![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elpwun | Structured version Visualization version GIF version |
Description: Membership in the power class of a union. (Contributed by NM, 26-Mar-2007.) |
Ref | Expression |
---|---|
eldifpw.1 | ⊢ 𝐶 ∈ V |
Ref | Expression |
---|---|
elpwun | ⊢ (𝐴 ∈ 𝒫 (𝐵 ∪ 𝐶) ↔ (𝐴 ∖ 𝐶) ∈ 𝒫 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3400 | . 2 ⊢ (𝐴 ∈ 𝒫 (𝐵 ∪ 𝐶) → 𝐴 ∈ V) | |
2 | elex 3400 | . . 3 ⊢ ((𝐴 ∖ 𝐶) ∈ 𝒫 𝐵 → (𝐴 ∖ 𝐶) ∈ V) | |
3 | eldifpw.1 | . . . 4 ⊢ 𝐶 ∈ V | |
4 | difex2 7202 | . . . 4 ⊢ (𝐶 ∈ V → (𝐴 ∈ V ↔ (𝐴 ∖ 𝐶) ∈ V)) | |
5 | 3, 4 | ax-mp 5 | . . 3 ⊢ (𝐴 ∈ V ↔ (𝐴 ∖ 𝐶) ∈ V) |
6 | 2, 5 | sylibr 226 | . 2 ⊢ ((𝐴 ∖ 𝐶) ∈ 𝒫 𝐵 → 𝐴 ∈ V) |
7 | elpwg 4357 | . . 3 ⊢ (𝐴 ∈ V → (𝐴 ∈ 𝒫 (𝐵 ∪ 𝐶) ↔ 𝐴 ⊆ (𝐵 ∪ 𝐶))) | |
8 | difexg 5003 | . . . . 5 ⊢ (𝐴 ∈ V → (𝐴 ∖ 𝐶) ∈ V) | |
9 | elpwg 4357 | . . . . 5 ⊢ ((𝐴 ∖ 𝐶) ∈ V → ((𝐴 ∖ 𝐶) ∈ 𝒫 𝐵 ↔ (𝐴 ∖ 𝐶) ⊆ 𝐵)) | |
10 | 8, 9 | syl 17 | . . . 4 ⊢ (𝐴 ∈ V → ((𝐴 ∖ 𝐶) ∈ 𝒫 𝐵 ↔ (𝐴 ∖ 𝐶) ⊆ 𝐵)) |
11 | uncom 3955 | . . . . . 6 ⊢ (𝐵 ∪ 𝐶) = (𝐶 ∪ 𝐵) | |
12 | 11 | sseq2i 3826 | . . . . 5 ⊢ (𝐴 ⊆ (𝐵 ∪ 𝐶) ↔ 𝐴 ⊆ (𝐶 ∪ 𝐵)) |
13 | ssundif 4246 | . . . . 5 ⊢ (𝐴 ⊆ (𝐶 ∪ 𝐵) ↔ (𝐴 ∖ 𝐶) ⊆ 𝐵) | |
14 | 12, 13 | bitri 267 | . . . 4 ⊢ (𝐴 ⊆ (𝐵 ∪ 𝐶) ↔ (𝐴 ∖ 𝐶) ⊆ 𝐵) |
15 | 10, 14 | syl6rbbr 282 | . . 3 ⊢ (𝐴 ∈ V → (𝐴 ⊆ (𝐵 ∪ 𝐶) ↔ (𝐴 ∖ 𝐶) ∈ 𝒫 𝐵)) |
16 | 7, 15 | bitrd 271 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ 𝒫 (𝐵 ∪ 𝐶) ↔ (𝐴 ∖ 𝐶) ∈ 𝒫 𝐵)) |
17 | 1, 6, 16 | pm5.21nii 370 | 1 ⊢ (𝐴 ∈ 𝒫 (𝐵 ∪ 𝐶) ↔ (𝐴 ∖ 𝐶) ∈ 𝒫 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 ∈ wcel 2157 Vcvv 3385 ∖ cdif 3766 ∪ cun 3767 ⊆ wss 3769 𝒫 cpw 4349 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pr 5097 ax-un 7183 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3387 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-pw 4351 df-sn 4369 df-pr 4371 df-uni 4629 |
This theorem is referenced by: pwfilem 8502 elrfi 38043 dssmapnvod 39096 |
Copyright terms: Public domain | W3C validator |