Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dmqseqeq1 Structured version   Visualization version   GIF version

Theorem dmqseqeq1 36735
Description: Equality theorem for domain quotient. (Contributed by Peter Mazsa, 17-Apr-2019.)
Assertion
Ref Expression
dmqseqeq1 (𝑅 = 𝑆 → ((dom 𝑅 / 𝑅) = 𝐴 ↔ (dom 𝑆 / 𝑆) = 𝐴))

Proof of Theorem dmqseqeq1
StepHypRef Expression
1 dmqseq 36732 . 2 (𝑅 = 𝑆 → (dom 𝑅 / 𝑅) = (dom 𝑆 / 𝑆))
21eqeq1d 2741 1 (𝑅 = 𝑆 → ((dom 𝑅 / 𝑅) = 𝐴 ↔ (dom 𝑆 / 𝑆) = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1541  dom cdm 5588   / cqs 8471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-ext 2710
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573  df-br 5079  df-opab 5141  df-cnv 5596  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-ec 8474  df-qs 8478
This theorem is referenced by:  dmqseqeq1i  36736  dmqseqeq1d  36737  erALTVeq1  36760  disjdmqseqeq1  36827
  Copyright terms: Public domain W3C validator