| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eldmcoss | Structured version Visualization version GIF version | ||
| Description: Elementhood in the domain of cosets. (Contributed by Peter Mazsa, 29-Mar-2019.) |
| Ref | Expression |
|---|---|
| eldmcoss | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ dom ≀ 𝑅 ↔ ∃𝑢 𝑢𝑅𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmcoss3 38476 | . . 3 ⊢ dom ≀ 𝑅 = dom ◡𝑅 | |
| 2 | 1 | eleq2i 2827 | . 2 ⊢ (𝐴 ∈ dom ≀ 𝑅 ↔ 𝐴 ∈ dom ◡𝑅) |
| 3 | eldmcnv 38368 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ dom ◡𝑅 ↔ ∃𝑢 𝑢𝑅𝐴)) | |
| 4 | 2, 3 | bitrid 283 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ dom ≀ 𝑅 ↔ ∃𝑢 𝑢𝑅𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∃wex 1779 ∈ wcel 2109 class class class wbr 5124 ◡ccnv 5658 dom cdm 5659 ≀ ccoss 38204 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-coss 38434 |
| This theorem is referenced by: eldmcoss2 38482 eldm1cossres 38483 |
| Copyright terms: Public domain | W3C validator |