| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > iinfssclem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for iinfssc 49034. (Contributed by Zhi Wang, 31-Oct-2025.) |
| Ref | Expression |
|---|---|
| iinfssc.1 | ⊢ (𝜑 → 𝐴 ≠ ∅) |
| iinfssc.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐻 ⊆cat 𝐽) |
| iinfssc.3 | ⊢ (𝜑 → 𝐾 = (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 dom 𝐻 ↦ ∩ 𝑥 ∈ 𝐴 (𝐻‘𝑦))) |
| iinfssclem1.4 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑆 = dom dom 𝐻) |
| iinfssclem1.5 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| iinfssclem1 | ⊢ (𝜑 → 𝐾 = (𝑧 ∈ ∩ 𝑥 ∈ 𝐴 𝑆, 𝑤 ∈ ∩ 𝑥 ∈ 𝐴 𝑆 ↦ ∩ 𝑥 ∈ 𝐴 (𝑧𝐻𝑤))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iinfssc.3 | . . 3 ⊢ (𝜑 → 𝐾 = (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 dom 𝐻 ↦ ∩ 𝑥 ∈ 𝐴 (𝐻‘𝑦))) | |
| 2 | iinfssclem1.5 | . . . . . 6 ⊢ Ⅎ𝑥𝜑 | |
| 3 | iinfssc.2 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐻 ⊆cat 𝐽) | |
| 4 | iinfssclem1.4 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑆 = dom dom 𝐻) | |
| 5 | 3, 4 | sscfn1 17785 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐻 Fn (𝑆 × 𝑆)) |
| 6 | 5 | fndmd 6625 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → dom 𝐻 = (𝑆 × 𝑆)) |
| 7 | 2, 6 | iineq2d 4981 | . . . . 5 ⊢ (𝜑 → ∩ 𝑥 ∈ 𝐴 dom 𝐻 = ∩ 𝑥 ∈ 𝐴 (𝑆 × 𝑆)) |
| 8 | iinfssc.1 | . . . . . 6 ⊢ (𝜑 → 𝐴 ≠ ∅) | |
| 9 | iinxp 48809 | . . . . . 6 ⊢ (𝐴 ≠ ∅ → ∩ 𝑥 ∈ 𝐴 (𝑆 × 𝑆) = (∩ 𝑥 ∈ 𝐴 𝑆 × ∩ 𝑥 ∈ 𝐴 𝑆)) | |
| 10 | 8, 9 | syl 17 | . . . . 5 ⊢ (𝜑 → ∩ 𝑥 ∈ 𝐴 (𝑆 × 𝑆) = (∩ 𝑥 ∈ 𝐴 𝑆 × ∩ 𝑥 ∈ 𝐴 𝑆)) |
| 11 | 7, 10 | eqtrd 2765 | . . . 4 ⊢ (𝜑 → ∩ 𝑥 ∈ 𝐴 dom 𝐻 = (∩ 𝑥 ∈ 𝐴 𝑆 × ∩ 𝑥 ∈ 𝐴 𝑆)) |
| 12 | 11 | mpteq1d 5199 | . . 3 ⊢ (𝜑 → (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 dom 𝐻 ↦ ∩ 𝑥 ∈ 𝐴 (𝐻‘𝑦)) = (𝑦 ∈ (∩ 𝑥 ∈ 𝐴 𝑆 × ∩ 𝑥 ∈ 𝐴 𝑆) ↦ ∩ 𝑥 ∈ 𝐴 (𝐻‘𝑦))) |
| 13 | 1, 12 | eqtrd 2765 | . 2 ⊢ (𝜑 → 𝐾 = (𝑦 ∈ (∩ 𝑥 ∈ 𝐴 𝑆 × ∩ 𝑥 ∈ 𝐴 𝑆) ↦ ∩ 𝑥 ∈ 𝐴 (𝐻‘𝑦))) |
| 14 | fveq2 6860 | . . . . . 6 ⊢ (𝑦 = 〈𝑧, 𝑤〉 → (𝐻‘𝑦) = (𝐻‘〈𝑧, 𝑤〉)) | |
| 15 | df-ov 7392 | . . . . . 6 ⊢ (𝑧𝐻𝑤) = (𝐻‘〈𝑧, 𝑤〉) | |
| 16 | 14, 15 | eqtr4di 2783 | . . . . 5 ⊢ (𝑦 = 〈𝑧, 𝑤〉 → (𝐻‘𝑦) = (𝑧𝐻𝑤)) |
| 17 | 16 | adantr 480 | . . . 4 ⊢ ((𝑦 = 〈𝑧, 𝑤〉 ∧ 𝑥 ∈ 𝐴) → (𝐻‘𝑦) = (𝑧𝐻𝑤)) |
| 18 | 17 | iineq2dv 4983 | . . 3 ⊢ (𝑦 = 〈𝑧, 𝑤〉 → ∩ 𝑥 ∈ 𝐴 (𝐻‘𝑦) = ∩ 𝑥 ∈ 𝐴 (𝑧𝐻𝑤)) |
| 19 | 18 | mpompt 7505 | . 2 ⊢ (𝑦 ∈ (∩ 𝑥 ∈ 𝐴 𝑆 × ∩ 𝑥 ∈ 𝐴 𝑆) ↦ ∩ 𝑥 ∈ 𝐴 (𝐻‘𝑦)) = (𝑧 ∈ ∩ 𝑥 ∈ 𝐴 𝑆, 𝑤 ∈ ∩ 𝑥 ∈ 𝐴 𝑆 ↦ ∩ 𝑥 ∈ 𝐴 (𝑧𝐻𝑤)) |
| 20 | 13, 19 | eqtrdi 2781 | 1 ⊢ (𝜑 → 𝐾 = (𝑧 ∈ ∩ 𝑥 ∈ 𝐴 𝑆, 𝑤 ∈ ∩ 𝑥 ∈ 𝐴 𝑆 ↦ ∩ 𝑥 ∈ 𝐴 (𝑧𝐻𝑤))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2109 ≠ wne 2926 ∅c0 4298 〈cop 4597 ∩ ciin 4958 class class class wbr 5109 ↦ cmpt 5190 × cxp 5638 dom cdm 5640 ‘cfv 6513 (class class class)co 7389 ∈ cmpo 7391 ⊆cat cssc 17775 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-iin 4960 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-ov 7392 df-oprab 7393 df-mpo 7394 df-ixp 8873 df-ssc 17778 |
| This theorem is referenced by: iinfssclem2 49032 iinfssclem3 49033 iinfssc 49034 infsubc2 49038 iinfconstbas 49043 |
| Copyright terms: Public domain | W3C validator |