Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dmqseqeq1d Structured version   Visualization version   GIF version

Theorem dmqseqeq1d 38636
Description: Equality theorem for domain quotient set, deduction version. (Contributed by Peter Mazsa, 26-Sep-2021.)
Hypothesis
Ref Expression
dmqseqeq1d.1 (𝜑𝑅 = 𝑆)
Assertion
Ref Expression
dmqseqeq1d (𝜑 → ((dom 𝑅 / 𝑅) = 𝐴 ↔ (dom 𝑆 / 𝑆) = 𝐴))

Proof of Theorem dmqseqeq1d
StepHypRef Expression
1 dmqseqeq1d.1 . 2 (𝜑𝑅 = 𝑆)
2 dmqseqeq1 38634 . 2 (𝑅 = 𝑆 → ((dom 𝑅 / 𝑅) = 𝐴 ↔ (dom 𝑆 / 𝑆) = 𝐴))
31, 2syl 17 1 (𝜑 → ((dom 𝑅 / 𝑅) = 𝐴 ↔ (dom 𝑆 / 𝑆) = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  dom cdm 5638   / cqs 8670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-cnv 5646  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ec 8673  df-qs 8677
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator