Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfrel5 Structured version   Visualization version   GIF version

Theorem dfrel5 38302
Description: Alternate definition of the relation predicate. (Contributed by Peter Mazsa, 6-Nov-2018.)
Assertion
Ref Expression
dfrel5 (Rel 𝑅 ↔ (𝑅 ↾ dom 𝑅) = 𝑅)

Proof of Theorem dfrel5
StepHypRef Expression
1 dfrel2 6220 . 2 (Rel 𝑅𝑅 = 𝑅)
2 resdm2 6262 . . 3 (𝑅 ↾ dom 𝑅) = 𝑅
32eqeq1i 2745 . 2 ((𝑅 ↾ dom 𝑅) = 𝑅𝑅 = 𝑅)
41, 3bitr4i 278 1 (Rel 𝑅 ↔ (𝑅 ↾ dom 𝑅) = 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1537  ccnv 5699  dom cdm 5700  cres 5702  Rel wrel 5705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5706  df-rel 5707  df-cnv 5708  df-dm 5710  df-rn 5711  df-res 5712
This theorem is referenced by:  dfrel6  38303  cnvresrn  38304  elrels5  38445
  Copyright terms: Public domain W3C validator