| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > inex2 | Structured version Visualization version GIF version | ||
| Description: Separation Scheme (Aussonderung) using class notation. (Contributed by NM, 27-Apr-1994.) |
| Ref | Expression |
|---|---|
| inex2.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| inex2 | ⊢ (𝐵 ∩ 𝐴) ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | incom 4172 | . 2 ⊢ (𝐵 ∩ 𝐴) = (𝐴 ∩ 𝐵) | |
| 2 | inex2.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 3 | 2 | inex1 5272 | . 2 ⊢ (𝐴 ∩ 𝐵) ∈ V |
| 4 | 1, 3 | eqeltri 2824 | 1 ⊢ (𝐵 ∩ 𝐴) ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3447 ∩ cin 3913 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-in 3921 |
| This theorem is referenced by: ssex 5276 wefrc 5632 hartogslem1 9495 infxpenlem 9966 dfac5lem5 10080 fin23lem12 10284 fpwwe2lem11 10594 cnso 16215 ressbas 17206 ressress 17217 rescabs 17795 symgvalstruct 19327 mgpress 20059 pjfval 21615 tgdom 22865 distop 22882 ustfilxp 24100 elovolmlem 25375 dyadmbl 25501 volsup2 25506 vitali 25514 itg1climres 25615 tayl0 26269 atomli 32311 ldgenpisyslem1 34153 reprinfz1 34613 bj-elid4 37156 aomclem6 43048 elinintrab 43566 isotone2 44038 ntrrn 44111 ntrf 44112 dssmapntrcls 44117 ismnushort 44290 onfrALTlem3 44534 sswfaxreg 44977 limcresiooub 45640 limcresioolb 45641 limsupval4 45792 sge0iunmptlemre 46413 ovolval2lem 46641 ovolval4lem2 46648 setrec2fun 49681 |
| Copyright terms: Public domain | W3C validator |