Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iinfssclem1 Structured version   Visualization version   GIF version

Theorem iinfssclem1 49086
Description: Lemma for iinfssc 49089. (Contributed by Zhi Wang, 31-Oct-2025.)
Hypotheses
Ref Expression
iinfssc.1 (𝜑𝐴 ≠ ∅)
iinfssc.2 ((𝜑𝑥𝐴) → 𝐻cat 𝐽)
iinfssc.3 (𝜑𝐾 = (𝑦 𝑥𝐴 dom 𝐻 𝑥𝐴 (𝐻𝑦)))
iinfssclem1.4 ((𝜑𝑥𝐴) → 𝑆 = dom dom 𝐻)
iinfssclem1.5 𝑥𝜑
Assertion
Ref Expression
iinfssclem1 (𝜑𝐾 = (𝑧 𝑥𝐴 𝑆, 𝑤 𝑥𝐴 𝑆 𝑥𝐴 (𝑧𝐻𝑤)))
Distinct variable groups:   𝑤,𝐴,𝑥,𝑦,𝑧   𝑤,𝐻,𝑦,𝑧   𝑤,𝑆,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤)   𝑆(𝑥)   𝐻(𝑥)   𝐽(𝑥,𝑦,𝑧,𝑤)   𝐾(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem iinfssclem1
StepHypRef Expression
1 iinfssc.3 . . 3 (𝜑𝐾 = (𝑦 𝑥𝐴 dom 𝐻 𝑥𝐴 (𝐻𝑦)))
2 iinfssclem1.5 . . . . . 6 𝑥𝜑
3 iinfssc.2 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐻cat 𝐽)
4 iinfssclem1.4 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝑆 = dom dom 𝐻)
53, 4sscfn1 17719 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐻 Fn (𝑆 × 𝑆))
65fndmd 6581 . . . . . 6 ((𝜑𝑥𝐴) → dom 𝐻 = (𝑆 × 𝑆))
72, 6iineq2d 4960 . . . . 5 (𝜑 𝑥𝐴 dom 𝐻 = 𝑥𝐴 (𝑆 × 𝑆))
8 iinfssc.1 . . . . . 6 (𝜑𝐴 ≠ ∅)
9 iinxp 48862 . . . . . 6 (𝐴 ≠ ∅ → 𝑥𝐴 (𝑆 × 𝑆) = ( 𝑥𝐴 𝑆 × 𝑥𝐴 𝑆))
108, 9syl 17 . . . . 5 (𝜑 𝑥𝐴 (𝑆 × 𝑆) = ( 𝑥𝐴 𝑆 × 𝑥𝐴 𝑆))
117, 10eqtrd 2766 . . . 4 (𝜑 𝑥𝐴 dom 𝐻 = ( 𝑥𝐴 𝑆 × 𝑥𝐴 𝑆))
1211mpteq1d 5176 . . 3 (𝜑 → (𝑦 𝑥𝐴 dom 𝐻 𝑥𝐴 (𝐻𝑦)) = (𝑦 ∈ ( 𝑥𝐴 𝑆 × 𝑥𝐴 𝑆) ↦ 𝑥𝐴 (𝐻𝑦)))
131, 12eqtrd 2766 . 2 (𝜑𝐾 = (𝑦 ∈ ( 𝑥𝐴 𝑆 × 𝑥𝐴 𝑆) ↦ 𝑥𝐴 (𝐻𝑦)))
14 fveq2 6817 . . . . . 6 (𝑦 = ⟨𝑧, 𝑤⟩ → (𝐻𝑦) = (𝐻‘⟨𝑧, 𝑤⟩))
15 df-ov 7344 . . . . . 6 (𝑧𝐻𝑤) = (𝐻‘⟨𝑧, 𝑤⟩)
1614, 15eqtr4di 2784 . . . . 5 (𝑦 = ⟨𝑧, 𝑤⟩ → (𝐻𝑦) = (𝑧𝐻𝑤))
1716adantr 480 . . . 4 ((𝑦 = ⟨𝑧, 𝑤⟩ ∧ 𝑥𝐴) → (𝐻𝑦) = (𝑧𝐻𝑤))
1817iineq2dv 4962 . . 3 (𝑦 = ⟨𝑧, 𝑤⟩ → 𝑥𝐴 (𝐻𝑦) = 𝑥𝐴 (𝑧𝐻𝑤))
1918mpompt 7455 . 2 (𝑦 ∈ ( 𝑥𝐴 𝑆 × 𝑥𝐴 𝑆) ↦ 𝑥𝐴 (𝐻𝑦)) = (𝑧 𝑥𝐴 𝑆, 𝑤 𝑥𝐴 𝑆 𝑥𝐴 (𝑧𝐻𝑤))
2013, 19eqtrdi 2782 1 (𝜑𝐾 = (𝑧 𝑥𝐴 𝑆, 𝑤 𝑥𝐴 𝑆 𝑥𝐴 (𝑧𝐻𝑤)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wnf 1784  wcel 2111  wne 2928  c0 4278  cop 4577   ciin 4937   class class class wbr 5086  cmpt 5167   × cxp 5609  dom cdm 5611  cfv 6476  (class class class)co 7341  cmpo 7343  cat cssc 17709
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-iin 4939  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-ov 7344  df-oprab 7345  df-mpo 7346  df-ixp 8817  df-ssc 17712
This theorem is referenced by:  iinfssclem2  49087  iinfssclem3  49088  iinfssc  49089  infsubc2  49093  iinfconstbas  49098
  Copyright terms: Public domain W3C validator