![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > eldmcnv | Structured version Visualization version GIF version |
Description: Elementhood in a domain of a converse. (Contributed by Peter Mazsa, 25-May-2018.) |
Ref | Expression |
---|---|
eldmcnv | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ dom ◡𝑅 ↔ ∃𝑢 𝑢𝑅𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldmg 5923 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ dom ◡𝑅 ↔ ∃𝑢 𝐴◡𝑅𝑢)) | |
2 | brcnvg 5904 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑢 ∈ V) → (𝐴◡𝑅𝑢 ↔ 𝑢𝑅𝐴)) | |
3 | 2 | elvd 3494 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴◡𝑅𝑢 ↔ 𝑢𝑅𝐴)) |
4 | 3 | exbidv 1920 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∃𝑢 𝐴◡𝑅𝑢 ↔ ∃𝑢 𝑢𝑅𝐴)) |
5 | 1, 4 | bitrd 279 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ dom ◡𝑅 ↔ ∃𝑢 𝑢𝑅𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∃wex 1777 ∈ wcel 2108 Vcvv 3488 class class class wbr 5166 ◡ccnv 5699 dom cdm 5700 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-cnv 5708 df-dm 5710 |
This theorem is referenced by: eldmcoss 38414 |
Copyright terms: Public domain | W3C validator |