| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > inex2 | Structured version Visualization version GIF version | ||
| Description: Separation Scheme (Aussonderung) using class notation. (Contributed by NM, 27-Apr-1994.) |
| Ref | Expression |
|---|---|
| inex2.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| inex2 | ⊢ (𝐵 ∩ 𝐴) ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | incom 4168 | . 2 ⊢ (𝐵 ∩ 𝐴) = (𝐴 ∩ 𝐵) | |
| 2 | inex2.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 3 | 2 | inex1 5267 | . 2 ⊢ (𝐴 ∩ 𝐵) ∈ V |
| 4 | 1, 3 | eqeltri 2824 | 1 ⊢ (𝐵 ∩ 𝐴) ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3444 ∩ cin 3910 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-in 3918 |
| This theorem is referenced by: ssex 5271 wefrc 5625 hartogslem1 9471 infxpenlem 9942 dfac5lem5 10056 fin23lem12 10260 fpwwe2lem11 10570 cnso 16191 ressbas 17182 ressress 17193 rescabs 17771 symgvalstruct 19303 mgpress 20035 pjfval 21591 tgdom 22841 distop 22858 ustfilxp 24076 elovolmlem 25351 dyadmbl 25477 volsup2 25482 vitali 25490 itg1climres 25591 tayl0 26245 atomli 32284 ldgenpisyslem1 34126 reprinfz1 34586 bj-elid4 37129 aomclem6 43021 elinintrab 43539 isotone2 44011 ntrrn 44084 ntrf 44085 dssmapntrcls 44090 ismnushort 44263 onfrALTlem3 44507 sswfaxreg 44950 limcresiooub 45613 limcresioolb 45614 limsupval4 45765 sge0iunmptlemre 46386 ovolval2lem 46614 ovolval4lem2 46621 setrec2fun 49654 |
| Copyright terms: Public domain | W3C validator |