| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > inex2 | Structured version Visualization version GIF version | ||
| Description: Separation Scheme (Aussonderung) using class notation. (Contributed by NM, 27-Apr-1994.) |
| Ref | Expression |
|---|---|
| inex2.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| inex2 | ⊢ (𝐵 ∩ 𝐴) ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | incom 4189 | . 2 ⊢ (𝐵 ∩ 𝐴) = (𝐴 ∩ 𝐵) | |
| 2 | inex2.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 3 | 2 | inex1 5297 | . 2 ⊢ (𝐴 ∩ 𝐵) ∈ V |
| 4 | 1, 3 | eqeltri 2829 | 1 ⊢ (𝐵 ∩ 𝐴) ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2107 Vcvv 3463 ∩ cin 3930 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-sep 5276 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-rab 3420 df-v 3465 df-in 3938 |
| This theorem is referenced by: ssex 5301 wefrc 5659 hartogslem1 9564 infxpenlem 10035 dfac5lem5 10149 fin23lem12 10353 fpwwe2lem11 10663 cnso 16266 ressbas 17259 ressbasOLD 17260 ressress 17271 rescabs 17849 rescabsOLD 17850 symgvalstruct 19383 symgvalstructOLD 19384 mgpress 20116 pjfval 21681 tgdom 22933 distop 22950 ustfilxp 24168 elovolmlem 25446 dyadmbl 25572 volsup2 25577 vitali 25585 itg1climres 25686 tayl0 26340 atomli 32330 ldgenpisyslem1 34139 reprinfz1 34612 bj-elid4 37144 aomclem6 43049 elinintrab 43567 isotone2 44039 ntrrn 44112 ntrf 44113 dssmapntrcls 44118 ismnushort 44292 onfrALTlem3 44536 sswfaxreg 44976 limcresiooub 45629 limcresioolb 45630 limsupval4 45781 sge0iunmptlemre 46402 ovolval2lem 46630 ovolval4lem2 46637 setrec2fun 49306 |
| Copyright terms: Public domain | W3C validator |