![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > inex2 | Structured version Visualization version GIF version |
Description: Separation Scheme (Aussonderung) using class notation. (Contributed by NM, 27-Apr-1994.) |
Ref | Expression |
---|---|
inex2.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
inex2 | ⊢ (𝐵 ∩ 𝐴) ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | incom 4217 | . 2 ⊢ (𝐵 ∩ 𝐴) = (𝐴 ∩ 𝐵) | |
2 | inex2.1 | . . 3 ⊢ 𝐴 ∈ V | |
3 | 2 | inex1 5323 | . 2 ⊢ (𝐴 ∩ 𝐵) ∈ V |
4 | 1, 3 | eqeltri 2835 | 1 ⊢ (𝐵 ∩ 𝐴) ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 Vcvv 3478 ∩ cin 3962 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-v 3480 df-in 3970 |
This theorem is referenced by: ssex 5327 wefrc 5683 hartogslem1 9580 infxpenlem 10051 dfac5lem5 10165 fin23lem12 10369 fpwwe2lem11 10679 cnso 16280 ressbas 17280 ressbasOLD 17281 ressress 17294 rescabs 17883 rescabsOLD 17884 symgvalstruct 19429 symgvalstructOLD 19430 mgpress 20167 mgpressOLD 20168 pjfval 21744 tgdom 23001 distop 23018 ustfilxp 24237 elovolmlem 25523 dyadmbl 25649 volsup2 25654 vitali 25662 itg1climres 25764 tayl0 26418 atomli 32411 ldgenpisyslem1 34144 reprinfz1 34616 bj-elid4 37151 aomclem6 43048 elinintrab 43567 isotone2 44039 ntrrn 44112 ntrf 44113 dssmapntrcls 44118 ismnushort 44297 onfrALTlem3 44542 limcresiooub 45598 limcresioolb 45599 limsupval4 45750 sge0iunmptlemre 46371 ovolval2lem 46599 ovolval4lem2 46606 setrec2fun 48923 |
Copyright terms: Public domain | W3C validator |