| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmxpid | Structured version Visualization version GIF version | ||
| Description: The domain of a Cartesian square. (Contributed by NM, 28-Jul-1995.) |
| Ref | Expression |
|---|---|
| dmxpid | ⊢ dom (𝐴 × 𝐴) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dm0 5865 | . . 3 ⊢ dom ∅ = ∅ | |
| 2 | xpeq1 5633 | . . . . 5 ⊢ (𝐴 = ∅ → (𝐴 × 𝐴) = (∅ × 𝐴)) | |
| 3 | 0xp 5718 | . . . . 5 ⊢ (∅ × 𝐴) = ∅ | |
| 4 | 2, 3 | eqtrdi 2782 | . . . 4 ⊢ (𝐴 = ∅ → (𝐴 × 𝐴) = ∅) |
| 5 | 4 | dmeqd 5850 | . . 3 ⊢ (𝐴 = ∅ → dom (𝐴 × 𝐴) = dom ∅) |
| 6 | id 22 | . . 3 ⊢ (𝐴 = ∅ → 𝐴 = ∅) | |
| 7 | 1, 5, 6 | 3eqtr4a 2792 | . 2 ⊢ (𝐴 = ∅ → dom (𝐴 × 𝐴) = 𝐴) |
| 8 | dmxp 5874 | . 2 ⊢ (𝐴 ≠ ∅ → dom (𝐴 × 𝐴) = 𝐴) | |
| 9 | 7, 8 | pm2.61ine 3011 | 1 ⊢ dom (𝐴 × 𝐴) = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∅c0 4282 × cxp 5617 dom cdm 5619 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-br 5094 df-opab 5156 df-xp 5625 df-dm 5629 |
| This theorem is referenced by: dmxpin 5876 xpid11 5877 sofld 6140 xpider 8718 hartogslem1 9434 unxpwdom2 9480 infxpenlem 9910 fpwwe2lem12 10539 fpwwe2 10540 canth4 10544 dmrecnq 10865 homfeqbas 17608 sscfn1 17730 sscfn2 17731 ssclem 17732 isssc 17733 rescval2 17741 issubc2 17749 cofuval 17795 resfval2 17806 resf1st 17807 psssdm2 18493 tsrss 18501 decpmatval 22686 pmatcollpw3lem 22704 ustssco 24136 ustbas2 24146 psmetdmdm 24226 xmetdmdm 24256 setsmstopn 24399 tmsval 24402 tngtopn 24571 caufval 25208 grporndm 30497 dfhnorm2 31109 hhshsslem1 31254 metideq 33913 filnetlem4 36432 poimirlem3 37669 ssbnd 37834 bnd2lem 37837 ismtyval 37846 ismndo2 37920 exidreslem 37923 divrngcl 38003 isdrngo2 38004 rtrclex 43715 fnxpdmdm 48265 dmdm 49159 infsubc2d 49168 |
| Copyright terms: Public domain | W3C validator |