Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nsgqusf1olem2 Structured version   Visualization version   GIF version

Theorem nsgqusf1olem2 33379
Description: Lemma for nsgqusf1o 33381. (Contributed by Thierry Arnoux, 4-Aug-2024.)
Hypotheses
Ref Expression
nsgqusf1o.b 𝐵 = (Base‘𝐺)
nsgqusf1o.s 𝑆 = { ∈ (SubGrp‘𝐺) ∣ 𝑁}
nsgqusf1o.t 𝑇 = (SubGrp‘𝑄)
nsgqusf1o.1 = (le‘(toInc‘𝑆))
nsgqusf1o.2 = (le‘(toInc‘𝑇))
nsgqusf1o.q 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁))
nsgqusf1o.p = (LSSum‘𝐺)
nsgqusf1o.e 𝐸 = (𝑆 ↦ ran (𝑥 ↦ ({𝑥} 𝑁)))
nsgqusf1o.f 𝐹 = (𝑓𝑇 ↦ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓})
nsgqusf1o.n (𝜑𝑁 ∈ (NrmSGrp‘𝐺))
Assertion
Ref Expression
nsgqusf1olem2 (𝜑 → ran 𝐸 = 𝑇)
Distinct variable groups:   ,𝑎,𝑓,,𝑥   𝐵,𝑎,𝑓,,𝑥   𝐸,𝑎,𝑓,,𝑥   𝑓,𝐹,,𝑥   𝐺,𝑎,𝑓,,𝑥   𝑁,𝑎,𝑓,,𝑥   𝑄,𝑎,𝑓,,𝑥   𝑆,𝑎,𝑓,,𝑥   𝑇,𝑎,𝑓,,𝑥   𝜑,𝑎,𝑓,,𝑥
Allowed substitution hints:   𝐹(𝑎)   (𝑥,𝑓,,𝑎)   (𝑥,𝑓,,𝑎)

Proof of Theorem nsgqusf1olem2
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . . . . 7 (((𝜑𝑆) ∧ 𝑓 = ran (𝑥 ↦ ({𝑥} 𝑁))) → 𝑓 = ran (𝑥 ↦ ({𝑥} 𝑁)))
2 nsgqusf1o.s . . . . . . . . . 10 𝑆 = { ∈ (SubGrp‘𝐺) ∣ 𝑁}
32reqabi 3418 . . . . . . . . 9 (𝑆 ↔ ( ∈ (SubGrp‘𝐺) ∧ 𝑁))
4 nsgqusf1o.b . . . . . . . . . . . 12 𝐵 = (Base‘𝐺)
5 nsgqusf1o.t . . . . . . . . . . . 12 𝑇 = (SubGrp‘𝑄)
6 nsgqusf1o.1 . . . . . . . . . . . 12 = (le‘(toInc‘𝑆))
7 nsgqusf1o.2 . . . . . . . . . . . 12 = (le‘(toInc‘𝑇))
8 nsgqusf1o.q . . . . . . . . . . . 12 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁))
9 nsgqusf1o.p . . . . . . . . . . . 12 = (LSSum‘𝐺)
10 nsgqusf1o.e . . . . . . . . . . . 12 𝐸 = (𝑆 ↦ ran (𝑥 ↦ ({𝑥} 𝑁)))
11 nsgqusf1o.f . . . . . . . . . . . 12 𝐹 = (𝑓𝑇 ↦ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓})
12 nsgqusf1o.n . . . . . . . . . . . 12 (𝜑𝑁 ∈ (NrmSGrp‘𝐺))
134, 2, 5, 6, 7, 8, 9, 10, 11, 12nsgqusf1olem1 33378 . . . . . . . . . . 11 (((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) → ran (𝑥 ↦ ({𝑥} 𝑁)) ∈ 𝑇)
1413anasss 466 . . . . . . . . . 10 ((𝜑 ∧ ( ∈ (SubGrp‘𝐺) ∧ 𝑁)) → ran (𝑥 ↦ ({𝑥} 𝑁)) ∈ 𝑇)
1514, 5eleqtrdi 2841 . . . . . . . . 9 ((𝜑 ∧ ( ∈ (SubGrp‘𝐺) ∧ 𝑁)) → ran (𝑥 ↦ ({𝑥} 𝑁)) ∈ (SubGrp‘𝑄))
163, 15sylan2b 594 . . . . . . . 8 ((𝜑𝑆) → ran (𝑥 ↦ ({𝑥} 𝑁)) ∈ (SubGrp‘𝑄))
1716adantr 480 . . . . . . 7 (((𝜑𝑆) ∧ 𝑓 = ran (𝑥 ↦ ({𝑥} 𝑁))) → ran (𝑥 ↦ ({𝑥} 𝑁)) ∈ (SubGrp‘𝑄))
181, 17eqeltrd 2831 . . . . . 6 (((𝜑𝑆) ∧ 𝑓 = ran (𝑥 ↦ ({𝑥} 𝑁))) → 𝑓 ∈ (SubGrp‘𝑄))
1918r19.29an 3136 . . . . 5 ((𝜑 ∧ ∃𝑆 𝑓 = ran (𝑥 ↦ ({𝑥} 𝑁))) → 𝑓 ∈ (SubGrp‘𝑄))
20 sseq2 3956 . . . . . . . 8 ( = {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓} → (𝑁𝑁 ⊆ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓}))
2112adantr 480 . . . . . . . . 9 ((𝜑𝑓 ∈ (SubGrp‘𝑄)) → 𝑁 ∈ (NrmSGrp‘𝐺))
22 simpr 484 . . . . . . . . 9 ((𝜑𝑓 ∈ (SubGrp‘𝑄)) → 𝑓 ∈ (SubGrp‘𝑄))
234, 8, 9, 21, 22nsgmgclem 33376 . . . . . . . 8 ((𝜑𝑓 ∈ (SubGrp‘𝑄)) → {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓} ∈ (SubGrp‘𝐺))
245eleq2i 2823 . . . . . . . . 9 (𝑓𝑇𝑓 ∈ (SubGrp‘𝑄))
25 nsgsubg 19070 . . . . . . . . . . . . 13 (𝑁 ∈ (NrmSGrp‘𝐺) → 𝑁 ∈ (SubGrp‘𝐺))
2612, 25syl 17 . . . . . . . . . . . 12 (𝜑𝑁 ∈ (SubGrp‘𝐺))
274subgss 19040 . . . . . . . . . . . 12 (𝑁 ∈ (SubGrp‘𝐺) → 𝑁𝐵)
2826, 27syl 17 . . . . . . . . . . 11 (𝜑𝑁𝐵)
2928adantr 480 . . . . . . . . . 10 ((𝜑𝑓𝑇) → 𝑁𝐵)
3026ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑓𝑇) ∧ 𝑎𝑁) → 𝑁 ∈ (SubGrp‘𝐺))
319grplsmid 33369 . . . . . . . . . . . 12 ((𝑁 ∈ (SubGrp‘𝐺) ∧ 𝑎𝑁) → ({𝑎} 𝑁) = 𝑁)
3230, 31sylancom 588 . . . . . . . . . . 11 (((𝜑𝑓𝑇) ∧ 𝑎𝑁) → ({𝑎} 𝑁) = 𝑁)
3324biimpi 216 . . . . . . . . . . . . 13 (𝑓𝑇𝑓 ∈ (SubGrp‘𝑄))
348nsgqus0 33375 . . . . . . . . . . . . 13 ((𝑁 ∈ (NrmSGrp‘𝐺) ∧ 𝑓 ∈ (SubGrp‘𝑄)) → 𝑁𝑓)
3512, 33, 34syl2an 596 . . . . . . . . . . . 12 ((𝜑𝑓𝑇) → 𝑁𝑓)
3635adantr 480 . . . . . . . . . . 11 (((𝜑𝑓𝑇) ∧ 𝑎𝑁) → 𝑁𝑓)
3732, 36eqeltrd 2831 . . . . . . . . . 10 (((𝜑𝑓𝑇) ∧ 𝑎𝑁) → ({𝑎} 𝑁) ∈ 𝑓)
3829, 37ssrabdv 4019 . . . . . . . . 9 ((𝜑𝑓𝑇) → 𝑁 ⊆ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓})
3924, 38sylan2br 595 . . . . . . . 8 ((𝜑𝑓 ∈ (SubGrp‘𝑄)) → 𝑁 ⊆ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓})
4020, 23, 39elrabd 3644 . . . . . . 7 ((𝜑𝑓 ∈ (SubGrp‘𝑄)) → {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓} ∈ { ∈ (SubGrp‘𝐺) ∣ 𝑁})
4140, 2eleqtrrdi 2842 . . . . . 6 ((𝜑𝑓 ∈ (SubGrp‘𝑄)) → {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓} ∈ 𝑆)
42 mpteq1 5178 . . . . . . . . 9 ( = {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓} → (𝑥 ↦ ({𝑥} 𝑁)) = (𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓} ↦ ({𝑥} 𝑁)))
4342rneqd 5877 . . . . . . . 8 ( = {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓} → ran (𝑥 ↦ ({𝑥} 𝑁)) = ran (𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓} ↦ ({𝑥} 𝑁)))
4443eqeq2d 2742 . . . . . . 7 ( = {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓} → (𝑓 = ran (𝑥 ↦ ({𝑥} 𝑁)) ↔ 𝑓 = ran (𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓} ↦ ({𝑥} 𝑁))))
4544adantl 481 . . . . . 6 (((𝜑𝑓 ∈ (SubGrp‘𝑄)) ∧ = {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓}) → (𝑓 = ran (𝑥 ↦ ({𝑥} 𝑁)) ↔ 𝑓 = ran (𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓} ↦ ({𝑥} 𝑁))))
46 eqid 2731 . . . . . . . . . . . . . . 15 (Base‘𝑄) = (Base‘𝑄)
4746subgss 19040 . . . . . . . . . . . . . 14 (𝑓 ∈ (SubGrp‘𝑄) → 𝑓 ⊆ (Base‘𝑄))
4847adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑓 ∈ (SubGrp‘𝑄)) → 𝑓 ⊆ (Base‘𝑄))
4948sselda 3929 . . . . . . . . . . . 12 (((𝜑𝑓 ∈ (SubGrp‘𝑄)) ∧ 𝑖𝑓) → 𝑖 ∈ (Base‘𝑄))
508a1i 11 . . . . . . . . . . . . 13 (((𝜑𝑓 ∈ (SubGrp‘𝑄)) ∧ 𝑖𝑓) → 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁)))
514a1i 11 . . . . . . . . . . . . 13 (((𝜑𝑓 ∈ (SubGrp‘𝑄)) ∧ 𝑖𝑓) → 𝐵 = (Base‘𝐺))
52 ovexd 7381 . . . . . . . . . . . . 13 (((𝜑𝑓 ∈ (SubGrp‘𝑄)) ∧ 𝑖𝑓) → (𝐺 ~QG 𝑁) ∈ V)
53 subgrcl 19044 . . . . . . . . . . . . . . 15 (𝑁 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
5426, 53syl 17 . . . . . . . . . . . . . 14 (𝜑𝐺 ∈ Grp)
5554ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑓 ∈ (SubGrp‘𝑄)) ∧ 𝑖𝑓) → 𝐺 ∈ Grp)
5650, 51, 52, 55qusbas 17449 . . . . . . . . . . . 12 (((𝜑𝑓 ∈ (SubGrp‘𝑄)) ∧ 𝑖𝑓) → (𝐵 / (𝐺 ~QG 𝑁)) = (Base‘𝑄))
5749, 56eleqtrrd 2834 . . . . . . . . . . 11 (((𝜑𝑓 ∈ (SubGrp‘𝑄)) ∧ 𝑖𝑓) → 𝑖 ∈ (𝐵 / (𝐺 ~QG 𝑁)))
58 elqsi 8690 . . . . . . . . . . 11 (𝑖 ∈ (𝐵 / (𝐺 ~QG 𝑁)) → ∃𝑥𝐵 𝑖 = [𝑥](𝐺 ~QG 𝑁))
5957, 58syl 17 . . . . . . . . . 10 (((𝜑𝑓 ∈ (SubGrp‘𝑄)) ∧ 𝑖𝑓) → ∃𝑥𝐵 𝑖 = [𝑥](𝐺 ~QG 𝑁))
60 sneq 4583 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑥 → {𝑎} = {𝑥})
6160oveq1d 7361 . . . . . . . . . . . . . . 15 (𝑎 = 𝑥 → ({𝑎} 𝑁) = ({𝑥} 𝑁))
6261eleq1d 2816 . . . . . . . . . . . . . 14 (𝑎 = 𝑥 → (({𝑎} 𝑁) ∈ 𝑓 ↔ ({𝑥} 𝑁) ∈ 𝑓))
63 simplr 768 . . . . . . . . . . . . . 14 (((((𝜑𝑓 ∈ (SubGrp‘𝑄)) ∧ 𝑖𝑓) ∧ 𝑥𝐵) ∧ 𝑖 = [𝑥](𝐺 ~QG 𝑁)) → 𝑥𝐵)
64 simpr 484 . . . . . . . . . . . . . . . 16 (((((𝜑𝑓 ∈ (SubGrp‘𝑄)) ∧ 𝑖𝑓) ∧ 𝑥𝐵) ∧ 𝑖 = [𝑥](𝐺 ~QG 𝑁)) → 𝑖 = [𝑥](𝐺 ~QG 𝑁))
6526ad4antr 732 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑓 ∈ (SubGrp‘𝑄)) ∧ 𝑖𝑓) ∧ 𝑥𝐵) ∧ 𝑖 = [𝑥](𝐺 ~QG 𝑁)) → 𝑁 ∈ (SubGrp‘𝐺))
664, 9, 65, 63quslsm 33370 . . . . . . . . . . . . . . . 16 (((((𝜑𝑓 ∈ (SubGrp‘𝑄)) ∧ 𝑖𝑓) ∧ 𝑥𝐵) ∧ 𝑖 = [𝑥](𝐺 ~QG 𝑁)) → [𝑥](𝐺 ~QG 𝑁) = ({𝑥} 𝑁))
6764, 66eqtrd 2766 . . . . . . . . . . . . . . 15 (((((𝜑𝑓 ∈ (SubGrp‘𝑄)) ∧ 𝑖𝑓) ∧ 𝑥𝐵) ∧ 𝑖 = [𝑥](𝐺 ~QG 𝑁)) → 𝑖 = ({𝑥} 𝑁))
68 simpllr 775 . . . . . . . . . . . . . . 15 (((((𝜑𝑓 ∈ (SubGrp‘𝑄)) ∧ 𝑖𝑓) ∧ 𝑥𝐵) ∧ 𝑖 = [𝑥](𝐺 ~QG 𝑁)) → 𝑖𝑓)
6967, 68eqeltrrd 2832 . . . . . . . . . . . . . 14 (((((𝜑𝑓 ∈ (SubGrp‘𝑄)) ∧ 𝑖𝑓) ∧ 𝑥𝐵) ∧ 𝑖 = [𝑥](𝐺 ~QG 𝑁)) → ({𝑥} 𝑁) ∈ 𝑓)
7062, 63, 69elrabd 3644 . . . . . . . . . . . . 13 (((((𝜑𝑓 ∈ (SubGrp‘𝑄)) ∧ 𝑖𝑓) ∧ 𝑥𝐵) ∧ 𝑖 = [𝑥](𝐺 ~QG 𝑁)) → 𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓})
7170, 67jca 511 . . . . . . . . . . . 12 (((((𝜑𝑓 ∈ (SubGrp‘𝑄)) ∧ 𝑖𝑓) ∧ 𝑥𝐵) ∧ 𝑖 = [𝑥](𝐺 ~QG 𝑁)) → (𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓} ∧ 𝑖 = ({𝑥} 𝑁)))
7271expl 457 . . . . . . . . . . 11 (((𝜑𝑓 ∈ (SubGrp‘𝑄)) ∧ 𝑖𝑓) → ((𝑥𝐵𝑖 = [𝑥](𝐺 ~QG 𝑁)) → (𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓} ∧ 𝑖 = ({𝑥} 𝑁))))
7372reximdv2 3142 . . . . . . . . . 10 (((𝜑𝑓 ∈ (SubGrp‘𝑄)) ∧ 𝑖𝑓) → (∃𝑥𝐵 𝑖 = [𝑥](𝐺 ~QG 𝑁) → ∃𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓}𝑖 = ({𝑥} 𝑁)))
7459, 73mpd 15 . . . . . . . . 9 (((𝜑𝑓 ∈ (SubGrp‘𝑄)) ∧ 𝑖𝑓) → ∃𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓}𝑖 = ({𝑥} 𝑁))
75 simplr 768 . . . . . . . . . . . 12 ((((𝜑𝑓 ∈ (SubGrp‘𝑄)) ∧ 𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓}) ∧ 𝑖 = ({𝑥} 𝑁)) → 𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓})
7662elrab 3642 . . . . . . . . . . . 12 (𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓} ↔ (𝑥𝐵 ∧ ({𝑥} 𝑁) ∈ 𝑓))
7775, 76sylib 218 . . . . . . . . . . 11 ((((𝜑𝑓 ∈ (SubGrp‘𝑄)) ∧ 𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓}) ∧ 𝑖 = ({𝑥} 𝑁)) → (𝑥𝐵 ∧ ({𝑥} 𝑁) ∈ 𝑓))
78 simpllr 775 . . . . . . . . . . . . . 14 (((((𝜑𝑓 ∈ (SubGrp‘𝑄)) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑥𝐵) ∧ ({𝑥} 𝑁) ∈ 𝑓) → 𝑖 = ({𝑥} 𝑁))
79 simpr 484 . . . . . . . . . . . . . 14 (((((𝜑𝑓 ∈ (SubGrp‘𝑄)) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑥𝐵) ∧ ({𝑥} 𝑁) ∈ 𝑓) → ({𝑥} 𝑁) ∈ 𝑓)
8078, 79eqeltrd 2831 . . . . . . . . . . . . 13 (((((𝜑𝑓 ∈ (SubGrp‘𝑄)) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑥𝐵) ∧ ({𝑥} 𝑁) ∈ 𝑓) → 𝑖𝑓)
8180anasss 466 . . . . . . . . . . . 12 ((((𝜑𝑓 ∈ (SubGrp‘𝑄)) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ (𝑥𝐵 ∧ ({𝑥} 𝑁) ∈ 𝑓)) → 𝑖𝑓)
8281adantllr 719 . . . . . . . . . . 11 (((((𝜑𝑓 ∈ (SubGrp‘𝑄)) ∧ 𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓}) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ (𝑥𝐵 ∧ ({𝑥} 𝑁) ∈ 𝑓)) → 𝑖𝑓)
8377, 82mpdan 687 . . . . . . . . . 10 ((((𝜑𝑓 ∈ (SubGrp‘𝑄)) ∧ 𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓}) ∧ 𝑖 = ({𝑥} 𝑁)) → 𝑖𝑓)
8483r19.29an 3136 . . . . . . . . 9 (((𝜑𝑓 ∈ (SubGrp‘𝑄)) ∧ ∃𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓}𝑖 = ({𝑥} 𝑁)) → 𝑖𝑓)
8574, 84impbida 800 . . . . . . . 8 ((𝜑𝑓 ∈ (SubGrp‘𝑄)) → (𝑖𝑓 ↔ ∃𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓}𝑖 = ({𝑥} 𝑁)))
86 eqid 2731 . . . . . . . . . 10 (𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓} ↦ ({𝑥} 𝑁)) = (𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓} ↦ ({𝑥} 𝑁))
8786elrnmpt 5897 . . . . . . . . 9 (𝑖 ∈ V → (𝑖 ∈ ran (𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓} ↦ ({𝑥} 𝑁)) ↔ ∃𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓}𝑖 = ({𝑥} 𝑁)))
8887elv 3441 . . . . . . . 8 (𝑖 ∈ ran (𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓} ↦ ({𝑥} 𝑁)) ↔ ∃𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓}𝑖 = ({𝑥} 𝑁))
8985, 88bitr4di 289 . . . . . . 7 ((𝜑𝑓 ∈ (SubGrp‘𝑄)) → (𝑖𝑓𝑖 ∈ ran (𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓} ↦ ({𝑥} 𝑁))))
9089eqrdv 2729 . . . . . 6 ((𝜑𝑓 ∈ (SubGrp‘𝑄)) → 𝑓 = ran (𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓} ↦ ({𝑥} 𝑁)))
9141, 45, 90rspcedvd 3574 . . . . 5 ((𝜑𝑓 ∈ (SubGrp‘𝑄)) → ∃𝑆 𝑓 = ran (𝑥 ↦ ({𝑥} 𝑁)))
9219, 91impbida 800 . . . 4 (𝜑 → (∃𝑆 𝑓 = ran (𝑥 ↦ ({𝑥} 𝑁)) ↔ 𝑓 ∈ (SubGrp‘𝑄)))
9392abbidv 2797 . . 3 (𝜑 → {𝑓 ∣ ∃𝑆 𝑓 = ran (𝑥 ↦ ({𝑥} 𝑁))} = {𝑓𝑓 ∈ (SubGrp‘𝑄)})
9410rnmpt 5896 . . 3 ran 𝐸 = {𝑓 ∣ ∃𝑆 𝑓 = ran (𝑥 ↦ ({𝑥} 𝑁))}
95 abid1 2867 . . 3 (SubGrp‘𝑄) = {𝑓𝑓 ∈ (SubGrp‘𝑄)}
9693, 94, 953eqtr4g 2791 . 2 (𝜑 → ran 𝐸 = (SubGrp‘𝑄))
9796, 5eqtr4di 2784 1 (𝜑 → ran 𝐸 = 𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  {cab 2709  wrex 3056  {crab 3395  Vcvv 3436  wss 3897  {csn 4573  cmpt 5170  ran crn 5615  cfv 6481  (class class class)co 7346  [cec 8620   / cqs 8621  Basecbs 17120  lecple 17168   /s cqus 17409  toInccipo 18433  Grpcgrp 18846  SubGrpcsubg 19033  NrmSGrpcnsg 19034   ~QG cqg 19035  LSSumclsm 19546
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-tpos 8156  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-ec 8624  df-qs 8628  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-fz 13408  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-0g 17345  df-imas 17412  df-qus 17413  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-submnd 18692  df-grp 18849  df-minusg 18850  df-subg 19036  df-nsg 19037  df-eqg 19038  df-oppg 19258  df-lsm 19548
This theorem is referenced by:  nsgqusf1o  33381
  Copyright terms: Public domain W3C validator