| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > inex2 | Structured version Visualization version GIF version | ||
| Description: Separation Scheme (Aussonderung) using class notation. (Contributed by NM, 27-Apr-1994.) |
| Ref | Expression |
|---|---|
| inex2.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| inex2 | ⊢ (𝐵 ∩ 𝐴) ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | incom 4160 | . 2 ⊢ (𝐵 ∩ 𝐴) = (𝐴 ∩ 𝐵) | |
| 2 | inex2.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 3 | 2 | inex1 5256 | . 2 ⊢ (𝐴 ∩ 𝐵) ∈ V |
| 4 | 1, 3 | eqeltri 2824 | 1 ⊢ (𝐵 ∩ 𝐴) ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3436 ∩ cin 3902 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 df-v 3438 df-in 3910 |
| This theorem is referenced by: ssex 5260 wefrc 5613 hartogslem1 9434 infxpenlem 9907 dfac5lem5 10021 fin23lem12 10225 fpwwe2lem11 10535 cnso 16156 ressbas 17147 ressress 17158 rescabs 17740 symgvalstruct 19276 mgpress 20035 pjfval 21613 tgdom 22863 distop 22880 ustfilxp 24098 elovolmlem 25373 dyadmbl 25499 volsup2 25504 vitali 25512 itg1climres 25613 tayl0 26267 atomli 32326 ldgenpisyslem1 34130 reprinfz1 34590 bj-elid4 37146 aomclem6 43036 elinintrab 43554 isotone2 44026 ntrrn 44099 ntrf 44100 dssmapntrcls 44105 ismnushort 44278 onfrALTlem3 44522 sswfaxreg 44965 limcresiooub 45627 limcresioolb 45628 limsupval4 45779 sge0iunmptlemre 46400 ovolval2lem 46628 ovolval4lem2 46635 setrec2fun 49681 |
| Copyright terms: Public domain | W3C validator |