Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nsgqusf1olem2 Structured version   Visualization version   GIF version

Theorem nsgqusf1olem2 32525
Description: Lemma for nsgqusf1o 32527. (Contributed by Thierry Arnoux, 4-Aug-2024.)
Hypotheses
Ref Expression
nsgqusf1o.b 𝐡 = (Baseβ€˜πΊ)
nsgqusf1o.s 𝑆 = {β„Ž ∈ (SubGrpβ€˜πΊ) ∣ 𝑁 βŠ† β„Ž}
nsgqusf1o.t 𝑇 = (SubGrpβ€˜π‘„)
nsgqusf1o.1 ≀ = (leβ€˜(toIncβ€˜π‘†))
nsgqusf1o.2 ≲ = (leβ€˜(toIncβ€˜π‘‡))
nsgqusf1o.q 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁))
nsgqusf1o.p βŠ• = (LSSumβ€˜πΊ)
nsgqusf1o.e 𝐸 = (β„Ž ∈ 𝑆 ↦ ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁)))
nsgqusf1o.f 𝐹 = (𝑓 ∈ 𝑇 ↦ {π‘Ž ∈ 𝐡 ∣ ({π‘Ž} βŠ• 𝑁) ∈ 𝑓})
nsgqusf1o.n (πœ‘ β†’ 𝑁 ∈ (NrmSGrpβ€˜πΊ))
Assertion
Ref Expression
nsgqusf1olem2 (πœ‘ β†’ ran 𝐸 = 𝑇)
Distinct variable groups:   βŠ• ,π‘Ž,𝑓,β„Ž,π‘₯   𝐡,π‘Ž,𝑓,β„Ž,π‘₯   𝐸,π‘Ž,𝑓,β„Ž,π‘₯   𝑓,𝐹,β„Ž,π‘₯   𝐺,π‘Ž,𝑓,β„Ž,π‘₯   𝑁,π‘Ž,𝑓,β„Ž,π‘₯   𝑄,π‘Ž,𝑓,β„Ž,π‘₯   𝑆,π‘Ž,𝑓,β„Ž,π‘₯   𝑇,π‘Ž,𝑓,β„Ž,π‘₯   πœ‘,π‘Ž,𝑓,β„Ž,π‘₯
Allowed substitution hints:   𝐹(π‘Ž)   ≀ (π‘₯,𝑓,β„Ž,π‘Ž)   ≲ (π‘₯,𝑓,β„Ž,π‘Ž)

Proof of Theorem nsgqusf1olem2
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 simpr 486 . . . . . . 7 (((πœ‘ ∧ β„Ž ∈ 𝑆) ∧ 𝑓 = ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁))) β†’ 𝑓 = ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁)))
2 nsgqusf1o.s . . . . . . . . . 10 𝑆 = {β„Ž ∈ (SubGrpβ€˜πΊ) ∣ 𝑁 βŠ† β„Ž}
32reqabi 3455 . . . . . . . . 9 (β„Ž ∈ 𝑆 ↔ (β„Ž ∈ (SubGrpβ€˜πΊ) ∧ 𝑁 βŠ† β„Ž))
4 nsgqusf1o.b . . . . . . . . . . . 12 𝐡 = (Baseβ€˜πΊ)
5 nsgqusf1o.t . . . . . . . . . . . 12 𝑇 = (SubGrpβ€˜π‘„)
6 nsgqusf1o.1 . . . . . . . . . . . 12 ≀ = (leβ€˜(toIncβ€˜π‘†))
7 nsgqusf1o.2 . . . . . . . . . . . 12 ≲ = (leβ€˜(toIncβ€˜π‘‡))
8 nsgqusf1o.q . . . . . . . . . . . 12 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁))
9 nsgqusf1o.p . . . . . . . . . . . 12 βŠ• = (LSSumβ€˜πΊ)
10 nsgqusf1o.e . . . . . . . . . . . 12 𝐸 = (β„Ž ∈ 𝑆 ↦ ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁)))
11 nsgqusf1o.f . . . . . . . . . . . 12 𝐹 = (𝑓 ∈ 𝑇 ↦ {π‘Ž ∈ 𝐡 ∣ ({π‘Ž} βŠ• 𝑁) ∈ 𝑓})
12 nsgqusf1o.n . . . . . . . . . . . 12 (πœ‘ β†’ 𝑁 ∈ (NrmSGrpβ€˜πΊ))
134, 2, 5, 6, 7, 8, 9, 10, 11, 12nsgqusf1olem1 32524 . . . . . . . . . . 11 (((πœ‘ ∧ β„Ž ∈ (SubGrpβ€˜πΊ)) ∧ 𝑁 βŠ† β„Ž) β†’ ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁)) ∈ 𝑇)
1413anasss 468 . . . . . . . . . 10 ((πœ‘ ∧ (β„Ž ∈ (SubGrpβ€˜πΊ) ∧ 𝑁 βŠ† β„Ž)) β†’ ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁)) ∈ 𝑇)
1514, 5eleqtrdi 2844 . . . . . . . . 9 ((πœ‘ ∧ (β„Ž ∈ (SubGrpβ€˜πΊ) ∧ 𝑁 βŠ† β„Ž)) β†’ ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁)) ∈ (SubGrpβ€˜π‘„))
163, 15sylan2b 595 . . . . . . . 8 ((πœ‘ ∧ β„Ž ∈ 𝑆) β†’ ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁)) ∈ (SubGrpβ€˜π‘„))
1716adantr 482 . . . . . . 7 (((πœ‘ ∧ β„Ž ∈ 𝑆) ∧ 𝑓 = ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁))) β†’ ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁)) ∈ (SubGrpβ€˜π‘„))
181, 17eqeltrd 2834 . . . . . 6 (((πœ‘ ∧ β„Ž ∈ 𝑆) ∧ 𝑓 = ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁))) β†’ 𝑓 ∈ (SubGrpβ€˜π‘„))
1918r19.29an 3159 . . . . 5 ((πœ‘ ∧ βˆƒβ„Ž ∈ 𝑆 𝑓 = ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁))) β†’ 𝑓 ∈ (SubGrpβ€˜π‘„))
20 sseq2 4009 . . . . . . . 8 (β„Ž = {π‘Ž ∈ 𝐡 ∣ ({π‘Ž} βŠ• 𝑁) ∈ 𝑓} β†’ (𝑁 βŠ† β„Ž ↔ 𝑁 βŠ† {π‘Ž ∈ 𝐡 ∣ ({π‘Ž} βŠ• 𝑁) ∈ 𝑓}))
2112adantr 482 . . . . . . . . 9 ((πœ‘ ∧ 𝑓 ∈ (SubGrpβ€˜π‘„)) β†’ 𝑁 ∈ (NrmSGrpβ€˜πΊ))
22 simpr 486 . . . . . . . . 9 ((πœ‘ ∧ 𝑓 ∈ (SubGrpβ€˜π‘„)) β†’ 𝑓 ∈ (SubGrpβ€˜π‘„))
234, 8, 9, 21, 22nsgmgclem 32522 . . . . . . . 8 ((πœ‘ ∧ 𝑓 ∈ (SubGrpβ€˜π‘„)) β†’ {π‘Ž ∈ 𝐡 ∣ ({π‘Ž} βŠ• 𝑁) ∈ 𝑓} ∈ (SubGrpβ€˜πΊ))
245eleq2i 2826 . . . . . . . . 9 (𝑓 ∈ 𝑇 ↔ 𝑓 ∈ (SubGrpβ€˜π‘„))
25 nsgsubg 19038 . . . . . . . . . . . . 13 (𝑁 ∈ (NrmSGrpβ€˜πΊ) β†’ 𝑁 ∈ (SubGrpβ€˜πΊ))
2612, 25syl 17 . . . . . . . . . . . 12 (πœ‘ β†’ 𝑁 ∈ (SubGrpβ€˜πΊ))
274subgss 19007 . . . . . . . . . . . 12 (𝑁 ∈ (SubGrpβ€˜πΊ) β†’ 𝑁 βŠ† 𝐡)
2826, 27syl 17 . . . . . . . . . . 11 (πœ‘ β†’ 𝑁 βŠ† 𝐡)
2928adantr 482 . . . . . . . . . 10 ((πœ‘ ∧ 𝑓 ∈ 𝑇) β†’ 𝑁 βŠ† 𝐡)
3026ad2antrr 725 . . . . . . . . . . . 12 (((πœ‘ ∧ 𝑓 ∈ 𝑇) ∧ π‘Ž ∈ 𝑁) β†’ 𝑁 ∈ (SubGrpβ€˜πΊ))
319grplsmid 32514 . . . . . . . . . . . 12 ((𝑁 ∈ (SubGrpβ€˜πΊ) ∧ π‘Ž ∈ 𝑁) β†’ ({π‘Ž} βŠ• 𝑁) = 𝑁)
3230, 31sylancom 589 . . . . . . . . . . 11 (((πœ‘ ∧ 𝑓 ∈ 𝑇) ∧ π‘Ž ∈ 𝑁) β†’ ({π‘Ž} βŠ• 𝑁) = 𝑁)
3324biimpi 215 . . . . . . . . . . . . 13 (𝑓 ∈ 𝑇 β†’ 𝑓 ∈ (SubGrpβ€˜π‘„))
348nsgqus0 32521 . . . . . . . . . . . . 13 ((𝑁 ∈ (NrmSGrpβ€˜πΊ) ∧ 𝑓 ∈ (SubGrpβ€˜π‘„)) β†’ 𝑁 ∈ 𝑓)
3512, 33, 34syl2an 597 . . . . . . . . . . . 12 ((πœ‘ ∧ 𝑓 ∈ 𝑇) β†’ 𝑁 ∈ 𝑓)
3635adantr 482 . . . . . . . . . . 11 (((πœ‘ ∧ 𝑓 ∈ 𝑇) ∧ π‘Ž ∈ 𝑁) β†’ 𝑁 ∈ 𝑓)
3732, 36eqeltrd 2834 . . . . . . . . . 10 (((πœ‘ ∧ 𝑓 ∈ 𝑇) ∧ π‘Ž ∈ 𝑁) β†’ ({π‘Ž} βŠ• 𝑁) ∈ 𝑓)
3829, 37ssrabdv 4072 . . . . . . . . 9 ((πœ‘ ∧ 𝑓 ∈ 𝑇) β†’ 𝑁 βŠ† {π‘Ž ∈ 𝐡 ∣ ({π‘Ž} βŠ• 𝑁) ∈ 𝑓})
3924, 38sylan2br 596 . . . . . . . 8 ((πœ‘ ∧ 𝑓 ∈ (SubGrpβ€˜π‘„)) β†’ 𝑁 βŠ† {π‘Ž ∈ 𝐡 ∣ ({π‘Ž} βŠ• 𝑁) ∈ 𝑓})
4020, 23, 39elrabd 3686 . . . . . . 7 ((πœ‘ ∧ 𝑓 ∈ (SubGrpβ€˜π‘„)) β†’ {π‘Ž ∈ 𝐡 ∣ ({π‘Ž} βŠ• 𝑁) ∈ 𝑓} ∈ {β„Ž ∈ (SubGrpβ€˜πΊ) ∣ 𝑁 βŠ† β„Ž})
4140, 2eleqtrrdi 2845 . . . . . 6 ((πœ‘ ∧ 𝑓 ∈ (SubGrpβ€˜π‘„)) β†’ {π‘Ž ∈ 𝐡 ∣ ({π‘Ž} βŠ• 𝑁) ∈ 𝑓} ∈ 𝑆)
42 mpteq1 5242 . . . . . . . . 9 (β„Ž = {π‘Ž ∈ 𝐡 ∣ ({π‘Ž} βŠ• 𝑁) ∈ 𝑓} β†’ (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁)) = (π‘₯ ∈ {π‘Ž ∈ 𝐡 ∣ ({π‘Ž} βŠ• 𝑁) ∈ 𝑓} ↦ ({π‘₯} βŠ• 𝑁)))
4342rneqd 5938 . . . . . . . 8 (β„Ž = {π‘Ž ∈ 𝐡 ∣ ({π‘Ž} βŠ• 𝑁) ∈ 𝑓} β†’ ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁)) = ran (π‘₯ ∈ {π‘Ž ∈ 𝐡 ∣ ({π‘Ž} βŠ• 𝑁) ∈ 𝑓} ↦ ({π‘₯} βŠ• 𝑁)))
4443eqeq2d 2744 . . . . . . 7 (β„Ž = {π‘Ž ∈ 𝐡 ∣ ({π‘Ž} βŠ• 𝑁) ∈ 𝑓} β†’ (𝑓 = ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁)) ↔ 𝑓 = ran (π‘₯ ∈ {π‘Ž ∈ 𝐡 ∣ ({π‘Ž} βŠ• 𝑁) ∈ 𝑓} ↦ ({π‘₯} βŠ• 𝑁))))
4544adantl 483 . . . . . 6 (((πœ‘ ∧ 𝑓 ∈ (SubGrpβ€˜π‘„)) ∧ β„Ž = {π‘Ž ∈ 𝐡 ∣ ({π‘Ž} βŠ• 𝑁) ∈ 𝑓}) β†’ (𝑓 = ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁)) ↔ 𝑓 = ran (π‘₯ ∈ {π‘Ž ∈ 𝐡 ∣ ({π‘Ž} βŠ• 𝑁) ∈ 𝑓} ↦ ({π‘₯} βŠ• 𝑁))))
46 eqid 2733 . . . . . . . . . . . . . . 15 (Baseβ€˜π‘„) = (Baseβ€˜π‘„)
4746subgss 19007 . . . . . . . . . . . . . 14 (𝑓 ∈ (SubGrpβ€˜π‘„) β†’ 𝑓 βŠ† (Baseβ€˜π‘„))
4847adantl 483 . . . . . . . . . . . . 13 ((πœ‘ ∧ 𝑓 ∈ (SubGrpβ€˜π‘„)) β†’ 𝑓 βŠ† (Baseβ€˜π‘„))
4948sselda 3983 . . . . . . . . . . . 12 (((πœ‘ ∧ 𝑓 ∈ (SubGrpβ€˜π‘„)) ∧ 𝑖 ∈ 𝑓) β†’ 𝑖 ∈ (Baseβ€˜π‘„))
508a1i 11 . . . . . . . . . . . . 13 (((πœ‘ ∧ 𝑓 ∈ (SubGrpβ€˜π‘„)) ∧ 𝑖 ∈ 𝑓) β†’ 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁)))
514a1i 11 . . . . . . . . . . . . 13 (((πœ‘ ∧ 𝑓 ∈ (SubGrpβ€˜π‘„)) ∧ 𝑖 ∈ 𝑓) β†’ 𝐡 = (Baseβ€˜πΊ))
52 ovexd 7444 . . . . . . . . . . . . 13 (((πœ‘ ∧ 𝑓 ∈ (SubGrpβ€˜π‘„)) ∧ 𝑖 ∈ 𝑓) β†’ (𝐺 ~QG 𝑁) ∈ V)
53 subgrcl 19011 . . . . . . . . . . . . . . 15 (𝑁 ∈ (SubGrpβ€˜πΊ) β†’ 𝐺 ∈ Grp)
5426, 53syl 17 . . . . . . . . . . . . . 14 (πœ‘ β†’ 𝐺 ∈ Grp)
5554ad2antrr 725 . . . . . . . . . . . . 13 (((πœ‘ ∧ 𝑓 ∈ (SubGrpβ€˜π‘„)) ∧ 𝑖 ∈ 𝑓) β†’ 𝐺 ∈ Grp)
5650, 51, 52, 55qusbas 17491 . . . . . . . . . . . 12 (((πœ‘ ∧ 𝑓 ∈ (SubGrpβ€˜π‘„)) ∧ 𝑖 ∈ 𝑓) β†’ (𝐡 / (𝐺 ~QG 𝑁)) = (Baseβ€˜π‘„))
5749, 56eleqtrrd 2837 . . . . . . . . . . 11 (((πœ‘ ∧ 𝑓 ∈ (SubGrpβ€˜π‘„)) ∧ 𝑖 ∈ 𝑓) β†’ 𝑖 ∈ (𝐡 / (𝐺 ~QG 𝑁)))
58 elqsi 8764 . . . . . . . . . . 11 (𝑖 ∈ (𝐡 / (𝐺 ~QG 𝑁)) β†’ βˆƒπ‘₯ ∈ 𝐡 𝑖 = [π‘₯](𝐺 ~QG 𝑁))
5957, 58syl 17 . . . . . . . . . 10 (((πœ‘ ∧ 𝑓 ∈ (SubGrpβ€˜π‘„)) ∧ 𝑖 ∈ 𝑓) β†’ βˆƒπ‘₯ ∈ 𝐡 𝑖 = [π‘₯](𝐺 ~QG 𝑁))
60 sneq 4639 . . . . . . . . . . . . . . . 16 (π‘Ž = π‘₯ β†’ {π‘Ž} = {π‘₯})
6160oveq1d 7424 . . . . . . . . . . . . . . 15 (π‘Ž = π‘₯ β†’ ({π‘Ž} βŠ• 𝑁) = ({π‘₯} βŠ• 𝑁))
6261eleq1d 2819 . . . . . . . . . . . . . 14 (π‘Ž = π‘₯ β†’ (({π‘Ž} βŠ• 𝑁) ∈ 𝑓 ↔ ({π‘₯} βŠ• 𝑁) ∈ 𝑓))
63 simplr 768 . . . . . . . . . . . . . 14 (((((πœ‘ ∧ 𝑓 ∈ (SubGrpβ€˜π‘„)) ∧ 𝑖 ∈ 𝑓) ∧ π‘₯ ∈ 𝐡) ∧ 𝑖 = [π‘₯](𝐺 ~QG 𝑁)) β†’ π‘₯ ∈ 𝐡)
64 simpr 486 . . . . . . . . . . . . . . . 16 (((((πœ‘ ∧ 𝑓 ∈ (SubGrpβ€˜π‘„)) ∧ 𝑖 ∈ 𝑓) ∧ π‘₯ ∈ 𝐡) ∧ 𝑖 = [π‘₯](𝐺 ~QG 𝑁)) β†’ 𝑖 = [π‘₯](𝐺 ~QG 𝑁))
6526ad4antr 731 . . . . . . . . . . . . . . . . 17 (((((πœ‘ ∧ 𝑓 ∈ (SubGrpβ€˜π‘„)) ∧ 𝑖 ∈ 𝑓) ∧ π‘₯ ∈ 𝐡) ∧ 𝑖 = [π‘₯](𝐺 ~QG 𝑁)) β†’ 𝑁 ∈ (SubGrpβ€˜πΊ))
664, 9, 65, 63quslsm 32516 . . . . . . . . . . . . . . . 16 (((((πœ‘ ∧ 𝑓 ∈ (SubGrpβ€˜π‘„)) ∧ 𝑖 ∈ 𝑓) ∧ π‘₯ ∈ 𝐡) ∧ 𝑖 = [π‘₯](𝐺 ~QG 𝑁)) β†’ [π‘₯](𝐺 ~QG 𝑁) = ({π‘₯} βŠ• 𝑁))
6764, 66eqtrd 2773 . . . . . . . . . . . . . . 15 (((((πœ‘ ∧ 𝑓 ∈ (SubGrpβ€˜π‘„)) ∧ 𝑖 ∈ 𝑓) ∧ π‘₯ ∈ 𝐡) ∧ 𝑖 = [π‘₯](𝐺 ~QG 𝑁)) β†’ 𝑖 = ({π‘₯} βŠ• 𝑁))
68 simpllr 775 . . . . . . . . . . . . . . 15 (((((πœ‘ ∧ 𝑓 ∈ (SubGrpβ€˜π‘„)) ∧ 𝑖 ∈ 𝑓) ∧ π‘₯ ∈ 𝐡) ∧ 𝑖 = [π‘₯](𝐺 ~QG 𝑁)) β†’ 𝑖 ∈ 𝑓)
6967, 68eqeltrrd 2835 . . . . . . . . . . . . . 14 (((((πœ‘ ∧ 𝑓 ∈ (SubGrpβ€˜π‘„)) ∧ 𝑖 ∈ 𝑓) ∧ π‘₯ ∈ 𝐡) ∧ 𝑖 = [π‘₯](𝐺 ~QG 𝑁)) β†’ ({π‘₯} βŠ• 𝑁) ∈ 𝑓)
7062, 63, 69elrabd 3686 . . . . . . . . . . . . 13 (((((πœ‘ ∧ 𝑓 ∈ (SubGrpβ€˜π‘„)) ∧ 𝑖 ∈ 𝑓) ∧ π‘₯ ∈ 𝐡) ∧ 𝑖 = [π‘₯](𝐺 ~QG 𝑁)) β†’ π‘₯ ∈ {π‘Ž ∈ 𝐡 ∣ ({π‘Ž} βŠ• 𝑁) ∈ 𝑓})
7170, 67jca 513 . . . . . . . . . . . 12 (((((πœ‘ ∧ 𝑓 ∈ (SubGrpβ€˜π‘„)) ∧ 𝑖 ∈ 𝑓) ∧ π‘₯ ∈ 𝐡) ∧ 𝑖 = [π‘₯](𝐺 ~QG 𝑁)) β†’ (π‘₯ ∈ {π‘Ž ∈ 𝐡 ∣ ({π‘Ž} βŠ• 𝑁) ∈ 𝑓} ∧ 𝑖 = ({π‘₯} βŠ• 𝑁)))
7271expl 459 . . . . . . . . . . 11 (((πœ‘ ∧ 𝑓 ∈ (SubGrpβ€˜π‘„)) ∧ 𝑖 ∈ 𝑓) β†’ ((π‘₯ ∈ 𝐡 ∧ 𝑖 = [π‘₯](𝐺 ~QG 𝑁)) β†’ (π‘₯ ∈ {π‘Ž ∈ 𝐡 ∣ ({π‘Ž} βŠ• 𝑁) ∈ 𝑓} ∧ 𝑖 = ({π‘₯} βŠ• 𝑁))))
7372reximdv2 3165 . . . . . . . . . 10 (((πœ‘ ∧ 𝑓 ∈ (SubGrpβ€˜π‘„)) ∧ 𝑖 ∈ 𝑓) β†’ (βˆƒπ‘₯ ∈ 𝐡 𝑖 = [π‘₯](𝐺 ~QG 𝑁) β†’ βˆƒπ‘₯ ∈ {π‘Ž ∈ 𝐡 ∣ ({π‘Ž} βŠ• 𝑁) ∈ 𝑓}𝑖 = ({π‘₯} βŠ• 𝑁)))
7459, 73mpd 15 . . . . . . . . 9 (((πœ‘ ∧ 𝑓 ∈ (SubGrpβ€˜π‘„)) ∧ 𝑖 ∈ 𝑓) β†’ βˆƒπ‘₯ ∈ {π‘Ž ∈ 𝐡 ∣ ({π‘Ž} βŠ• 𝑁) ∈ 𝑓}𝑖 = ({π‘₯} βŠ• 𝑁))
75 simplr 768 . . . . . . . . . . . 12 ((((πœ‘ ∧ 𝑓 ∈ (SubGrpβ€˜π‘„)) ∧ π‘₯ ∈ {π‘Ž ∈ 𝐡 ∣ ({π‘Ž} βŠ• 𝑁) ∈ 𝑓}) ∧ 𝑖 = ({π‘₯} βŠ• 𝑁)) β†’ π‘₯ ∈ {π‘Ž ∈ 𝐡 ∣ ({π‘Ž} βŠ• 𝑁) ∈ 𝑓})
7662elrab 3684 . . . . . . . . . . . 12 (π‘₯ ∈ {π‘Ž ∈ 𝐡 ∣ ({π‘Ž} βŠ• 𝑁) ∈ 𝑓} ↔ (π‘₯ ∈ 𝐡 ∧ ({π‘₯} βŠ• 𝑁) ∈ 𝑓))
7775, 76sylib 217 . . . . . . . . . . 11 ((((πœ‘ ∧ 𝑓 ∈ (SubGrpβ€˜π‘„)) ∧ π‘₯ ∈ {π‘Ž ∈ 𝐡 ∣ ({π‘Ž} βŠ• 𝑁) ∈ 𝑓}) ∧ 𝑖 = ({π‘₯} βŠ• 𝑁)) β†’ (π‘₯ ∈ 𝐡 ∧ ({π‘₯} βŠ• 𝑁) ∈ 𝑓))
78 simpllr 775 . . . . . . . . . . . . . 14 (((((πœ‘ ∧ 𝑓 ∈ (SubGrpβ€˜π‘„)) ∧ 𝑖 = ({π‘₯} βŠ• 𝑁)) ∧ π‘₯ ∈ 𝐡) ∧ ({π‘₯} βŠ• 𝑁) ∈ 𝑓) β†’ 𝑖 = ({π‘₯} βŠ• 𝑁))
79 simpr 486 . . . . . . . . . . . . . 14 (((((πœ‘ ∧ 𝑓 ∈ (SubGrpβ€˜π‘„)) ∧ 𝑖 = ({π‘₯} βŠ• 𝑁)) ∧ π‘₯ ∈ 𝐡) ∧ ({π‘₯} βŠ• 𝑁) ∈ 𝑓) β†’ ({π‘₯} βŠ• 𝑁) ∈ 𝑓)
8078, 79eqeltrd 2834 . . . . . . . . . . . . 13 (((((πœ‘ ∧ 𝑓 ∈ (SubGrpβ€˜π‘„)) ∧ 𝑖 = ({π‘₯} βŠ• 𝑁)) ∧ π‘₯ ∈ 𝐡) ∧ ({π‘₯} βŠ• 𝑁) ∈ 𝑓) β†’ 𝑖 ∈ 𝑓)
8180anasss 468 . . . . . . . . . . . 12 ((((πœ‘ ∧ 𝑓 ∈ (SubGrpβ€˜π‘„)) ∧ 𝑖 = ({π‘₯} βŠ• 𝑁)) ∧ (π‘₯ ∈ 𝐡 ∧ ({π‘₯} βŠ• 𝑁) ∈ 𝑓)) β†’ 𝑖 ∈ 𝑓)
8281adantllr 718 . . . . . . . . . . 11 (((((πœ‘ ∧ 𝑓 ∈ (SubGrpβ€˜π‘„)) ∧ π‘₯ ∈ {π‘Ž ∈ 𝐡 ∣ ({π‘Ž} βŠ• 𝑁) ∈ 𝑓}) ∧ 𝑖 = ({π‘₯} βŠ• 𝑁)) ∧ (π‘₯ ∈ 𝐡 ∧ ({π‘₯} βŠ• 𝑁) ∈ 𝑓)) β†’ 𝑖 ∈ 𝑓)
8377, 82mpdan 686 . . . . . . . . . 10 ((((πœ‘ ∧ 𝑓 ∈ (SubGrpβ€˜π‘„)) ∧ π‘₯ ∈ {π‘Ž ∈ 𝐡 ∣ ({π‘Ž} βŠ• 𝑁) ∈ 𝑓}) ∧ 𝑖 = ({π‘₯} βŠ• 𝑁)) β†’ 𝑖 ∈ 𝑓)
8483r19.29an 3159 . . . . . . . . 9 (((πœ‘ ∧ 𝑓 ∈ (SubGrpβ€˜π‘„)) ∧ βˆƒπ‘₯ ∈ {π‘Ž ∈ 𝐡 ∣ ({π‘Ž} βŠ• 𝑁) ∈ 𝑓}𝑖 = ({π‘₯} βŠ• 𝑁)) β†’ 𝑖 ∈ 𝑓)
8574, 84impbida 800 . . . . . . . 8 ((πœ‘ ∧ 𝑓 ∈ (SubGrpβ€˜π‘„)) β†’ (𝑖 ∈ 𝑓 ↔ βˆƒπ‘₯ ∈ {π‘Ž ∈ 𝐡 ∣ ({π‘Ž} βŠ• 𝑁) ∈ 𝑓}𝑖 = ({π‘₯} βŠ• 𝑁)))
86 eqid 2733 . . . . . . . . . 10 (π‘₯ ∈ {π‘Ž ∈ 𝐡 ∣ ({π‘Ž} βŠ• 𝑁) ∈ 𝑓} ↦ ({π‘₯} βŠ• 𝑁)) = (π‘₯ ∈ {π‘Ž ∈ 𝐡 ∣ ({π‘Ž} βŠ• 𝑁) ∈ 𝑓} ↦ ({π‘₯} βŠ• 𝑁))
8786elrnmpt 5956 . . . . . . . . 9 (𝑖 ∈ V β†’ (𝑖 ∈ ran (π‘₯ ∈ {π‘Ž ∈ 𝐡 ∣ ({π‘Ž} βŠ• 𝑁) ∈ 𝑓} ↦ ({π‘₯} βŠ• 𝑁)) ↔ βˆƒπ‘₯ ∈ {π‘Ž ∈ 𝐡 ∣ ({π‘Ž} βŠ• 𝑁) ∈ 𝑓}𝑖 = ({π‘₯} βŠ• 𝑁)))
8887elv 3481 . . . . . . . 8 (𝑖 ∈ ran (π‘₯ ∈ {π‘Ž ∈ 𝐡 ∣ ({π‘Ž} βŠ• 𝑁) ∈ 𝑓} ↦ ({π‘₯} βŠ• 𝑁)) ↔ βˆƒπ‘₯ ∈ {π‘Ž ∈ 𝐡 ∣ ({π‘Ž} βŠ• 𝑁) ∈ 𝑓}𝑖 = ({π‘₯} βŠ• 𝑁))
8985, 88bitr4di 289 . . . . . . 7 ((πœ‘ ∧ 𝑓 ∈ (SubGrpβ€˜π‘„)) β†’ (𝑖 ∈ 𝑓 ↔ 𝑖 ∈ ran (π‘₯ ∈ {π‘Ž ∈ 𝐡 ∣ ({π‘Ž} βŠ• 𝑁) ∈ 𝑓} ↦ ({π‘₯} βŠ• 𝑁))))
9089eqrdv 2731 . . . . . 6 ((πœ‘ ∧ 𝑓 ∈ (SubGrpβ€˜π‘„)) β†’ 𝑓 = ran (π‘₯ ∈ {π‘Ž ∈ 𝐡 ∣ ({π‘Ž} βŠ• 𝑁) ∈ 𝑓} ↦ ({π‘₯} βŠ• 𝑁)))
9141, 45, 90rspcedvd 3615 . . . . 5 ((πœ‘ ∧ 𝑓 ∈ (SubGrpβ€˜π‘„)) β†’ βˆƒβ„Ž ∈ 𝑆 𝑓 = ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁)))
9219, 91impbida 800 . . . 4 (πœ‘ β†’ (βˆƒβ„Ž ∈ 𝑆 𝑓 = ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁)) ↔ 𝑓 ∈ (SubGrpβ€˜π‘„)))
9392abbidv 2802 . . 3 (πœ‘ β†’ {𝑓 ∣ βˆƒβ„Ž ∈ 𝑆 𝑓 = ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁))} = {𝑓 ∣ 𝑓 ∈ (SubGrpβ€˜π‘„)})
9410rnmpt 5955 . . 3 ran 𝐸 = {𝑓 ∣ βˆƒβ„Ž ∈ 𝑆 𝑓 = ran (π‘₯ ∈ β„Ž ↦ ({π‘₯} βŠ• 𝑁))}
95 abid1 2871 . . 3 (SubGrpβ€˜π‘„) = {𝑓 ∣ 𝑓 ∈ (SubGrpβ€˜π‘„)}
9693, 94, 953eqtr4g 2798 . 2 (πœ‘ β†’ ran 𝐸 = (SubGrpβ€˜π‘„))
9796, 5eqtr4di 2791 1 (πœ‘ β†’ ran 𝐸 = 𝑇)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 397   = wceq 1542   ∈ wcel 2107  {cab 2710  βˆƒwrex 3071  {crab 3433  Vcvv 3475   βŠ† wss 3949  {csn 4629   ↦ cmpt 5232  ran crn 5678  β€˜cfv 6544  (class class class)co 7409  [cec 8701   / cqs 8702  Basecbs 17144  lecple 17204   /s cqus 17451  toInccipo 18480  Grpcgrp 18819  SubGrpcsubg 19000  NrmSGrpcnsg 19001   ~QG cqg 19002  LSSumclsm 19502
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-tpos 8211  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-er 8703  df-ec 8705  df-qs 8709  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-sup 9437  df-inf 9438  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-nn 12213  df-2 12275  df-3 12276  df-4 12277  df-5 12278  df-6 12279  df-7 12280  df-8 12281  df-9 12282  df-n0 12473  df-z 12559  df-dec 12678  df-uz 12823  df-fz 13485  df-struct 17080  df-sets 17097  df-slot 17115  df-ndx 17127  df-base 17145  df-ress 17174  df-plusg 17210  df-mulr 17211  df-sca 17213  df-vsca 17214  df-ip 17215  df-tset 17216  df-ple 17217  df-ds 17219  df-0g 17387  df-imas 17454  df-qus 17455  df-mgm 18561  df-sgrp 18610  df-mnd 18626  df-submnd 18672  df-grp 18822  df-minusg 18823  df-subg 19003  df-nsg 19004  df-eqg 19005  df-oppg 19210  df-lsm 19504
This theorem is referenced by:  nsgqusf1o  32527
  Copyright terms: Public domain W3C validator