| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eldmcoss | Structured version Visualization version GIF version | ||
| Description: Elementhood in the domain of cosets. (Contributed by Peter Mazsa, 29-Mar-2019.) |
| Ref | Expression |
|---|---|
| eldmcoss | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ dom ≀ 𝑅 ↔ ∃𝑢 𝑢𝑅𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmcoss3 38565 | . . 3 ⊢ dom ≀ 𝑅 = dom ◡𝑅 | |
| 2 | 1 | eleq2i 2823 | . 2 ⊢ (𝐴 ∈ dom ≀ 𝑅 ↔ 𝐴 ∈ dom ◡𝑅) |
| 3 | eldmcnv 38387 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ dom ◡𝑅 ↔ ∃𝑢 𝑢𝑅𝐴)) | |
| 4 | 2, 3 | bitrid 283 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ dom ≀ 𝑅 ↔ ∃𝑢 𝑢𝑅𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∃wex 1780 ∈ wcel 2111 class class class wbr 5089 ◡ccnv 5613 dom cdm 5614 ≀ ccoss 38232 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-coss 38523 |
| This theorem is referenced by: eldmcoss2 38571 eldm1cossres 38572 |
| Copyright terms: Public domain | W3C validator |