Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > inex2 | Structured version Visualization version GIF version |
Description: Separation Scheme (Aussonderung) using class notation. (Contributed by NM, 27-Apr-1994.) |
Ref | Expression |
---|---|
inex2.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
inex2 | ⊢ (𝐵 ∩ 𝐴) ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | incom 4136 | . 2 ⊢ (𝐵 ∩ 𝐴) = (𝐴 ∩ 𝐵) | |
2 | inex2.1 | . . 3 ⊢ 𝐴 ∈ V | |
3 | 2 | inex1 5242 | . 2 ⊢ (𝐴 ∩ 𝐵) ∈ V |
4 | 1, 3 | eqeltri 2836 | 1 ⊢ (𝐵 ∩ 𝐴) ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2107 Vcvv 3433 ∩ cin 3887 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2710 ax-sep 5224 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2069 df-clab 2717 df-cleq 2731 df-clel 2817 df-rab 3074 df-v 3435 df-in 3895 |
This theorem is referenced by: ssex 5246 wefrc 5584 hartogslem1 9310 infxpenlem 9778 dfac5lem5 9892 fin23lem12 10096 fpwwe2lem11 10406 cnso 15965 ressbas 16956 ressbasOLD 16957 ressress 16967 rescabs 17556 rescabsOLD 17557 symgvalstruct 19013 symgvalstructOLD 19014 mgpress 19744 mgpressOLD 19745 pjfval 20922 tgdom 22137 distop 22154 ustfilxp 23373 elovolmlem 24647 dyadmbl 24773 volsup2 24778 vitali 24786 itg1climres 24888 tayl0 25530 atomli 30753 ldgenpisyslem1 32140 reprinfz1 32611 bj-elid4 35348 aomclem6 40891 elinintrab 41192 isotone2 41666 ntrrn 41739 ntrf 41740 dssmapntrcls 41745 ismnushort 41926 onfrALTlem3 42171 limcresiooub 43190 limcresioolb 43191 limsupval4 43342 sge0iunmptlemre 43960 ovolval2lem 44188 ovolval4lem2 44195 setrec2fun 46409 |
Copyright terms: Public domain | W3C validator |