| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > inex2 | Structured version Visualization version GIF version | ||
| Description: Separation Scheme (Aussonderung) using class notation. (Contributed by NM, 27-Apr-1994.) |
| Ref | Expression |
|---|---|
| inex2.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| inex2 | ⊢ (𝐵 ∩ 𝐴) ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | incom 4184 | . 2 ⊢ (𝐵 ∩ 𝐴) = (𝐴 ∩ 𝐵) | |
| 2 | inex2.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 3 | 2 | inex1 5287 | . 2 ⊢ (𝐴 ∩ 𝐵) ∈ V |
| 4 | 1, 3 | eqeltri 2830 | 1 ⊢ (𝐵 ∩ 𝐴) ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2108 Vcvv 3459 ∩ cin 3925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-in 3933 |
| This theorem is referenced by: ssex 5291 wefrc 5648 hartogslem1 9556 infxpenlem 10027 dfac5lem5 10141 fin23lem12 10345 fpwwe2lem11 10655 cnso 16265 ressbas 17257 ressress 17268 rescabs 17846 symgvalstruct 19378 mgpress 20110 pjfval 21666 tgdom 22916 distop 22933 ustfilxp 24151 elovolmlem 25427 dyadmbl 25553 volsup2 25558 vitali 25566 itg1climres 25667 tayl0 26321 atomli 32363 ldgenpisyslem1 34194 reprinfz1 34654 bj-elid4 37186 aomclem6 43083 elinintrab 43601 isotone2 44073 ntrrn 44146 ntrf 44147 dssmapntrcls 44152 ismnushort 44325 onfrALTlem3 44569 sswfaxreg 45012 limcresiooub 45671 limcresioolb 45672 limsupval4 45823 sge0iunmptlemre 46444 ovolval2lem 46672 ovolval4lem2 46679 setrec2fun 49556 |
| Copyright terms: Public domain | W3C validator |