MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elpwun Structured version   Visualization version   GIF version

Theorem elpwun 7708
Description: Membership in the power class of a union. (Contributed by NM, 26-Mar-2007.)
Hypothesis
Ref Expression
eldifpw.1 𝐶 ∈ V
Assertion
Ref Expression
elpwun (𝐴 ∈ 𝒫 (𝐵𝐶) ↔ (𝐴𝐶) ∈ 𝒫 𝐵)

Proof of Theorem elpwun
StepHypRef Expression
1 elex 3458 . 2 (𝐴 ∈ 𝒫 (𝐵𝐶) → 𝐴 ∈ V)
2 elex 3458 . . 3 ((𝐴𝐶) ∈ 𝒫 𝐵 → (𝐴𝐶) ∈ V)
3 eldifpw.1 . . . 4 𝐶 ∈ V
4 difex2 7699 . . . 4 (𝐶 ∈ V → (𝐴 ∈ V ↔ (𝐴𝐶) ∈ V))
53, 4ax-mp 5 . . 3 (𝐴 ∈ V ↔ (𝐴𝐶) ∈ V)
62, 5sylibr 234 . 2 ((𝐴𝐶) ∈ 𝒫 𝐵𝐴 ∈ V)
7 elpwg 4552 . . 3 (𝐴 ∈ V → (𝐴 ∈ 𝒫 (𝐵𝐶) ↔ 𝐴 ⊆ (𝐵𝐶)))
8 uncom 4107 . . . . . 6 (𝐵𝐶) = (𝐶𝐵)
98sseq2i 3960 . . . . 5 (𝐴 ⊆ (𝐵𝐶) ↔ 𝐴 ⊆ (𝐶𝐵))
10 ssundif 4437 . . . . 5 (𝐴 ⊆ (𝐶𝐵) ↔ (𝐴𝐶) ⊆ 𝐵)
119, 10bitri 275 . . . 4 (𝐴 ⊆ (𝐵𝐶) ↔ (𝐴𝐶) ⊆ 𝐵)
12 difexg 5269 . . . . 5 (𝐴 ∈ V → (𝐴𝐶) ∈ V)
13 elpwg 4552 . . . . 5 ((𝐴𝐶) ∈ V → ((𝐴𝐶) ∈ 𝒫 𝐵 ↔ (𝐴𝐶) ⊆ 𝐵))
1412, 13syl 17 . . . 4 (𝐴 ∈ V → ((𝐴𝐶) ∈ 𝒫 𝐵 ↔ (𝐴𝐶) ⊆ 𝐵))
1511, 14bitr4id 290 . . 3 (𝐴 ∈ V → (𝐴 ⊆ (𝐵𝐶) ↔ (𝐴𝐶) ∈ 𝒫 𝐵))
167, 15bitrd 279 . 2 (𝐴 ∈ V → (𝐴 ∈ 𝒫 (𝐵𝐶) ↔ (𝐴𝐶) ∈ 𝒫 𝐵))
171, 6, 16pm5.21nii 378 1 (𝐴 ∈ 𝒫 (𝐵𝐶) ↔ (𝐴𝐶) ∈ 𝒫 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wcel 2113  Vcvv 3437  cdif 3895  cun 3896  wss 3898  𝒫 cpw 4549
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-pw 4551  df-sn 4576  df-pr 4578  df-uni 4859
This theorem is referenced by:  pwfilem  9209  elrfi  42811  dssmapnvod  44137
  Copyright terms: Public domain W3C validator