Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > inex2 | Structured version Visualization version GIF version |
Description: Separation Scheme (Aussonderung) using class notation. (Contributed by NM, 27-Apr-1994.) |
Ref | Expression |
---|---|
inex2.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
inex2 | ⊢ (𝐵 ∩ 𝐴) ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | incom 4131 | . 2 ⊢ (𝐵 ∩ 𝐴) = (𝐴 ∩ 𝐵) | |
2 | inex2.1 | . . 3 ⊢ 𝐴 ∈ V | |
3 | 2 | inex1 5236 | . 2 ⊢ (𝐴 ∩ 𝐵) ∈ V |
4 | 1, 3 | eqeltri 2835 | 1 ⊢ (𝐵 ∩ 𝐴) ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 Vcvv 3422 ∩ cin 3882 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-in 3890 |
This theorem is referenced by: ssex 5240 wefrc 5574 hartogslem1 9231 infxpenlem 9700 dfac5lem5 9814 fin23lem12 10018 fpwwe2lem11 10328 cnso 15884 ressbas 16873 ressbasOLD 16874 ressress 16884 rescabs 17464 symgvalstruct 18919 symgvalstructOLD 18920 mgpress 19650 mgpressOLD 19651 pjfval 20823 tgdom 22036 distop 22053 ustfilxp 23272 elovolmlem 24543 dyadmbl 24669 volsup2 24674 vitali 24682 itg1climres 24784 tayl0 25426 atomli 30645 ldgenpisyslem1 32031 reprinfz1 32502 bj-elid4 35266 aomclem6 40800 elinintrab 41074 isotone2 41548 ntrrn 41621 ntrf 41622 dssmapntrcls 41627 ismnushort 41808 onfrALTlem3 42053 limcresiooub 43073 limcresioolb 43074 limsupval4 43225 sge0iunmptlemre 43843 ovolval2lem 44071 ovolval4lem2 44078 setrec2fun 46284 |
Copyright terms: Public domain | W3C validator |