MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elpwun Structured version   Visualization version   GIF version

Theorem elpwun 7211
Description: Membership in the power class of a union. (Contributed by NM, 26-Mar-2007.)
Hypothesis
Ref Expression
eldifpw.1 𝐶 ∈ V
Assertion
Ref Expression
elpwun (𝐴 ∈ 𝒫 (𝐵𝐶) ↔ (𝐴𝐶) ∈ 𝒫 𝐵)

Proof of Theorem elpwun
StepHypRef Expression
1 elex 3400 . 2 (𝐴 ∈ 𝒫 (𝐵𝐶) → 𝐴 ∈ V)
2 elex 3400 . . 3 ((𝐴𝐶) ∈ 𝒫 𝐵 → (𝐴𝐶) ∈ V)
3 eldifpw.1 . . . 4 𝐶 ∈ V
4 difex2 7202 . . . 4 (𝐶 ∈ V → (𝐴 ∈ V ↔ (𝐴𝐶) ∈ V))
53, 4ax-mp 5 . . 3 (𝐴 ∈ V ↔ (𝐴𝐶) ∈ V)
62, 5sylibr 226 . 2 ((𝐴𝐶) ∈ 𝒫 𝐵𝐴 ∈ V)
7 elpwg 4357 . . 3 (𝐴 ∈ V → (𝐴 ∈ 𝒫 (𝐵𝐶) ↔ 𝐴 ⊆ (𝐵𝐶)))
8 difexg 5003 . . . . 5 (𝐴 ∈ V → (𝐴𝐶) ∈ V)
9 elpwg 4357 . . . . 5 ((𝐴𝐶) ∈ V → ((𝐴𝐶) ∈ 𝒫 𝐵 ↔ (𝐴𝐶) ⊆ 𝐵))
108, 9syl 17 . . . 4 (𝐴 ∈ V → ((𝐴𝐶) ∈ 𝒫 𝐵 ↔ (𝐴𝐶) ⊆ 𝐵))
11 uncom 3955 . . . . . 6 (𝐵𝐶) = (𝐶𝐵)
1211sseq2i 3826 . . . . 5 (𝐴 ⊆ (𝐵𝐶) ↔ 𝐴 ⊆ (𝐶𝐵))
13 ssundif 4246 . . . . 5 (𝐴 ⊆ (𝐶𝐵) ↔ (𝐴𝐶) ⊆ 𝐵)
1412, 13bitri 267 . . . 4 (𝐴 ⊆ (𝐵𝐶) ↔ (𝐴𝐶) ⊆ 𝐵)
1510, 14syl6rbbr 282 . . 3 (𝐴 ∈ V → (𝐴 ⊆ (𝐵𝐶) ↔ (𝐴𝐶) ∈ 𝒫 𝐵))
167, 15bitrd 271 . 2 (𝐴 ∈ V → (𝐴 ∈ 𝒫 (𝐵𝐶) ↔ (𝐴𝐶) ∈ 𝒫 𝐵))
171, 6, 16pm5.21nii 370 1 (𝐴 ∈ 𝒫 (𝐵𝐶) ↔ (𝐴𝐶) ∈ 𝒫 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 198  wcel 2157  Vcvv 3385  cdif 3766  cun 3767  wss 3769  𝒫 cpw 4349
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-sep 4975  ax-nul 4983  ax-pr 5097  ax-un 7183
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ral 3094  df-rex 3095  df-rab 3098  df-v 3387  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-nul 4116  df-pw 4351  df-sn 4369  df-pr 4371  df-uni 4629
This theorem is referenced by:  pwfilem  8502  elrfi  38043  dssmapnvod  39096
  Copyright terms: Public domain W3C validator