![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > eldmcnv | Structured version Visualization version GIF version |
Description: Elementhood in a domain of a converse. (Contributed by Peter Mazsa, 25-May-2018.) |
Ref | Expression |
---|---|
eldmcnv | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ dom ◡𝑅 ↔ ∃𝑢 𝑢𝑅𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldmg 5912 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ dom ◡𝑅 ↔ ∃𝑢 𝐴◡𝑅𝑢)) | |
2 | brcnvg 5893 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑢 ∈ V) → (𝐴◡𝑅𝑢 ↔ 𝑢𝑅𝐴)) | |
3 | 2 | elvd 3484 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴◡𝑅𝑢 ↔ 𝑢𝑅𝐴)) |
4 | 3 | exbidv 1919 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∃𝑢 𝐴◡𝑅𝑢 ↔ ∃𝑢 𝑢𝑅𝐴)) |
5 | 1, 4 | bitrd 279 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ dom ◡𝑅 ↔ ∃𝑢 𝑢𝑅𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∃wex 1776 ∈ wcel 2106 Vcvv 3478 class class class wbr 5148 ◡ccnv 5688 dom cdm 5689 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-cnv 5697 df-dm 5699 |
This theorem is referenced by: eldmcoss 38440 |
Copyright terms: Public domain | W3C validator |