| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > inex2 | Structured version Visualization version GIF version | ||
| Description: Separation Scheme (Aussonderung) using class notation. (Contributed by NM, 27-Apr-1994.) |
| Ref | Expression |
|---|---|
| inex2.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| inex2 | ⊢ (𝐵 ∩ 𝐴) ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | incom 4168 | . 2 ⊢ (𝐵 ∩ 𝐴) = (𝐴 ∩ 𝐵) | |
| 2 | inex2.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 3 | 2 | inex1 5267 | . 2 ⊢ (𝐴 ∩ 𝐵) ∈ V |
| 4 | 1, 3 | eqeltri 2824 | 1 ⊢ (𝐵 ∩ 𝐴) ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3444 ∩ cin 3910 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-in 3918 |
| This theorem is referenced by: ssex 5271 wefrc 5625 hartogslem1 9471 infxpenlem 9942 dfac5lem5 10056 fin23lem12 10260 fpwwe2lem11 10570 cnso 16191 ressbas 17182 ressress 17193 rescabs 17775 symgvalstruct 19311 mgpress 20070 pjfval 21648 tgdom 22898 distop 22915 ustfilxp 24133 elovolmlem 25408 dyadmbl 25534 volsup2 25539 vitali 25547 itg1climres 25648 tayl0 26302 atomli 32361 ldgenpisyslem1 34146 reprinfz1 34606 bj-elid4 37149 aomclem6 43041 elinintrab 43559 isotone2 44031 ntrrn 44104 ntrf 44105 dssmapntrcls 44110 ismnushort 44283 onfrALTlem3 44527 sswfaxreg 44970 limcresiooub 45633 limcresioolb 45634 limsupval4 45785 sge0iunmptlemre 46406 ovolval2lem 46634 ovolval4lem2 46641 setrec2fun 49674 |
| Copyright terms: Public domain | W3C validator |