MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inex2 Structured version   Visualization version   GIF version

Theorem inex2 5324
Description: Separation Scheme (Aussonderung) using class notation. (Contributed by NM, 27-Apr-1994.)
Hypothesis
Ref Expression
inex2.1 𝐴 ∈ V
Assertion
Ref Expression
inex2 (𝐵𝐴) ∈ V

Proof of Theorem inex2
StepHypRef Expression
1 incom 4217 . 2 (𝐵𝐴) = (𝐴𝐵)
2 inex2.1 . . 3 𝐴 ∈ V
32inex1 5323 . 2 (𝐴𝐵) ∈ V
41, 3eqeltri 2835 1 (𝐵𝐴) ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2106  Vcvv 3478  cin 3962
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-sep 5302
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-rab 3434  df-v 3480  df-in 3970
This theorem is referenced by:  ssex  5327  wefrc  5683  hartogslem1  9580  infxpenlem  10051  dfac5lem5  10165  fin23lem12  10369  fpwwe2lem11  10679  cnso  16280  ressbas  17280  ressbasOLD  17281  ressress  17294  rescabs  17883  rescabsOLD  17884  symgvalstruct  19429  symgvalstructOLD  19430  mgpress  20167  mgpressOLD  20168  pjfval  21744  tgdom  23001  distop  23018  ustfilxp  24237  elovolmlem  25523  dyadmbl  25649  volsup2  25654  vitali  25662  itg1climres  25764  tayl0  26418  atomli  32411  ldgenpisyslem1  34144  reprinfz1  34616  bj-elid4  37151  aomclem6  43048  elinintrab  43567  isotone2  44039  ntrrn  44112  ntrf  44113  dssmapntrcls  44118  ismnushort  44297  onfrALTlem3  44542  limcresiooub  45598  limcresioolb  45599  limsupval4  45750  sge0iunmptlemre  46371  ovolval2lem  46599  ovolval4lem2  46606  setrec2fun  48923
  Copyright terms: Public domain W3C validator