| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > iinfssclem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for iinfssc 48930. (Contributed by Zhi Wang, 31-Oct-2025.) |
| Ref | Expression |
|---|---|
| iinfssc.1 | ⊢ (𝜑 → 𝐴 ≠ ∅) |
| iinfssc.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐻 ⊆cat 𝐽) |
| iinfssc.3 | ⊢ (𝜑 → 𝐾 = (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 dom 𝐻 ↦ ∩ 𝑥 ∈ 𝐴 (𝐻‘𝑦))) |
| iinfssclem1.4 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑆 = dom dom 𝐻) |
| iinfssclem1.5 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| iinfssclem1 | ⊢ (𝜑 → 𝐾 = (𝑧 ∈ ∩ 𝑥 ∈ 𝐴 𝑆, 𝑤 ∈ ∩ 𝑥 ∈ 𝐴 𝑆 ↦ ∩ 𝑥 ∈ 𝐴 (𝑧𝐻𝑤))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iinfssc.3 | . . 3 ⊢ (𝜑 → 𝐾 = (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 dom 𝐻 ↦ ∩ 𝑥 ∈ 𝐴 (𝐻‘𝑦))) | |
| 2 | iinfssclem1.5 | . . . . . 6 ⊢ Ⅎ𝑥𝜑 | |
| 3 | iinfssc.2 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐻 ⊆cat 𝐽) | |
| 4 | iinfssclem1.4 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑆 = dom dom 𝐻) | |
| 5 | 3, 4 | sscfn1 17833 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐻 Fn (𝑆 × 𝑆)) |
| 6 | 5 | fndmd 6653 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → dom 𝐻 = (𝑆 × 𝑆)) |
| 7 | 2, 6 | iineq2d 4995 | . . . . 5 ⊢ (𝜑 → ∩ 𝑥 ∈ 𝐴 dom 𝐻 = ∩ 𝑥 ∈ 𝐴 (𝑆 × 𝑆)) |
| 8 | iinfssc.1 | . . . . . 6 ⊢ (𝜑 → 𝐴 ≠ ∅) | |
| 9 | iinxp 48718 | . . . . . 6 ⊢ (𝐴 ≠ ∅ → ∩ 𝑥 ∈ 𝐴 (𝑆 × 𝑆) = (∩ 𝑥 ∈ 𝐴 𝑆 × ∩ 𝑥 ∈ 𝐴 𝑆)) | |
| 10 | 8, 9 | syl 17 | . . . . 5 ⊢ (𝜑 → ∩ 𝑥 ∈ 𝐴 (𝑆 × 𝑆) = (∩ 𝑥 ∈ 𝐴 𝑆 × ∩ 𝑥 ∈ 𝐴 𝑆)) |
| 11 | 7, 10 | eqtrd 2769 | . . . 4 ⊢ (𝜑 → ∩ 𝑥 ∈ 𝐴 dom 𝐻 = (∩ 𝑥 ∈ 𝐴 𝑆 × ∩ 𝑥 ∈ 𝐴 𝑆)) |
| 12 | 11 | mpteq1d 5217 | . . 3 ⊢ (𝜑 → (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 dom 𝐻 ↦ ∩ 𝑥 ∈ 𝐴 (𝐻‘𝑦)) = (𝑦 ∈ (∩ 𝑥 ∈ 𝐴 𝑆 × ∩ 𝑥 ∈ 𝐴 𝑆) ↦ ∩ 𝑥 ∈ 𝐴 (𝐻‘𝑦))) |
| 13 | 1, 12 | eqtrd 2769 | . 2 ⊢ (𝜑 → 𝐾 = (𝑦 ∈ (∩ 𝑥 ∈ 𝐴 𝑆 × ∩ 𝑥 ∈ 𝐴 𝑆) ↦ ∩ 𝑥 ∈ 𝐴 (𝐻‘𝑦))) |
| 14 | fveq2 6886 | . . . . . 6 ⊢ (𝑦 = 〈𝑧, 𝑤〉 → (𝐻‘𝑦) = (𝐻‘〈𝑧, 𝑤〉)) | |
| 15 | df-ov 7416 | . . . . . 6 ⊢ (𝑧𝐻𝑤) = (𝐻‘〈𝑧, 𝑤〉) | |
| 16 | 14, 15 | eqtr4di 2787 | . . . . 5 ⊢ (𝑦 = 〈𝑧, 𝑤〉 → (𝐻‘𝑦) = (𝑧𝐻𝑤)) |
| 17 | 16 | adantr 480 | . . . 4 ⊢ ((𝑦 = 〈𝑧, 𝑤〉 ∧ 𝑥 ∈ 𝐴) → (𝐻‘𝑦) = (𝑧𝐻𝑤)) |
| 18 | 17 | iineq2dv 4997 | . . 3 ⊢ (𝑦 = 〈𝑧, 𝑤〉 → ∩ 𝑥 ∈ 𝐴 (𝐻‘𝑦) = ∩ 𝑥 ∈ 𝐴 (𝑧𝐻𝑤)) |
| 19 | 18 | mpompt 7529 | . 2 ⊢ (𝑦 ∈ (∩ 𝑥 ∈ 𝐴 𝑆 × ∩ 𝑥 ∈ 𝐴 𝑆) ↦ ∩ 𝑥 ∈ 𝐴 (𝐻‘𝑦)) = (𝑧 ∈ ∩ 𝑥 ∈ 𝐴 𝑆, 𝑤 ∈ ∩ 𝑥 ∈ 𝐴 𝑆 ↦ ∩ 𝑥 ∈ 𝐴 (𝑧𝐻𝑤)) |
| 20 | 13, 19 | eqtrdi 2785 | 1 ⊢ (𝜑 → 𝐾 = (𝑧 ∈ ∩ 𝑥 ∈ 𝐴 𝑆, 𝑤 ∈ ∩ 𝑥 ∈ 𝐴 𝑆 ↦ ∩ 𝑥 ∈ 𝐴 (𝑧𝐻𝑤))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 Ⅎwnf 1782 ∈ wcel 2107 ≠ wne 2931 ∅c0 4313 〈cop 4612 ∩ ciin 4972 class class class wbr 5123 ↦ cmpt 5205 × cxp 5663 dom cdm 5665 ‘cfv 6541 (class class class)co 7413 ∈ cmpo 7415 ⊆cat cssc 17823 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-iin 4974 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-ov 7416 df-oprab 7417 df-mpo 7418 df-ixp 8920 df-ssc 17826 |
| This theorem is referenced by: iinfssclem2 48928 iinfssclem3 48929 iinfssc 48930 infsubc2 48934 |
| Copyright terms: Public domain | W3C validator |