Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eldmcnv Structured version   Visualization version   GIF version

Theorem eldmcnv 36459
Description: Elementhood in a domain of a converse. (Contributed by Peter Mazsa, 25-May-2018.)
Assertion
Ref Expression
eldmcnv (𝐴𝑉 → (𝐴 ∈ dom 𝑅 ↔ ∃𝑢 𝑢𝑅𝐴))
Distinct variable groups:   𝑢,𝐴   𝑢,𝑅   𝑢,𝑉

Proof of Theorem eldmcnv
StepHypRef Expression
1 eldmg 5804 . 2 (𝐴𝑉 → (𝐴 ∈ dom 𝑅 ↔ ∃𝑢 𝐴𝑅𝑢))
2 brcnvg 5785 . . . 4 ((𝐴𝑉𝑢 ∈ V) → (𝐴𝑅𝑢𝑢𝑅𝐴))
32elvd 3437 . . 3 (𝐴𝑉 → (𝐴𝑅𝑢𝑢𝑅𝐴))
43exbidv 1927 . 2 (𝐴𝑉 → (∃𝑢 𝐴𝑅𝑢 ↔ ∃𝑢 𝑢𝑅𝐴))
51, 4bitrd 278 1 (𝐴𝑉 → (𝐴 ∈ dom 𝑅 ↔ ∃𝑢 𝑢𝑅𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wex 1785  wcel 2109  Vcvv 3430   class class class wbr 5078  ccnv 5587  dom cdm 5588
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pr 5355
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573  df-br 5079  df-opab 5141  df-cnv 5596  df-dm 5598
This theorem is referenced by:  eldmcoss  36555
  Copyright terms: Public domain W3C validator