| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > inex2 | Structured version Visualization version GIF version | ||
| Description: Separation Scheme (Aussonderung) using class notation. (Contributed by NM, 27-Apr-1994.) |
| Ref | Expression |
|---|---|
| inex2.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| inex2 | ⊢ (𝐵 ∩ 𝐴) ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | incom 4156 | . 2 ⊢ (𝐵 ∩ 𝐴) = (𝐴 ∩ 𝐵) | |
| 2 | inex2.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 3 | 2 | inex1 5253 | . 2 ⊢ (𝐴 ∩ 𝐵) ∈ V |
| 4 | 1, 3 | eqeltri 2827 | 1 ⊢ (𝐵 ∩ 𝐴) ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 Vcvv 3436 ∩ cin 3896 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-in 3904 |
| This theorem is referenced by: ssex 5257 wefrc 5608 hartogslem1 9428 infxpenlem 9904 dfac5lem5 10018 fin23lem12 10222 fpwwe2lem11 10532 cnso 16156 ressbas 17147 ressress 17158 rescabs 17740 symgvalstruct 19309 mgpress 20068 pjfval 21643 tgdom 22893 distop 22910 ustfilxp 24128 elovolmlem 25402 dyadmbl 25528 volsup2 25533 vitali 25541 itg1climres 25642 tayl0 26296 atomli 32362 ldgenpisyslem1 34176 reprinfz1 34635 bj-elid4 37212 aomclem6 43162 elinintrab 43680 isotone2 44152 ntrrn 44225 ntrf 44226 dssmapntrcls 44231 ismnushort 44404 onfrALTlem3 44647 sswfaxreg 45090 limcresiooub 45750 limcresioolb 45751 limsupval4 45902 sge0iunmptlemre 46523 ovolval2lem 46751 ovolval4lem2 46758 nthrucw 46994 setrec2fun 49803 |
| Copyright terms: Public domain | W3C validator |