Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > eldmcoss | Structured version Visualization version GIF version |
Description: Elementhood in the domain of cosets. (Contributed by Peter Mazsa, 29-Mar-2019.) |
Ref | Expression |
---|---|
eldmcoss | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ dom ≀ 𝑅 ↔ ∃𝑢 𝑢𝑅𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmcoss3 36498 | . . 3 ⊢ dom ≀ 𝑅 = dom ◡𝑅 | |
2 | 1 | eleq2i 2830 | . 2 ⊢ (𝐴 ∈ dom ≀ 𝑅 ↔ 𝐴 ∈ dom ◡𝑅) |
3 | eldmcnv 36407 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ dom ◡𝑅 ↔ ∃𝑢 𝑢𝑅𝐴)) | |
4 | 2, 3 | syl5bb 282 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ dom ≀ 𝑅 ↔ ∃𝑢 𝑢𝑅𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∃wex 1783 ∈ wcel 2108 class class class wbr 5070 ◡ccnv 5579 dom cdm 5580 ≀ ccoss 36260 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-coss 36464 |
This theorem is referenced by: eldmcoss2 36504 eldm1cossres 36505 |
Copyright terms: Public domain | W3C validator |