MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inex2 Structured version   Visualization version   GIF version

Theorem inex2 5254
Description: Separation Scheme (Aussonderung) using class notation. (Contributed by NM, 27-Apr-1994.)
Hypothesis
Ref Expression
inex2.1 𝐴 ∈ V
Assertion
Ref Expression
inex2 (𝐵𝐴) ∈ V

Proof of Theorem inex2
StepHypRef Expression
1 incom 4156 . 2 (𝐵𝐴) = (𝐴𝐵)
2 inex2.1 . . 3 𝐴 ∈ V
32inex1 5253 . 2 (𝐴𝐵) ∈ V
41, 3eqeltri 2827 1 (𝐵𝐴) ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2111  Vcvv 3436  cin 3896
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-in 3904
This theorem is referenced by:  ssex  5257  wefrc  5608  hartogslem1  9428  infxpenlem  9904  dfac5lem5  10018  fin23lem12  10222  fpwwe2lem11  10532  cnso  16156  ressbas  17147  ressress  17158  rescabs  17740  symgvalstruct  19309  mgpress  20068  pjfval  21643  tgdom  22893  distop  22910  ustfilxp  24128  elovolmlem  25402  dyadmbl  25528  volsup2  25533  vitali  25541  itg1climres  25642  tayl0  26296  atomli  32362  ldgenpisyslem1  34176  reprinfz1  34635  bj-elid4  37212  aomclem6  43162  elinintrab  43680  isotone2  44152  ntrrn  44225  ntrf  44226  dssmapntrcls  44231  ismnushort  44404  onfrALTlem3  44647  sswfaxreg  45090  limcresiooub  45750  limcresioolb  45751  limsupval4  45902  sge0iunmptlemre  46523  ovolval2lem  46751  ovolval4lem2  46758  nthrucw  46994  setrec2fun  49803
  Copyright terms: Public domain W3C validator