| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmxpid | Structured version Visualization version GIF version | ||
| Description: The domain of a Cartesian square. (Contributed by NM, 28-Jul-1995.) |
| Ref | Expression |
|---|---|
| dmxpid | ⊢ dom (𝐴 × 𝐴) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dm0 5884 | . . 3 ⊢ dom ∅ = ∅ | |
| 2 | xpeq1 5652 | . . . . 5 ⊢ (𝐴 = ∅ → (𝐴 × 𝐴) = (∅ × 𝐴)) | |
| 3 | 0xp 5737 | . . . . 5 ⊢ (∅ × 𝐴) = ∅ | |
| 4 | 2, 3 | eqtrdi 2780 | . . . 4 ⊢ (𝐴 = ∅ → (𝐴 × 𝐴) = ∅) |
| 5 | 4 | dmeqd 5869 | . . 3 ⊢ (𝐴 = ∅ → dom (𝐴 × 𝐴) = dom ∅) |
| 6 | id 22 | . . 3 ⊢ (𝐴 = ∅ → 𝐴 = ∅) | |
| 7 | 1, 5, 6 | 3eqtr4a 2790 | . 2 ⊢ (𝐴 = ∅ → dom (𝐴 × 𝐴) = 𝐴) |
| 8 | dmxp 5892 | . 2 ⊢ (𝐴 ≠ ∅ → dom (𝐴 × 𝐴) = 𝐴) | |
| 9 | 7, 8 | pm2.61ine 3008 | 1 ⊢ dom (𝐴 × 𝐴) = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∅c0 4296 × cxp 5636 dom cdm 5638 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-dm 5648 |
| This theorem is referenced by: dmxpin 5895 xpid11 5896 sofld 6160 xpider 8761 hartogslem1 9495 unxpwdom2 9541 infxpenlem 9966 fpwwe2lem12 10595 fpwwe2 10596 canth4 10600 dmrecnq 10921 homfeqbas 17657 sscfn1 17779 sscfn2 17780 ssclem 17781 isssc 17782 rescval2 17790 issubc2 17798 cofuval 17844 resfval2 17855 resf1st 17856 psssdm2 18540 tsrss 18548 decpmatval 22652 pmatcollpw3lem 22670 ustssco 24102 ustbas2 24113 psmetdmdm 24193 xmetdmdm 24223 setsmstopn 24366 tmsval 24369 tngtopn 24538 caufval 25175 grporndm 30439 dfhnorm2 31051 hhshsslem1 31196 metideq 33883 filnetlem4 36369 poimirlem3 37617 ssbnd 37782 bnd2lem 37785 ismtyval 37794 ismndo2 37868 exidreslem 37871 divrngcl 37951 isdrngo2 37952 rtrclex 43606 fnxpdmdm 48148 dmdm 49042 infsubc2d 49051 |
| Copyright terms: Public domain | W3C validator |