Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elpwun | Structured version Visualization version GIF version |
Description: Membership in the power class of a union. (Contributed by NM, 26-Mar-2007.) |
Ref | Expression |
---|---|
eldifpw.1 | ⊢ 𝐶 ∈ V |
Ref | Expression |
---|---|
elpwun | ⊢ (𝐴 ∈ 𝒫 (𝐵 ∪ 𝐶) ↔ (𝐴 ∖ 𝐶) ∈ 𝒫 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3440 | . 2 ⊢ (𝐴 ∈ 𝒫 (𝐵 ∪ 𝐶) → 𝐴 ∈ V) | |
2 | elex 3440 | . . 3 ⊢ ((𝐴 ∖ 𝐶) ∈ 𝒫 𝐵 → (𝐴 ∖ 𝐶) ∈ V) | |
3 | eldifpw.1 | . . . 4 ⊢ 𝐶 ∈ V | |
4 | difex2 7588 | . . . 4 ⊢ (𝐶 ∈ V → (𝐴 ∈ V ↔ (𝐴 ∖ 𝐶) ∈ V)) | |
5 | 3, 4 | ax-mp 5 | . . 3 ⊢ (𝐴 ∈ V ↔ (𝐴 ∖ 𝐶) ∈ V) |
6 | 2, 5 | sylibr 233 | . 2 ⊢ ((𝐴 ∖ 𝐶) ∈ 𝒫 𝐵 → 𝐴 ∈ V) |
7 | elpwg 4533 | . . 3 ⊢ (𝐴 ∈ V → (𝐴 ∈ 𝒫 (𝐵 ∪ 𝐶) ↔ 𝐴 ⊆ (𝐵 ∪ 𝐶))) | |
8 | uncom 4083 | . . . . . 6 ⊢ (𝐵 ∪ 𝐶) = (𝐶 ∪ 𝐵) | |
9 | 8 | sseq2i 3946 | . . . . 5 ⊢ (𝐴 ⊆ (𝐵 ∪ 𝐶) ↔ 𝐴 ⊆ (𝐶 ∪ 𝐵)) |
10 | ssundif 4415 | . . . . 5 ⊢ (𝐴 ⊆ (𝐶 ∪ 𝐵) ↔ (𝐴 ∖ 𝐶) ⊆ 𝐵) | |
11 | 9, 10 | bitri 274 | . . . 4 ⊢ (𝐴 ⊆ (𝐵 ∪ 𝐶) ↔ (𝐴 ∖ 𝐶) ⊆ 𝐵) |
12 | difexg 5246 | . . . . 5 ⊢ (𝐴 ∈ V → (𝐴 ∖ 𝐶) ∈ V) | |
13 | elpwg 4533 | . . . . 5 ⊢ ((𝐴 ∖ 𝐶) ∈ V → ((𝐴 ∖ 𝐶) ∈ 𝒫 𝐵 ↔ (𝐴 ∖ 𝐶) ⊆ 𝐵)) | |
14 | 12, 13 | syl 17 | . . . 4 ⊢ (𝐴 ∈ V → ((𝐴 ∖ 𝐶) ∈ 𝒫 𝐵 ↔ (𝐴 ∖ 𝐶) ⊆ 𝐵)) |
15 | 11, 14 | bitr4id 289 | . . 3 ⊢ (𝐴 ∈ V → (𝐴 ⊆ (𝐵 ∪ 𝐶) ↔ (𝐴 ∖ 𝐶) ∈ 𝒫 𝐵)) |
16 | 7, 15 | bitrd 278 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ 𝒫 (𝐵 ∪ 𝐶) ↔ (𝐴 ∖ 𝐶) ∈ 𝒫 𝐵)) |
17 | 1, 6, 16 | pm5.21nii 379 | 1 ⊢ (𝐴 ∈ 𝒫 (𝐵 ∪ 𝐶) ↔ (𝐴 ∖ 𝐶) ∈ 𝒫 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∈ wcel 2108 Vcvv 3422 ∖ cdif 3880 ∪ cun 3881 ⊆ wss 3883 𝒫 cpw 4530 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-pw 4532 df-sn 4559 df-pr 4561 df-uni 4837 |
This theorem is referenced by: pwfilem 8922 pwfilemOLD 9043 elrfi 40432 dssmapnvod 41517 |
Copyright terms: Public domain | W3C validator |