| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmxpid | Structured version Visualization version GIF version | ||
| Description: The domain of a Cartesian square. (Contributed by NM, 28-Jul-1995.) |
| Ref | Expression |
|---|---|
| dmxpid | ⊢ dom (𝐴 × 𝐴) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dm0 5858 | . . 3 ⊢ dom ∅ = ∅ | |
| 2 | xpeq1 5628 | . . . . 5 ⊢ (𝐴 = ∅ → (𝐴 × 𝐴) = (∅ × 𝐴)) | |
| 3 | 0xp 5713 | . . . . 5 ⊢ (∅ × 𝐴) = ∅ | |
| 4 | 2, 3 | eqtrdi 2781 | . . . 4 ⊢ (𝐴 = ∅ → (𝐴 × 𝐴) = ∅) |
| 5 | 4 | dmeqd 5843 | . . 3 ⊢ (𝐴 = ∅ → dom (𝐴 × 𝐴) = dom ∅) |
| 6 | id 22 | . . 3 ⊢ (𝐴 = ∅ → 𝐴 = ∅) | |
| 7 | 1, 5, 6 | 3eqtr4a 2791 | . 2 ⊢ (𝐴 = ∅ → dom (𝐴 × 𝐴) = 𝐴) |
| 8 | dmxp 5866 | . 2 ⊢ (𝐴 ≠ ∅ → dom (𝐴 × 𝐴) = 𝐴) | |
| 9 | 7, 8 | pm2.61ine 3009 | 1 ⊢ dom (𝐴 × 𝐴) = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∅c0 4281 × cxp 5612 dom cdm 5614 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-dif 3903 df-un 3905 df-ss 3917 df-nul 4282 df-if 4474 df-sn 4575 df-pr 4577 df-op 4581 df-br 5090 df-opab 5152 df-xp 5620 df-dm 5624 |
| This theorem is referenced by: dmxpin 5868 xpid11 5869 sofld 6131 xpider 8707 hartogslem1 9423 unxpwdom2 9469 infxpenlem 9896 fpwwe2lem12 10525 fpwwe2 10526 canth4 10530 dmrecnq 10851 homfeqbas 17594 sscfn1 17716 sscfn2 17717 ssclem 17718 isssc 17719 rescval2 17727 issubc2 17735 cofuval 17781 resfval2 17792 resf1st 17793 psssdm2 18479 tsrss 18487 decpmatval 22673 pmatcollpw3lem 22691 ustssco 24123 ustbas2 24133 psmetdmdm 24213 xmetdmdm 24243 setsmstopn 24386 tmsval 24389 tngtopn 24558 caufval 25195 grporndm 30480 dfhnorm2 31092 hhshsslem1 31237 metideq 33896 filnetlem4 36394 poimirlem3 37642 ssbnd 37807 bnd2lem 37810 ismtyval 37819 ismndo2 37893 exidreslem 37896 divrngcl 37976 isdrngo2 37977 rtrclex 43629 fnxpdmdm 48170 dmdm 49064 infsubc2d 49073 |
| Copyright terms: Public domain | W3C validator |