![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfrel5 | Structured version Visualization version GIF version |
Description: Alternate definition of the relation predicate. (Contributed by Peter Mazsa, 6-Nov-2018.) |
Ref | Expression |
---|---|
dfrel5 | ⊢ (Rel 𝑅 ↔ (𝑅 ↾ dom 𝑅) = 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfrel2 6211 | . 2 ⊢ (Rel 𝑅 ↔ ◡◡𝑅 = 𝑅) | |
2 | resdm2 6253 | . . 3 ⊢ (𝑅 ↾ dom 𝑅) = ◡◡𝑅 | |
3 | 2 | eqeq1i 2740 | . 2 ⊢ ((𝑅 ↾ dom 𝑅) = 𝑅 ↔ ◡◡𝑅 = 𝑅) |
4 | 1, 3 | bitr4i 278 | 1 ⊢ (Rel 𝑅 ↔ (𝑅 ↾ dom 𝑅) = 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 ◡ccnv 5688 dom cdm 5689 ↾ cres 5691 Rel wrel 5694 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-xp 5695 df-rel 5696 df-cnv 5697 df-dm 5699 df-rn 5700 df-res 5701 |
This theorem is referenced by: dfrel6 38329 cnvresrn 38330 elrels5 38471 |
Copyright terms: Public domain | W3C validator |