| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > inex2 | Structured version Visualization version GIF version | ||
| Description: Separation Scheme (Aussonderung) using class notation. (Contributed by NM, 27-Apr-1994.) |
| Ref | Expression |
|---|---|
| inex2.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| inex2 | ⊢ (𝐵 ∩ 𝐴) ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | incom 4175 | . 2 ⊢ (𝐵 ∩ 𝐴) = (𝐴 ∩ 𝐵) | |
| 2 | inex2.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 3 | 2 | inex1 5275 | . 2 ⊢ (𝐴 ∩ 𝐵) ∈ V |
| 4 | 1, 3 | eqeltri 2825 | 1 ⊢ (𝐵 ∩ 𝐴) ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3450 ∩ cin 3916 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-in 3924 |
| This theorem is referenced by: ssex 5279 wefrc 5635 hartogslem1 9502 infxpenlem 9973 dfac5lem5 10087 fin23lem12 10291 fpwwe2lem11 10601 cnso 16222 ressbas 17213 ressress 17224 rescabs 17802 symgvalstruct 19334 mgpress 20066 pjfval 21622 tgdom 22872 distop 22889 ustfilxp 24107 elovolmlem 25382 dyadmbl 25508 volsup2 25513 vitali 25521 itg1climres 25622 tayl0 26276 atomli 32318 ldgenpisyslem1 34160 reprinfz1 34620 bj-elid4 37163 aomclem6 43055 elinintrab 43573 isotone2 44045 ntrrn 44118 ntrf 44119 dssmapntrcls 44124 ismnushort 44297 onfrALTlem3 44541 sswfaxreg 44984 limcresiooub 45647 limcresioolb 45648 limsupval4 45799 sge0iunmptlemre 46420 ovolval2lem 46648 ovolval4lem2 46655 setrec2fun 49685 |
| Copyright terms: Public domain | W3C validator |