| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > iinfssclem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for iinfssc 49019. (Contributed by Zhi Wang, 31-Oct-2025.) |
| Ref | Expression |
|---|---|
| iinfssc.1 | ⊢ (𝜑 → 𝐴 ≠ ∅) |
| iinfssc.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐻 ⊆cat 𝐽) |
| iinfssc.3 | ⊢ (𝜑 → 𝐾 = (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 dom 𝐻 ↦ ∩ 𝑥 ∈ 𝐴 (𝐻‘𝑦))) |
| iinfssclem1.4 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑆 = dom dom 𝐻) |
| iinfssclem1.5 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| iinfssclem1 | ⊢ (𝜑 → 𝐾 = (𝑧 ∈ ∩ 𝑥 ∈ 𝐴 𝑆, 𝑤 ∈ ∩ 𝑥 ∈ 𝐴 𝑆 ↦ ∩ 𝑥 ∈ 𝐴 (𝑧𝐻𝑤))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iinfssc.3 | . . 3 ⊢ (𝜑 → 𝐾 = (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 dom 𝐻 ↦ ∩ 𝑥 ∈ 𝐴 (𝐻‘𝑦))) | |
| 2 | iinfssclem1.5 | . . . . . 6 ⊢ Ⅎ𝑥𝜑 | |
| 3 | iinfssc.2 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐻 ⊆cat 𝐽) | |
| 4 | iinfssclem1.4 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑆 = dom dom 𝐻) | |
| 5 | 3, 4 | sscfn1 17755 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐻 Fn (𝑆 × 𝑆)) |
| 6 | 5 | fndmd 6605 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → dom 𝐻 = (𝑆 × 𝑆)) |
| 7 | 2, 6 | iineq2d 4975 | . . . . 5 ⊢ (𝜑 → ∩ 𝑥 ∈ 𝐴 dom 𝐻 = ∩ 𝑥 ∈ 𝐴 (𝑆 × 𝑆)) |
| 8 | iinfssc.1 | . . . . . 6 ⊢ (𝜑 → 𝐴 ≠ ∅) | |
| 9 | iinxp 48792 | . . . . . 6 ⊢ (𝐴 ≠ ∅ → ∩ 𝑥 ∈ 𝐴 (𝑆 × 𝑆) = (∩ 𝑥 ∈ 𝐴 𝑆 × ∩ 𝑥 ∈ 𝐴 𝑆)) | |
| 10 | 8, 9 | syl 17 | . . . . 5 ⊢ (𝜑 → ∩ 𝑥 ∈ 𝐴 (𝑆 × 𝑆) = (∩ 𝑥 ∈ 𝐴 𝑆 × ∩ 𝑥 ∈ 𝐴 𝑆)) |
| 11 | 7, 10 | eqtrd 2764 | . . . 4 ⊢ (𝜑 → ∩ 𝑥 ∈ 𝐴 dom 𝐻 = (∩ 𝑥 ∈ 𝐴 𝑆 × ∩ 𝑥 ∈ 𝐴 𝑆)) |
| 12 | 11 | mpteq1d 5192 | . . 3 ⊢ (𝜑 → (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 dom 𝐻 ↦ ∩ 𝑥 ∈ 𝐴 (𝐻‘𝑦)) = (𝑦 ∈ (∩ 𝑥 ∈ 𝐴 𝑆 × ∩ 𝑥 ∈ 𝐴 𝑆) ↦ ∩ 𝑥 ∈ 𝐴 (𝐻‘𝑦))) |
| 13 | 1, 12 | eqtrd 2764 | . 2 ⊢ (𝜑 → 𝐾 = (𝑦 ∈ (∩ 𝑥 ∈ 𝐴 𝑆 × ∩ 𝑥 ∈ 𝐴 𝑆) ↦ ∩ 𝑥 ∈ 𝐴 (𝐻‘𝑦))) |
| 14 | fveq2 6840 | . . . . . 6 ⊢ (𝑦 = 〈𝑧, 𝑤〉 → (𝐻‘𝑦) = (𝐻‘〈𝑧, 𝑤〉)) | |
| 15 | df-ov 7372 | . . . . . 6 ⊢ (𝑧𝐻𝑤) = (𝐻‘〈𝑧, 𝑤〉) | |
| 16 | 14, 15 | eqtr4di 2782 | . . . . 5 ⊢ (𝑦 = 〈𝑧, 𝑤〉 → (𝐻‘𝑦) = (𝑧𝐻𝑤)) |
| 17 | 16 | adantr 480 | . . . 4 ⊢ ((𝑦 = 〈𝑧, 𝑤〉 ∧ 𝑥 ∈ 𝐴) → (𝐻‘𝑦) = (𝑧𝐻𝑤)) |
| 18 | 17 | iineq2dv 4977 | . . 3 ⊢ (𝑦 = 〈𝑧, 𝑤〉 → ∩ 𝑥 ∈ 𝐴 (𝐻‘𝑦) = ∩ 𝑥 ∈ 𝐴 (𝑧𝐻𝑤)) |
| 19 | 18 | mpompt 7483 | . 2 ⊢ (𝑦 ∈ (∩ 𝑥 ∈ 𝐴 𝑆 × ∩ 𝑥 ∈ 𝐴 𝑆) ↦ ∩ 𝑥 ∈ 𝐴 (𝐻‘𝑦)) = (𝑧 ∈ ∩ 𝑥 ∈ 𝐴 𝑆, 𝑤 ∈ ∩ 𝑥 ∈ 𝐴 𝑆 ↦ ∩ 𝑥 ∈ 𝐴 (𝑧𝐻𝑤)) |
| 20 | 13, 19 | eqtrdi 2780 | 1 ⊢ (𝜑 → 𝐾 = (𝑧 ∈ ∩ 𝑥 ∈ 𝐴 𝑆, 𝑤 ∈ ∩ 𝑥 ∈ 𝐴 𝑆 ↦ ∩ 𝑥 ∈ 𝐴 (𝑧𝐻𝑤))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2109 ≠ wne 2925 ∅c0 4292 〈cop 4591 ∩ ciin 4952 class class class wbr 5102 ↦ cmpt 5183 × cxp 5629 dom cdm 5631 ‘cfv 6499 (class class class)co 7369 ∈ cmpo 7371 ⊆cat cssc 17745 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-ixp 8848 df-ssc 17748 |
| This theorem is referenced by: iinfssclem2 49017 iinfssclem3 49018 iinfssc 49019 infsubc2 49023 iinfconstbas 49028 |
| Copyright terms: Public domain | W3C validator |