Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eldmcoss Structured version   Visualization version   GIF version

Theorem eldmcoss 38481
Description: Elementhood in the domain of cosets. (Contributed by Peter Mazsa, 29-Mar-2019.)
Assertion
Ref Expression
eldmcoss (𝐴𝑉 → (𝐴 ∈ dom ≀ 𝑅 ↔ ∃𝑢 𝑢𝑅𝐴))
Distinct variable groups:   𝑢,𝐴   𝑢,𝑅   𝑢,𝑉

Proof of Theorem eldmcoss
StepHypRef Expression
1 dmcoss3 38476 . . 3 dom ≀ 𝑅 = dom 𝑅
21eleq2i 2827 . 2 (𝐴 ∈ dom ≀ 𝑅𝐴 ∈ dom 𝑅)
3 eldmcnv 38368 . 2 (𝐴𝑉 → (𝐴 ∈ dom 𝑅 ↔ ∃𝑢 𝑢𝑅𝐴))
42, 3bitrid 283 1 (𝐴𝑉 → (𝐴 ∈ dom ≀ 𝑅 ↔ ∃𝑢 𝑢𝑅𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wex 1779  wcel 2109   class class class wbr 5124  ccnv 5658  dom cdm 5659  ccoss 38204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5125  df-opab 5187  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-coss 38434
This theorem is referenced by:  eldmcoss2  38482  eldm1cossres  38483
  Copyright terms: Public domain W3C validator