Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nsgqusf1olem2 Structured version   Visualization version   GIF version

Theorem nsgqusf1olem2 33407
Description: Lemma for nsgqusf1o 33409. (Contributed by Thierry Arnoux, 4-Aug-2024.)
Hypotheses
Ref Expression
nsgqusf1o.b 𝐵 = (Base‘𝐺)
nsgqusf1o.s 𝑆 = { ∈ (SubGrp‘𝐺) ∣ 𝑁}
nsgqusf1o.t 𝑇 = (SubGrp‘𝑄)
nsgqusf1o.1 = (le‘(toInc‘𝑆))
nsgqusf1o.2 = (le‘(toInc‘𝑇))
nsgqusf1o.q 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁))
nsgqusf1o.p = (LSSum‘𝐺)
nsgqusf1o.e 𝐸 = (𝑆 ↦ ran (𝑥 ↦ ({𝑥} 𝑁)))
nsgqusf1o.f 𝐹 = (𝑓𝑇 ↦ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓})
nsgqusf1o.n (𝜑𝑁 ∈ (NrmSGrp‘𝐺))
Assertion
Ref Expression
nsgqusf1olem2 (𝜑 → ran 𝐸 = 𝑇)
Distinct variable groups:   ,𝑎,𝑓,,𝑥   𝐵,𝑎,𝑓,,𝑥   𝐸,𝑎,𝑓,,𝑥   𝑓,𝐹,,𝑥   𝐺,𝑎,𝑓,,𝑥   𝑁,𝑎,𝑓,,𝑥   𝑄,𝑎,𝑓,,𝑥   𝑆,𝑎,𝑓,,𝑥   𝑇,𝑎,𝑓,,𝑥   𝜑,𝑎,𝑓,,𝑥
Allowed substitution hints:   𝐹(𝑎)   (𝑥,𝑓,,𝑎)   (𝑥,𝑓,,𝑎)

Proof of Theorem nsgqusf1olem2
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . . . . 7 (((𝜑𝑆) ∧ 𝑓 = ran (𝑥 ↦ ({𝑥} 𝑁))) → 𝑓 = ran (𝑥 ↦ ({𝑥} 𝑁)))
2 nsgqusf1o.s . . . . . . . . . 10 𝑆 = { ∈ (SubGrp‘𝐺) ∣ 𝑁}
32reqabi 3467 . . . . . . . . 9 (𝑆 ↔ ( ∈ (SubGrp‘𝐺) ∧ 𝑁))
4 nsgqusf1o.b . . . . . . . . . . . 12 𝐵 = (Base‘𝐺)
5 nsgqusf1o.t . . . . . . . . . . . 12 𝑇 = (SubGrp‘𝑄)
6 nsgqusf1o.1 . . . . . . . . . . . 12 = (le‘(toInc‘𝑆))
7 nsgqusf1o.2 . . . . . . . . . . . 12 = (le‘(toInc‘𝑇))
8 nsgqusf1o.q . . . . . . . . . . . 12 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁))
9 nsgqusf1o.p . . . . . . . . . . . 12 = (LSSum‘𝐺)
10 nsgqusf1o.e . . . . . . . . . . . 12 𝐸 = (𝑆 ↦ ran (𝑥 ↦ ({𝑥} 𝑁)))
11 nsgqusf1o.f . . . . . . . . . . . 12 𝐹 = (𝑓𝑇 ↦ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓})
12 nsgqusf1o.n . . . . . . . . . . . 12 (𝜑𝑁 ∈ (NrmSGrp‘𝐺))
134, 2, 5, 6, 7, 8, 9, 10, 11, 12nsgqusf1olem1 33406 . . . . . . . . . . 11 (((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) → ran (𝑥 ↦ ({𝑥} 𝑁)) ∈ 𝑇)
1413anasss 466 . . . . . . . . . 10 ((𝜑 ∧ ( ∈ (SubGrp‘𝐺) ∧ 𝑁)) → ran (𝑥 ↦ ({𝑥} 𝑁)) ∈ 𝑇)
1514, 5eleqtrdi 2854 . . . . . . . . 9 ((𝜑 ∧ ( ∈ (SubGrp‘𝐺) ∧ 𝑁)) → ran (𝑥 ↦ ({𝑥} 𝑁)) ∈ (SubGrp‘𝑄))
163, 15sylan2b 593 . . . . . . . 8 ((𝜑𝑆) → ran (𝑥 ↦ ({𝑥} 𝑁)) ∈ (SubGrp‘𝑄))
1716adantr 480 . . . . . . 7 (((𝜑𝑆) ∧ 𝑓 = ran (𝑥 ↦ ({𝑥} 𝑁))) → ran (𝑥 ↦ ({𝑥} 𝑁)) ∈ (SubGrp‘𝑄))
181, 17eqeltrd 2844 . . . . . 6 (((𝜑𝑆) ∧ 𝑓 = ran (𝑥 ↦ ({𝑥} 𝑁))) → 𝑓 ∈ (SubGrp‘𝑄))
1918r19.29an 3164 . . . . 5 ((𝜑 ∧ ∃𝑆 𝑓 = ran (𝑥 ↦ ({𝑥} 𝑁))) → 𝑓 ∈ (SubGrp‘𝑄))
20 sseq2 4035 . . . . . . . 8 ( = {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓} → (𝑁𝑁 ⊆ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓}))
2112adantr 480 . . . . . . . . 9 ((𝜑𝑓 ∈ (SubGrp‘𝑄)) → 𝑁 ∈ (NrmSGrp‘𝐺))
22 simpr 484 . . . . . . . . 9 ((𝜑𝑓 ∈ (SubGrp‘𝑄)) → 𝑓 ∈ (SubGrp‘𝑄))
234, 8, 9, 21, 22nsgmgclem 33404 . . . . . . . 8 ((𝜑𝑓 ∈ (SubGrp‘𝑄)) → {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓} ∈ (SubGrp‘𝐺))
245eleq2i 2836 . . . . . . . . 9 (𝑓𝑇𝑓 ∈ (SubGrp‘𝑄))
25 nsgsubg 19198 . . . . . . . . . . . . 13 (𝑁 ∈ (NrmSGrp‘𝐺) → 𝑁 ∈ (SubGrp‘𝐺))
2612, 25syl 17 . . . . . . . . . . . 12 (𝜑𝑁 ∈ (SubGrp‘𝐺))
274subgss 19167 . . . . . . . . . . . 12 (𝑁 ∈ (SubGrp‘𝐺) → 𝑁𝐵)
2826, 27syl 17 . . . . . . . . . . 11 (𝜑𝑁𝐵)
2928adantr 480 . . . . . . . . . 10 ((𝜑𝑓𝑇) → 𝑁𝐵)
3026ad2antrr 725 . . . . . . . . . . . 12 (((𝜑𝑓𝑇) ∧ 𝑎𝑁) → 𝑁 ∈ (SubGrp‘𝐺))
319grplsmid 33397 . . . . . . . . . . . 12 ((𝑁 ∈ (SubGrp‘𝐺) ∧ 𝑎𝑁) → ({𝑎} 𝑁) = 𝑁)
3230, 31sylancom 587 . . . . . . . . . . 11 (((𝜑𝑓𝑇) ∧ 𝑎𝑁) → ({𝑎} 𝑁) = 𝑁)
3324biimpi 216 . . . . . . . . . . . . 13 (𝑓𝑇𝑓 ∈ (SubGrp‘𝑄))
348nsgqus0 33403 . . . . . . . . . . . . 13 ((𝑁 ∈ (NrmSGrp‘𝐺) ∧ 𝑓 ∈ (SubGrp‘𝑄)) → 𝑁𝑓)
3512, 33, 34syl2an 595 . . . . . . . . . . . 12 ((𝜑𝑓𝑇) → 𝑁𝑓)
3635adantr 480 . . . . . . . . . . 11 (((𝜑𝑓𝑇) ∧ 𝑎𝑁) → 𝑁𝑓)
3732, 36eqeltrd 2844 . . . . . . . . . 10 (((𝜑𝑓𝑇) ∧ 𝑎𝑁) → ({𝑎} 𝑁) ∈ 𝑓)
3829, 37ssrabdv 4097 . . . . . . . . 9 ((𝜑𝑓𝑇) → 𝑁 ⊆ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓})
3924, 38sylan2br 594 . . . . . . . 8 ((𝜑𝑓 ∈ (SubGrp‘𝑄)) → 𝑁 ⊆ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓})
4020, 23, 39elrabd 3710 . . . . . . 7 ((𝜑𝑓 ∈ (SubGrp‘𝑄)) → {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓} ∈ { ∈ (SubGrp‘𝐺) ∣ 𝑁})
4140, 2eleqtrrdi 2855 . . . . . 6 ((𝜑𝑓 ∈ (SubGrp‘𝑄)) → {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓} ∈ 𝑆)
42 mpteq1 5259 . . . . . . . . 9 ( = {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓} → (𝑥 ↦ ({𝑥} 𝑁)) = (𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓} ↦ ({𝑥} 𝑁)))
4342rneqd 5963 . . . . . . . 8 ( = {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓} → ran (𝑥 ↦ ({𝑥} 𝑁)) = ran (𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓} ↦ ({𝑥} 𝑁)))
4443eqeq2d 2751 . . . . . . 7 ( = {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓} → (𝑓 = ran (𝑥 ↦ ({𝑥} 𝑁)) ↔ 𝑓 = ran (𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓} ↦ ({𝑥} 𝑁))))
4544adantl 481 . . . . . 6 (((𝜑𝑓 ∈ (SubGrp‘𝑄)) ∧ = {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓}) → (𝑓 = ran (𝑥 ↦ ({𝑥} 𝑁)) ↔ 𝑓 = ran (𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓} ↦ ({𝑥} 𝑁))))
46 eqid 2740 . . . . . . . . . . . . . . 15 (Base‘𝑄) = (Base‘𝑄)
4746subgss 19167 . . . . . . . . . . . . . 14 (𝑓 ∈ (SubGrp‘𝑄) → 𝑓 ⊆ (Base‘𝑄))
4847adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑓 ∈ (SubGrp‘𝑄)) → 𝑓 ⊆ (Base‘𝑄))
4948sselda 4008 . . . . . . . . . . . 12 (((𝜑𝑓 ∈ (SubGrp‘𝑄)) ∧ 𝑖𝑓) → 𝑖 ∈ (Base‘𝑄))
508a1i 11 . . . . . . . . . . . . 13 (((𝜑𝑓 ∈ (SubGrp‘𝑄)) ∧ 𝑖𝑓) → 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁)))
514a1i 11 . . . . . . . . . . . . 13 (((𝜑𝑓 ∈ (SubGrp‘𝑄)) ∧ 𝑖𝑓) → 𝐵 = (Base‘𝐺))
52 ovexd 7483 . . . . . . . . . . . . 13 (((𝜑𝑓 ∈ (SubGrp‘𝑄)) ∧ 𝑖𝑓) → (𝐺 ~QG 𝑁) ∈ V)
53 subgrcl 19171 . . . . . . . . . . . . . . 15 (𝑁 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
5426, 53syl 17 . . . . . . . . . . . . . 14 (𝜑𝐺 ∈ Grp)
5554ad2antrr 725 . . . . . . . . . . . . 13 (((𝜑𝑓 ∈ (SubGrp‘𝑄)) ∧ 𝑖𝑓) → 𝐺 ∈ Grp)
5650, 51, 52, 55qusbas 17605 . . . . . . . . . . . 12 (((𝜑𝑓 ∈ (SubGrp‘𝑄)) ∧ 𝑖𝑓) → (𝐵 / (𝐺 ~QG 𝑁)) = (Base‘𝑄))
5749, 56eleqtrrd 2847 . . . . . . . . . . 11 (((𝜑𝑓 ∈ (SubGrp‘𝑄)) ∧ 𝑖𝑓) → 𝑖 ∈ (𝐵 / (𝐺 ~QG 𝑁)))
58 elqsi 8828 . . . . . . . . . . 11 (𝑖 ∈ (𝐵 / (𝐺 ~QG 𝑁)) → ∃𝑥𝐵 𝑖 = [𝑥](𝐺 ~QG 𝑁))
5957, 58syl 17 . . . . . . . . . 10 (((𝜑𝑓 ∈ (SubGrp‘𝑄)) ∧ 𝑖𝑓) → ∃𝑥𝐵 𝑖 = [𝑥](𝐺 ~QG 𝑁))
60 sneq 4658 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑥 → {𝑎} = {𝑥})
6160oveq1d 7463 . . . . . . . . . . . . . . 15 (𝑎 = 𝑥 → ({𝑎} 𝑁) = ({𝑥} 𝑁))
6261eleq1d 2829 . . . . . . . . . . . . . 14 (𝑎 = 𝑥 → (({𝑎} 𝑁) ∈ 𝑓 ↔ ({𝑥} 𝑁) ∈ 𝑓))
63 simplr 768 . . . . . . . . . . . . . 14 (((((𝜑𝑓 ∈ (SubGrp‘𝑄)) ∧ 𝑖𝑓) ∧ 𝑥𝐵) ∧ 𝑖 = [𝑥](𝐺 ~QG 𝑁)) → 𝑥𝐵)
64 simpr 484 . . . . . . . . . . . . . . . 16 (((((𝜑𝑓 ∈ (SubGrp‘𝑄)) ∧ 𝑖𝑓) ∧ 𝑥𝐵) ∧ 𝑖 = [𝑥](𝐺 ~QG 𝑁)) → 𝑖 = [𝑥](𝐺 ~QG 𝑁))
6526ad4antr 731 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑓 ∈ (SubGrp‘𝑄)) ∧ 𝑖𝑓) ∧ 𝑥𝐵) ∧ 𝑖 = [𝑥](𝐺 ~QG 𝑁)) → 𝑁 ∈ (SubGrp‘𝐺))
664, 9, 65, 63quslsm 33398 . . . . . . . . . . . . . . . 16 (((((𝜑𝑓 ∈ (SubGrp‘𝑄)) ∧ 𝑖𝑓) ∧ 𝑥𝐵) ∧ 𝑖 = [𝑥](𝐺 ~QG 𝑁)) → [𝑥](𝐺 ~QG 𝑁) = ({𝑥} 𝑁))
6764, 66eqtrd 2780 . . . . . . . . . . . . . . 15 (((((𝜑𝑓 ∈ (SubGrp‘𝑄)) ∧ 𝑖𝑓) ∧ 𝑥𝐵) ∧ 𝑖 = [𝑥](𝐺 ~QG 𝑁)) → 𝑖 = ({𝑥} 𝑁))
68 simpllr 775 . . . . . . . . . . . . . . 15 (((((𝜑𝑓 ∈ (SubGrp‘𝑄)) ∧ 𝑖𝑓) ∧ 𝑥𝐵) ∧ 𝑖 = [𝑥](𝐺 ~QG 𝑁)) → 𝑖𝑓)
6967, 68eqeltrrd 2845 . . . . . . . . . . . . . 14 (((((𝜑𝑓 ∈ (SubGrp‘𝑄)) ∧ 𝑖𝑓) ∧ 𝑥𝐵) ∧ 𝑖 = [𝑥](𝐺 ~QG 𝑁)) → ({𝑥} 𝑁) ∈ 𝑓)
7062, 63, 69elrabd 3710 . . . . . . . . . . . . 13 (((((𝜑𝑓 ∈ (SubGrp‘𝑄)) ∧ 𝑖𝑓) ∧ 𝑥𝐵) ∧ 𝑖 = [𝑥](𝐺 ~QG 𝑁)) → 𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓})
7170, 67jca 511 . . . . . . . . . . . 12 (((((𝜑𝑓 ∈ (SubGrp‘𝑄)) ∧ 𝑖𝑓) ∧ 𝑥𝐵) ∧ 𝑖 = [𝑥](𝐺 ~QG 𝑁)) → (𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓} ∧ 𝑖 = ({𝑥} 𝑁)))
7271expl 457 . . . . . . . . . . 11 (((𝜑𝑓 ∈ (SubGrp‘𝑄)) ∧ 𝑖𝑓) → ((𝑥𝐵𝑖 = [𝑥](𝐺 ~QG 𝑁)) → (𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓} ∧ 𝑖 = ({𝑥} 𝑁))))
7372reximdv2 3170 . . . . . . . . . 10 (((𝜑𝑓 ∈ (SubGrp‘𝑄)) ∧ 𝑖𝑓) → (∃𝑥𝐵 𝑖 = [𝑥](𝐺 ~QG 𝑁) → ∃𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓}𝑖 = ({𝑥} 𝑁)))
7459, 73mpd 15 . . . . . . . . 9 (((𝜑𝑓 ∈ (SubGrp‘𝑄)) ∧ 𝑖𝑓) → ∃𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓}𝑖 = ({𝑥} 𝑁))
75 simplr 768 . . . . . . . . . . . 12 ((((𝜑𝑓 ∈ (SubGrp‘𝑄)) ∧ 𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓}) ∧ 𝑖 = ({𝑥} 𝑁)) → 𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓})
7662elrab 3708 . . . . . . . . . . . 12 (𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓} ↔ (𝑥𝐵 ∧ ({𝑥} 𝑁) ∈ 𝑓))
7775, 76sylib 218 . . . . . . . . . . 11 ((((𝜑𝑓 ∈ (SubGrp‘𝑄)) ∧ 𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓}) ∧ 𝑖 = ({𝑥} 𝑁)) → (𝑥𝐵 ∧ ({𝑥} 𝑁) ∈ 𝑓))
78 simpllr 775 . . . . . . . . . . . . . 14 (((((𝜑𝑓 ∈ (SubGrp‘𝑄)) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑥𝐵) ∧ ({𝑥} 𝑁) ∈ 𝑓) → 𝑖 = ({𝑥} 𝑁))
79 simpr 484 . . . . . . . . . . . . . 14 (((((𝜑𝑓 ∈ (SubGrp‘𝑄)) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑥𝐵) ∧ ({𝑥} 𝑁) ∈ 𝑓) → ({𝑥} 𝑁) ∈ 𝑓)
8078, 79eqeltrd 2844 . . . . . . . . . . . . 13 (((((𝜑𝑓 ∈ (SubGrp‘𝑄)) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑥𝐵) ∧ ({𝑥} 𝑁) ∈ 𝑓) → 𝑖𝑓)
8180anasss 466 . . . . . . . . . . . 12 ((((𝜑𝑓 ∈ (SubGrp‘𝑄)) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ (𝑥𝐵 ∧ ({𝑥} 𝑁) ∈ 𝑓)) → 𝑖𝑓)
8281adantllr 718 . . . . . . . . . . 11 (((((𝜑𝑓 ∈ (SubGrp‘𝑄)) ∧ 𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓}) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ (𝑥𝐵 ∧ ({𝑥} 𝑁) ∈ 𝑓)) → 𝑖𝑓)
8377, 82mpdan 686 . . . . . . . . . 10 ((((𝜑𝑓 ∈ (SubGrp‘𝑄)) ∧ 𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓}) ∧ 𝑖 = ({𝑥} 𝑁)) → 𝑖𝑓)
8483r19.29an 3164 . . . . . . . . 9 (((𝜑𝑓 ∈ (SubGrp‘𝑄)) ∧ ∃𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓}𝑖 = ({𝑥} 𝑁)) → 𝑖𝑓)
8574, 84impbida 800 . . . . . . . 8 ((𝜑𝑓 ∈ (SubGrp‘𝑄)) → (𝑖𝑓 ↔ ∃𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓}𝑖 = ({𝑥} 𝑁)))
86 eqid 2740 . . . . . . . . . 10 (𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓} ↦ ({𝑥} 𝑁)) = (𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓} ↦ ({𝑥} 𝑁))
8786elrnmpt 5981 . . . . . . . . 9 (𝑖 ∈ V → (𝑖 ∈ ran (𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓} ↦ ({𝑥} 𝑁)) ↔ ∃𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓}𝑖 = ({𝑥} 𝑁)))
8887elv 3493 . . . . . . . 8 (𝑖 ∈ ran (𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓} ↦ ({𝑥} 𝑁)) ↔ ∃𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓}𝑖 = ({𝑥} 𝑁))
8985, 88bitr4di 289 . . . . . . 7 ((𝜑𝑓 ∈ (SubGrp‘𝑄)) → (𝑖𝑓𝑖 ∈ ran (𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓} ↦ ({𝑥} 𝑁))))
9089eqrdv 2738 . . . . . 6 ((𝜑𝑓 ∈ (SubGrp‘𝑄)) → 𝑓 = ran (𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓} ↦ ({𝑥} 𝑁)))
9141, 45, 90rspcedvd 3637 . . . . 5 ((𝜑𝑓 ∈ (SubGrp‘𝑄)) → ∃𝑆 𝑓 = ran (𝑥 ↦ ({𝑥} 𝑁)))
9219, 91impbida 800 . . . 4 (𝜑 → (∃𝑆 𝑓 = ran (𝑥 ↦ ({𝑥} 𝑁)) ↔ 𝑓 ∈ (SubGrp‘𝑄)))
9392abbidv 2811 . . 3 (𝜑 → {𝑓 ∣ ∃𝑆 𝑓 = ran (𝑥 ↦ ({𝑥} 𝑁))} = {𝑓𝑓 ∈ (SubGrp‘𝑄)})
9410rnmpt 5980 . . 3 ran 𝐸 = {𝑓 ∣ ∃𝑆 𝑓 = ran (𝑥 ↦ ({𝑥} 𝑁))}
95 abid1 2881 . . 3 (SubGrp‘𝑄) = {𝑓𝑓 ∈ (SubGrp‘𝑄)}
9693, 94, 953eqtr4g 2805 . 2 (𝜑 → ran 𝐸 = (SubGrp‘𝑄))
9796, 5eqtr4di 2798 1 (𝜑 → ran 𝐸 = 𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  {cab 2717  wrex 3076  {crab 3443  Vcvv 3488  wss 3976  {csn 4648  cmpt 5249  ran crn 5701  cfv 6573  (class class class)co 7448  [cec 8761   / cqs 8762  Basecbs 17258  lecple 17318   /s cqus 17565  toInccipo 18597  Grpcgrp 18973  SubGrpcsubg 19160  NrmSGrpcnsg 19161   ~QG cqg 19162  LSSumclsm 19676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-tpos 8267  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-ec 8765  df-qs 8769  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-0g 17501  df-imas 17568  df-qus 17569  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-grp 18976  df-minusg 18977  df-subg 19163  df-nsg 19164  df-eqg 19165  df-oppg 19386  df-lsm 19678
This theorem is referenced by:  nsgqusf1o  33409
  Copyright terms: Public domain W3C validator