MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elirrvALT Structured version   Visualization version   GIF version

Theorem elirrvALT 9501
Description: Alternate proof of elirrv 9489, shorter but using more axioms. (Contributed by BTernaryTau, 28-Dec-2025.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
elirrvALT ¬ 𝑥𝑥

Proof of Theorem elirrvALT
StepHypRef Expression
1 zfregfr 9500 . 2 E Fr 𝑥
2 efrirr 5599 . 2 ( E Fr 𝑥 → ¬ 𝑥𝑥)
31, 2ax-mp 5 1 ¬ 𝑥𝑥
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   E cep 5518   Fr wfr 5569
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-reg 9484
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-br 5093  df-opab 5155  df-eprel 5519  df-fr 5572
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator