 | dmeqd 5871 | . . 3 ⊢ (𝐴 = ∅ → dom (𝐴 × 𝐴) = dom ∅) |
| 6 | id 22 | . . 3 ⊢ (𝐴 = ∅ → 𝐴 = ∅) | |
| 7 | 1, 5, 6 | 3eqtr4a 2791 | . 2 ⊢ (𝐴 = ∅ → dom (𝐴 × 𝐴) = 𝐴) |
| 8 | dmxp 5894 | . 2 ⊢ (𝐴 ≠ ∅ → dom (𝐴 × 𝐴) = 𝐴) | |
| 9 | 7, 8 | pm2.61ine 3009 | 1 ⊢ dom (𝐴 × 𝐴) = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∅c0 4298 × cxp 5638 dom cdm 5640 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-br 5110 df-opab 5172 df-xp 5646 df-dm 5650 |
| This theorem is referenced by: dmxpin 5897 xpid11 5898 sofld 6162 xpider 8763 hartogslem1 9501 unxpwdom2 9547 infxpenlem 9972 fpwwe2lem12 10601 fpwwe2 10602 canth4 10606 dmrecnq 10927 homfeqbas 17663 sscfn1 17785 sscfn2 17786 ssclem 17787 isssc 17788 rescval2 17796 issubc2 17804 cofuval 17850 resfval2 17861 resf1st 17862 psssdm2 18546 tsrss 18554 decpmatval 22658 pmatcollpw3lem 22676 ustssco 24108 ustbas2 24119 psmetdmdm 24199 xmetdmdm 24229 setsmstopn 24372 tmsval 24375 tngtopn 24544 caufval 25181 grporndm 30445 dfhnorm2 31057 hhshsslem1 31202 metideq 33889 filnetlem4 36364 poimirlem3 37612 ssbnd 37777 bnd2lem 37780 ismtyval 37789 ismndo2 37863 exidreslem 37866 divrngcl 37946 isdrngo2 37947 rtrclex 43599 fnxpdmdm 48138 dmdm 49032 infsubc2d 49041 |
| Copyright terms: Public domain | W3C validator |