| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elpwun | Structured version Visualization version GIF version | ||
| Description: Membership in the power class of a union. (Contributed by NM, 26-Mar-2007.) |
| Ref | Expression |
|---|---|
| eldifpw.1 | ⊢ 𝐶 ∈ V |
| Ref | Expression |
|---|---|
| elpwun | ⊢ (𝐴 ∈ 𝒫 (𝐵 ∪ 𝐶) ↔ (𝐴 ∖ 𝐶) ∈ 𝒫 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3471 | . 2 ⊢ (𝐴 ∈ 𝒫 (𝐵 ∪ 𝐶) → 𝐴 ∈ V) | |
| 2 | elex 3471 | . . 3 ⊢ ((𝐴 ∖ 𝐶) ∈ 𝒫 𝐵 → (𝐴 ∖ 𝐶) ∈ V) | |
| 3 | eldifpw.1 | . . . 4 ⊢ 𝐶 ∈ V | |
| 4 | difex2 7739 | . . . 4 ⊢ (𝐶 ∈ V → (𝐴 ∈ V ↔ (𝐴 ∖ 𝐶) ∈ V)) | |
| 5 | 3, 4 | ax-mp 5 | . . 3 ⊢ (𝐴 ∈ V ↔ (𝐴 ∖ 𝐶) ∈ V) |
| 6 | 2, 5 | sylibr 234 | . 2 ⊢ ((𝐴 ∖ 𝐶) ∈ 𝒫 𝐵 → 𝐴 ∈ V) |
| 7 | elpwg 4569 | . . 3 ⊢ (𝐴 ∈ V → (𝐴 ∈ 𝒫 (𝐵 ∪ 𝐶) ↔ 𝐴 ⊆ (𝐵 ∪ 𝐶))) | |
| 8 | uncom 4124 | . . . . . 6 ⊢ (𝐵 ∪ 𝐶) = (𝐶 ∪ 𝐵) | |
| 9 | 8 | sseq2i 3979 | . . . . 5 ⊢ (𝐴 ⊆ (𝐵 ∪ 𝐶) ↔ 𝐴 ⊆ (𝐶 ∪ 𝐵)) |
| 10 | ssundif 4454 | . . . . 5 ⊢ (𝐴 ⊆ (𝐶 ∪ 𝐵) ↔ (𝐴 ∖ 𝐶) ⊆ 𝐵) | |
| 11 | 9, 10 | bitri 275 | . . . 4 ⊢ (𝐴 ⊆ (𝐵 ∪ 𝐶) ↔ (𝐴 ∖ 𝐶) ⊆ 𝐵) |
| 12 | difexg 5287 | . . . . 5 ⊢ (𝐴 ∈ V → (𝐴 ∖ 𝐶) ∈ V) | |
| 13 | elpwg 4569 | . . . . 5 ⊢ ((𝐴 ∖ 𝐶) ∈ V → ((𝐴 ∖ 𝐶) ∈ 𝒫 𝐵 ↔ (𝐴 ∖ 𝐶) ⊆ 𝐵)) | |
| 14 | 12, 13 | syl 17 | . . . 4 ⊢ (𝐴 ∈ V → ((𝐴 ∖ 𝐶) ∈ 𝒫 𝐵 ↔ (𝐴 ∖ 𝐶) ⊆ 𝐵)) |
| 15 | 11, 14 | bitr4id 290 | . . 3 ⊢ (𝐴 ∈ V → (𝐴 ⊆ (𝐵 ∪ 𝐶) ↔ (𝐴 ∖ 𝐶) ∈ 𝒫 𝐵)) |
| 16 | 7, 15 | bitrd 279 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ 𝒫 (𝐵 ∪ 𝐶) ↔ (𝐴 ∖ 𝐶) ∈ 𝒫 𝐵)) |
| 17 | 1, 6, 16 | pm5.21nii 378 | 1 ⊢ (𝐴 ∈ 𝒫 (𝐵 ∪ 𝐶) ↔ (𝐴 ∖ 𝐶) ∈ 𝒫 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2109 Vcvv 3450 ∖ cdif 3914 ∪ cun 3915 ⊆ wss 3917 𝒫 cpw 4566 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-pw 4568 df-sn 4593 df-pr 4595 df-uni 4875 |
| This theorem is referenced by: pwfilem 9274 elrfi 42689 dssmapnvod 44016 |
| Copyright terms: Public domain | W3C validator |