Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > inex2 | Structured version Visualization version GIF version |
Description: Separation Scheme (Aussonderung) using class notation. (Contributed by NM, 27-Apr-1994.) |
Ref | Expression |
---|---|
inex2.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
inex2 | ⊢ (𝐵 ∩ 𝐴) ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | incom 4106 | . 2 ⊢ (𝐵 ∩ 𝐴) = (𝐴 ∩ 𝐵) | |
2 | inex2.1 | . . 3 ⊢ 𝐴 ∈ V | |
3 | 2 | inex1 5187 | . 2 ⊢ (𝐴 ∩ 𝐵) ∈ V |
4 | 1, 3 | eqeltri 2848 | 1 ⊢ (𝐵 ∩ 𝐴) ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2111 Vcvv 3409 ∩ cin 3857 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-ext 2729 ax-sep 5169 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1541 df-ex 1782 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-rab 3079 df-v 3411 df-in 3865 |
This theorem is referenced by: ssex 5191 wefrc 5518 hartogslem1 9039 infxpenlem 9473 dfac5lem5 9587 fin23lem12 9791 fpwwe2lem11 10101 cnso 15648 ressbas 16612 ressress 16620 rescabs 17162 symgvalstruct 18592 mgpress 19318 pjfval 20471 tgdom 21678 distop 21695 ustfilxp 22913 elovolmlem 24174 dyadmbl 24300 volsup2 24305 vitali 24313 itg1climres 24414 tayl0 25056 atomli 30264 ldgenpisyslem1 31650 reprinfz1 32121 bj-elid4 34863 aomclem6 40376 elinintrab 40650 isotone2 41125 ntrrn 41198 ntrf 41199 dssmapntrcls 41204 onfrALTlem3 41623 limcresiooub 42650 limcresioolb 42651 limsupval4 42802 sge0iunmptlemre 43420 ovolval2lem 43648 ovolval4lem2 43655 setrec2fun 45613 |
Copyright terms: Public domain | W3C validator |