Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eldmcoss Structured version   Visualization version   GIF version

Theorem eldmcoss 38570
Description: Elementhood in the domain of cosets. (Contributed by Peter Mazsa, 29-Mar-2019.)
Assertion
Ref Expression
eldmcoss (𝐴𝑉 → (𝐴 ∈ dom ≀ 𝑅 ↔ ∃𝑢 𝑢𝑅𝐴))
Distinct variable groups:   𝑢,𝐴   𝑢,𝑅   𝑢,𝑉

Proof of Theorem eldmcoss
StepHypRef Expression
1 dmcoss3 38565 . . 3 dom ≀ 𝑅 = dom 𝑅
21eleq2i 2823 . 2 (𝐴 ∈ dom ≀ 𝑅𝐴 ∈ dom 𝑅)
3 eldmcnv 38387 . 2 (𝐴𝑉 → (𝐴 ∈ dom 𝑅 ↔ ∃𝑢 𝑢𝑅𝐴))
42, 3bitrid 283 1 (𝐴𝑉 → (𝐴 ∈ dom ≀ 𝑅 ↔ ∃𝑢 𝑢𝑅𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wex 1780  wcel 2111   class class class wbr 5089  ccnv 5613  dom cdm 5614  ccoss 38232
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090  df-opab 5152  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-coss 38523
This theorem is referenced by:  eldmcoss2  38571  eldm1cossres  38572
  Copyright terms: Public domain W3C validator