![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > inex2 | Structured version Visualization version GIF version |
Description: Separation Scheme (Aussonderung) using class notation. (Contributed by NM, 27-Apr-1994.) |
Ref | Expression |
---|---|
inex2.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
inex2 | ⊢ (𝐵 ∩ 𝐴) ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | incom 4230 | . 2 ⊢ (𝐵 ∩ 𝐴) = (𝐴 ∩ 𝐵) | |
2 | inex2.1 | . . 3 ⊢ 𝐴 ∈ V | |
3 | 2 | inex1 5335 | . 2 ⊢ (𝐴 ∩ 𝐵) ∈ V |
4 | 1, 3 | eqeltri 2840 | 1 ⊢ (𝐵 ∩ 𝐴) ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 Vcvv 3488 ∩ cin 3975 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-in 3983 |
This theorem is referenced by: ssex 5339 wefrc 5694 hartogslem1 9611 infxpenlem 10082 dfac5lem5 10196 fin23lem12 10400 fpwwe2lem11 10710 cnso 16295 ressbas 17293 ressbasOLD 17294 ressress 17307 rescabs 17896 rescabsOLD 17897 symgvalstruct 19438 symgvalstructOLD 19439 mgpress 20176 mgpressOLD 20177 pjfval 21749 tgdom 23006 distop 23023 ustfilxp 24242 elovolmlem 25528 dyadmbl 25654 volsup2 25659 vitali 25667 itg1climres 25769 tayl0 26421 atomli 32414 ldgenpisyslem1 34127 reprinfz1 34599 bj-elid4 37134 aomclem6 43016 elinintrab 43539 isotone2 44011 ntrrn 44084 ntrf 44085 dssmapntrcls 44090 ismnushort 44270 onfrALTlem3 44515 limcresiooub 45563 limcresioolb 45564 limsupval4 45715 sge0iunmptlemre 46336 ovolval2lem 46564 ovolval4lem2 46571 setrec2fun 48784 |
Copyright terms: Public domain | W3C validator |