Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > eldmcnv | Structured version Visualization version GIF version |
Description: Elementhood in a domain of a converse. (Contributed by Peter Mazsa, 25-May-2018.) |
Ref | Expression |
---|---|
eldmcnv | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ dom ◡𝑅 ↔ ∃𝑢 𝑢𝑅𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldmg 5828 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ dom ◡𝑅 ↔ ∃𝑢 𝐴◡𝑅𝑢)) | |
2 | brcnvg 5809 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑢 ∈ V) → (𝐴◡𝑅𝑢 ↔ 𝑢𝑅𝐴)) | |
3 | 2 | elvd 3448 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴◡𝑅𝑢 ↔ 𝑢𝑅𝐴)) |
4 | 3 | exbidv 1923 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∃𝑢 𝐴◡𝑅𝑢 ↔ ∃𝑢 𝑢𝑅𝐴)) |
5 | 1, 4 | bitrd 278 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ dom ◡𝑅 ↔ ∃𝑢 𝑢𝑅𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∃wex 1780 ∈ wcel 2105 Vcvv 3441 class class class wbr 5087 ◡ccnv 5607 dom cdm 5608 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2708 ax-sep 5238 ax-nul 5245 ax-pr 5367 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2715 df-cleq 2729 df-clel 2815 df-rab 3405 df-v 3443 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4268 df-if 4472 df-sn 4572 df-pr 4574 df-op 4578 df-br 5088 df-opab 5150 df-cnv 5616 df-dm 5618 |
This theorem is referenced by: eldmcoss 36692 |
Copyright terms: Public domain | W3C validator |