Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nsgqusf1olem2 Structured version   Visualization version   GIF version

Theorem nsgqusf1olem2 31501
Description: Lemma for nsgqusf1o 31503. (Contributed by Thierry Arnoux, 4-Aug-2024.)
Hypotheses
Ref Expression
nsgqusf1o.b 𝐵 = (Base‘𝐺)
nsgqusf1o.s 𝑆 = { ∈ (SubGrp‘𝐺) ∣ 𝑁}
nsgqusf1o.t 𝑇 = (SubGrp‘𝑄)
nsgqusf1o.1 = (le‘(toInc‘𝑆))
nsgqusf1o.2 = (le‘(toInc‘𝑇))
nsgqusf1o.q 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁))
nsgqusf1o.p = (LSSum‘𝐺)
nsgqusf1o.e 𝐸 = (𝑆 ↦ ran (𝑥 ↦ ({𝑥} 𝑁)))
nsgqusf1o.f 𝐹 = (𝑓𝑇 ↦ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓})
nsgqusf1o.n (𝜑𝑁 ∈ (NrmSGrp‘𝐺))
Assertion
Ref Expression
nsgqusf1olem2 (𝜑 → ran 𝐸 = 𝑇)
Distinct variable groups:   ,𝑎,𝑓,,𝑥   𝐵,𝑎,𝑓,,𝑥   𝐸,𝑎,𝑓,,𝑥   𝑓,𝐹,,𝑥   𝐺,𝑎,𝑓,,𝑥   𝑁,𝑎,𝑓,,𝑥   𝑄,𝑎,𝑓,,𝑥   𝑆,𝑎,𝑓,,𝑥   𝑇,𝑎,𝑓,,𝑥   𝜑,𝑎,𝑓,,𝑥
Allowed substitution hints:   𝐹(𝑎)   (𝑥,𝑓,,𝑎)   (𝑥,𝑓,,𝑎)

Proof of Theorem nsgqusf1olem2
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . . . . 7 (((𝜑𝑆) ∧ 𝑓 = ran (𝑥 ↦ ({𝑥} 𝑁))) → 𝑓 = ran (𝑥 ↦ ({𝑥} 𝑁)))
2 nsgqusf1o.s . . . . . . . . . 10 𝑆 = { ∈ (SubGrp‘𝐺) ∣ 𝑁}
32rabeq2i 3412 . . . . . . . . 9 (𝑆 ↔ ( ∈ (SubGrp‘𝐺) ∧ 𝑁))
4 nsgqusf1o.b . . . . . . . . . . . 12 𝐵 = (Base‘𝐺)
5 nsgqusf1o.t . . . . . . . . . . . 12 𝑇 = (SubGrp‘𝑄)
6 nsgqusf1o.1 . . . . . . . . . . . 12 = (le‘(toInc‘𝑆))
7 nsgqusf1o.2 . . . . . . . . . . . 12 = (le‘(toInc‘𝑇))
8 nsgqusf1o.q . . . . . . . . . . . 12 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁))
9 nsgqusf1o.p . . . . . . . . . . . 12 = (LSSum‘𝐺)
10 nsgqusf1o.e . . . . . . . . . . . 12 𝐸 = (𝑆 ↦ ran (𝑥 ↦ ({𝑥} 𝑁)))
11 nsgqusf1o.f . . . . . . . . . . . 12 𝐹 = (𝑓𝑇 ↦ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓})
12 nsgqusf1o.n . . . . . . . . . . . 12 (𝜑𝑁 ∈ (NrmSGrp‘𝐺))
134, 2, 5, 6, 7, 8, 9, 10, 11, 12nsgqusf1olem1 31500 . . . . . . . . . . 11 (((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) → ran (𝑥 ↦ ({𝑥} 𝑁)) ∈ 𝑇)
1413anasss 466 . . . . . . . . . 10 ((𝜑 ∧ ( ∈ (SubGrp‘𝐺) ∧ 𝑁)) → ran (𝑥 ↦ ({𝑥} 𝑁)) ∈ 𝑇)
1514, 5eleqtrdi 2849 . . . . . . . . 9 ((𝜑 ∧ ( ∈ (SubGrp‘𝐺) ∧ 𝑁)) → ran (𝑥 ↦ ({𝑥} 𝑁)) ∈ (SubGrp‘𝑄))
163, 15sylan2b 593 . . . . . . . 8 ((𝜑𝑆) → ran (𝑥 ↦ ({𝑥} 𝑁)) ∈ (SubGrp‘𝑄))
1716adantr 480 . . . . . . 7 (((𝜑𝑆) ∧ 𝑓 = ran (𝑥 ↦ ({𝑥} 𝑁))) → ran (𝑥 ↦ ({𝑥} 𝑁)) ∈ (SubGrp‘𝑄))
181, 17eqeltrd 2839 . . . . . 6 (((𝜑𝑆) ∧ 𝑓 = ran (𝑥 ↦ ({𝑥} 𝑁))) → 𝑓 ∈ (SubGrp‘𝑄))
1918r19.29an 3216 . . . . 5 ((𝜑 ∧ ∃𝑆 𝑓 = ran (𝑥 ↦ ({𝑥} 𝑁))) → 𝑓 ∈ (SubGrp‘𝑄))
20 sseq2 3943 . . . . . . . 8 ( = {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓} → (𝑁𝑁 ⊆ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓}))
2112adantr 480 . . . . . . . . 9 ((𝜑𝑓 ∈ (SubGrp‘𝑄)) → 𝑁 ∈ (NrmSGrp‘𝐺))
22 simpr 484 . . . . . . . . 9 ((𝜑𝑓 ∈ (SubGrp‘𝑄)) → 𝑓 ∈ (SubGrp‘𝑄))
234, 8, 9, 21, 22nsgmgclem 31498 . . . . . . . 8 ((𝜑𝑓 ∈ (SubGrp‘𝑄)) → {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓} ∈ (SubGrp‘𝐺))
245eleq2i 2830 . . . . . . . . 9 (𝑓𝑇𝑓 ∈ (SubGrp‘𝑄))
25 nsgsubg 18701 . . . . . . . . . . . . 13 (𝑁 ∈ (NrmSGrp‘𝐺) → 𝑁 ∈ (SubGrp‘𝐺))
2612, 25syl 17 . . . . . . . . . . . 12 (𝜑𝑁 ∈ (SubGrp‘𝐺))
274subgss 18671 . . . . . . . . . . . 12 (𝑁 ∈ (SubGrp‘𝐺) → 𝑁𝐵)
2826, 27syl 17 . . . . . . . . . . 11 (𝜑𝑁𝐵)
2928adantr 480 . . . . . . . . . 10 ((𝜑𝑓𝑇) → 𝑁𝐵)
3026ad2antrr 722 . . . . . . . . . . . 12 (((𝜑𝑓𝑇) ∧ 𝑎𝑁) → 𝑁 ∈ (SubGrp‘𝐺))
319grplsmid 31494 . . . . . . . . . . . 12 ((𝑁 ∈ (SubGrp‘𝐺) ∧ 𝑎𝑁) → ({𝑎} 𝑁) = 𝑁)
3230, 31sylancom 587 . . . . . . . . . . 11 (((𝜑𝑓𝑇) ∧ 𝑎𝑁) → ({𝑎} 𝑁) = 𝑁)
3324biimpi 215 . . . . . . . . . . . . 13 (𝑓𝑇𝑓 ∈ (SubGrp‘𝑄))
348nsgqus0 31497 . . . . . . . . . . . . 13 ((𝑁 ∈ (NrmSGrp‘𝐺) ∧ 𝑓 ∈ (SubGrp‘𝑄)) → 𝑁𝑓)
3512, 33, 34syl2an 595 . . . . . . . . . . . 12 ((𝜑𝑓𝑇) → 𝑁𝑓)
3635adantr 480 . . . . . . . . . . 11 (((𝜑𝑓𝑇) ∧ 𝑎𝑁) → 𝑁𝑓)
3732, 36eqeltrd 2839 . . . . . . . . . 10 (((𝜑𝑓𝑇) ∧ 𝑎𝑁) → ({𝑎} 𝑁) ∈ 𝑓)
3829, 37ssrabdv 4003 . . . . . . . . 9 ((𝜑𝑓𝑇) → 𝑁 ⊆ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓})
3924, 38sylan2br 594 . . . . . . . 8 ((𝜑𝑓 ∈ (SubGrp‘𝑄)) → 𝑁 ⊆ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓})
4020, 23, 39elrabd 3619 . . . . . . 7 ((𝜑𝑓 ∈ (SubGrp‘𝑄)) → {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓} ∈ { ∈ (SubGrp‘𝐺) ∣ 𝑁})
4140, 2eleqtrrdi 2850 . . . . . 6 ((𝜑𝑓 ∈ (SubGrp‘𝑄)) → {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓} ∈ 𝑆)
42 mpteq1 5163 . . . . . . . . 9 ( = {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓} → (𝑥 ↦ ({𝑥} 𝑁)) = (𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓} ↦ ({𝑥} 𝑁)))
4342rneqd 5836 . . . . . . . 8 ( = {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓} → ran (𝑥 ↦ ({𝑥} 𝑁)) = ran (𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓} ↦ ({𝑥} 𝑁)))
4443eqeq2d 2749 . . . . . . 7 ( = {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓} → (𝑓 = ran (𝑥 ↦ ({𝑥} 𝑁)) ↔ 𝑓 = ran (𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓} ↦ ({𝑥} 𝑁))))
4544adantl 481 . . . . . 6 (((𝜑𝑓 ∈ (SubGrp‘𝑄)) ∧ = {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓}) → (𝑓 = ran (𝑥 ↦ ({𝑥} 𝑁)) ↔ 𝑓 = ran (𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓} ↦ ({𝑥} 𝑁))))
46 eqid 2738 . . . . . . . . . . . . . . 15 (Base‘𝑄) = (Base‘𝑄)
4746subgss 18671 . . . . . . . . . . . . . 14 (𝑓 ∈ (SubGrp‘𝑄) → 𝑓 ⊆ (Base‘𝑄))
4847adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑓 ∈ (SubGrp‘𝑄)) → 𝑓 ⊆ (Base‘𝑄))
4948sselda 3917 . . . . . . . . . . . 12 (((𝜑𝑓 ∈ (SubGrp‘𝑄)) ∧ 𝑖𝑓) → 𝑖 ∈ (Base‘𝑄))
508a1i 11 . . . . . . . . . . . . 13 (((𝜑𝑓 ∈ (SubGrp‘𝑄)) ∧ 𝑖𝑓) → 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁)))
514a1i 11 . . . . . . . . . . . . 13 (((𝜑𝑓 ∈ (SubGrp‘𝑄)) ∧ 𝑖𝑓) → 𝐵 = (Base‘𝐺))
52 ovexd 7290 . . . . . . . . . . . . 13 (((𝜑𝑓 ∈ (SubGrp‘𝑄)) ∧ 𝑖𝑓) → (𝐺 ~QG 𝑁) ∈ V)
53 subgrcl 18675 . . . . . . . . . . . . . . 15 (𝑁 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
5426, 53syl 17 . . . . . . . . . . . . . 14 (𝜑𝐺 ∈ Grp)
5554ad2antrr 722 . . . . . . . . . . . . 13 (((𝜑𝑓 ∈ (SubGrp‘𝑄)) ∧ 𝑖𝑓) → 𝐺 ∈ Grp)
5650, 51, 52, 55qusbas 17173 . . . . . . . . . . . 12 (((𝜑𝑓 ∈ (SubGrp‘𝑄)) ∧ 𝑖𝑓) → (𝐵 / (𝐺 ~QG 𝑁)) = (Base‘𝑄))
5749, 56eleqtrrd 2842 . . . . . . . . . . 11 (((𝜑𝑓 ∈ (SubGrp‘𝑄)) ∧ 𝑖𝑓) → 𝑖 ∈ (𝐵 / (𝐺 ~QG 𝑁)))
58 elqsi 8517 . . . . . . . . . . 11 (𝑖 ∈ (𝐵 / (𝐺 ~QG 𝑁)) → ∃𝑥𝐵 𝑖 = [𝑥](𝐺 ~QG 𝑁))
5957, 58syl 17 . . . . . . . . . 10 (((𝜑𝑓 ∈ (SubGrp‘𝑄)) ∧ 𝑖𝑓) → ∃𝑥𝐵 𝑖 = [𝑥](𝐺 ~QG 𝑁))
60 sneq 4568 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑥 → {𝑎} = {𝑥})
6160oveq1d 7270 . . . . . . . . . . . . . . 15 (𝑎 = 𝑥 → ({𝑎} 𝑁) = ({𝑥} 𝑁))
6261eleq1d 2823 . . . . . . . . . . . . . 14 (𝑎 = 𝑥 → (({𝑎} 𝑁) ∈ 𝑓 ↔ ({𝑥} 𝑁) ∈ 𝑓))
63 simplr 765 . . . . . . . . . . . . . 14 (((((𝜑𝑓 ∈ (SubGrp‘𝑄)) ∧ 𝑖𝑓) ∧ 𝑥𝐵) ∧ 𝑖 = [𝑥](𝐺 ~QG 𝑁)) → 𝑥𝐵)
64 simpr 484 . . . . . . . . . . . . . . . 16 (((((𝜑𝑓 ∈ (SubGrp‘𝑄)) ∧ 𝑖𝑓) ∧ 𝑥𝐵) ∧ 𝑖 = [𝑥](𝐺 ~QG 𝑁)) → 𝑖 = [𝑥](𝐺 ~QG 𝑁))
6526ad4antr 728 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑓 ∈ (SubGrp‘𝑄)) ∧ 𝑖𝑓) ∧ 𝑥𝐵) ∧ 𝑖 = [𝑥](𝐺 ~QG 𝑁)) → 𝑁 ∈ (SubGrp‘𝐺))
664, 9, 65, 63quslsm 31495 . . . . . . . . . . . . . . . 16 (((((𝜑𝑓 ∈ (SubGrp‘𝑄)) ∧ 𝑖𝑓) ∧ 𝑥𝐵) ∧ 𝑖 = [𝑥](𝐺 ~QG 𝑁)) → [𝑥](𝐺 ~QG 𝑁) = ({𝑥} 𝑁))
6764, 66eqtrd 2778 . . . . . . . . . . . . . . 15 (((((𝜑𝑓 ∈ (SubGrp‘𝑄)) ∧ 𝑖𝑓) ∧ 𝑥𝐵) ∧ 𝑖 = [𝑥](𝐺 ~QG 𝑁)) → 𝑖 = ({𝑥} 𝑁))
68 simpllr 772 . . . . . . . . . . . . . . 15 (((((𝜑𝑓 ∈ (SubGrp‘𝑄)) ∧ 𝑖𝑓) ∧ 𝑥𝐵) ∧ 𝑖 = [𝑥](𝐺 ~QG 𝑁)) → 𝑖𝑓)
6967, 68eqeltrrd 2840 . . . . . . . . . . . . . 14 (((((𝜑𝑓 ∈ (SubGrp‘𝑄)) ∧ 𝑖𝑓) ∧ 𝑥𝐵) ∧ 𝑖 = [𝑥](𝐺 ~QG 𝑁)) → ({𝑥} 𝑁) ∈ 𝑓)
7062, 63, 69elrabd 3619 . . . . . . . . . . . . 13 (((((𝜑𝑓 ∈ (SubGrp‘𝑄)) ∧ 𝑖𝑓) ∧ 𝑥𝐵) ∧ 𝑖 = [𝑥](𝐺 ~QG 𝑁)) → 𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓})
7170, 67jca 511 . . . . . . . . . . . 12 (((((𝜑𝑓 ∈ (SubGrp‘𝑄)) ∧ 𝑖𝑓) ∧ 𝑥𝐵) ∧ 𝑖 = [𝑥](𝐺 ~QG 𝑁)) → (𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓} ∧ 𝑖 = ({𝑥} 𝑁)))
7271expl 457 . . . . . . . . . . 11 (((𝜑𝑓 ∈ (SubGrp‘𝑄)) ∧ 𝑖𝑓) → ((𝑥𝐵𝑖 = [𝑥](𝐺 ~QG 𝑁)) → (𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓} ∧ 𝑖 = ({𝑥} 𝑁))))
7372reximdv2 3198 . . . . . . . . . 10 (((𝜑𝑓 ∈ (SubGrp‘𝑄)) ∧ 𝑖𝑓) → (∃𝑥𝐵 𝑖 = [𝑥](𝐺 ~QG 𝑁) → ∃𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓}𝑖 = ({𝑥} 𝑁)))
7459, 73mpd 15 . . . . . . . . 9 (((𝜑𝑓 ∈ (SubGrp‘𝑄)) ∧ 𝑖𝑓) → ∃𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓}𝑖 = ({𝑥} 𝑁))
75 simplr 765 . . . . . . . . . . . 12 ((((𝜑𝑓 ∈ (SubGrp‘𝑄)) ∧ 𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓}) ∧ 𝑖 = ({𝑥} 𝑁)) → 𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓})
7662elrab 3617 . . . . . . . . . . . 12 (𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓} ↔ (𝑥𝐵 ∧ ({𝑥} 𝑁) ∈ 𝑓))
7775, 76sylib 217 . . . . . . . . . . 11 ((((𝜑𝑓 ∈ (SubGrp‘𝑄)) ∧ 𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓}) ∧ 𝑖 = ({𝑥} 𝑁)) → (𝑥𝐵 ∧ ({𝑥} 𝑁) ∈ 𝑓))
78 simpllr 772 . . . . . . . . . . . . . 14 (((((𝜑𝑓 ∈ (SubGrp‘𝑄)) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑥𝐵) ∧ ({𝑥} 𝑁) ∈ 𝑓) → 𝑖 = ({𝑥} 𝑁))
79 simpr 484 . . . . . . . . . . . . . 14 (((((𝜑𝑓 ∈ (SubGrp‘𝑄)) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑥𝐵) ∧ ({𝑥} 𝑁) ∈ 𝑓) → ({𝑥} 𝑁) ∈ 𝑓)
8078, 79eqeltrd 2839 . . . . . . . . . . . . 13 (((((𝜑𝑓 ∈ (SubGrp‘𝑄)) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ 𝑥𝐵) ∧ ({𝑥} 𝑁) ∈ 𝑓) → 𝑖𝑓)
8180anasss 466 . . . . . . . . . . . 12 ((((𝜑𝑓 ∈ (SubGrp‘𝑄)) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ (𝑥𝐵 ∧ ({𝑥} 𝑁) ∈ 𝑓)) → 𝑖𝑓)
8281adantllr 715 . . . . . . . . . . 11 (((((𝜑𝑓 ∈ (SubGrp‘𝑄)) ∧ 𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓}) ∧ 𝑖 = ({𝑥} 𝑁)) ∧ (𝑥𝐵 ∧ ({𝑥} 𝑁) ∈ 𝑓)) → 𝑖𝑓)
8377, 82mpdan 683 . . . . . . . . . 10 ((((𝜑𝑓 ∈ (SubGrp‘𝑄)) ∧ 𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓}) ∧ 𝑖 = ({𝑥} 𝑁)) → 𝑖𝑓)
8483r19.29an 3216 . . . . . . . . 9 (((𝜑𝑓 ∈ (SubGrp‘𝑄)) ∧ ∃𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓}𝑖 = ({𝑥} 𝑁)) → 𝑖𝑓)
8574, 84impbida 797 . . . . . . . 8 ((𝜑𝑓 ∈ (SubGrp‘𝑄)) → (𝑖𝑓 ↔ ∃𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓}𝑖 = ({𝑥} 𝑁)))
86 eqid 2738 . . . . . . . . . 10 (𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓} ↦ ({𝑥} 𝑁)) = (𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓} ↦ ({𝑥} 𝑁))
8786elrnmpt 5854 . . . . . . . . 9 (𝑖 ∈ V → (𝑖 ∈ ran (𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓} ↦ ({𝑥} 𝑁)) ↔ ∃𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓}𝑖 = ({𝑥} 𝑁)))
8887elv 3428 . . . . . . . 8 (𝑖 ∈ ran (𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓} ↦ ({𝑥} 𝑁)) ↔ ∃𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓}𝑖 = ({𝑥} 𝑁))
8985, 88bitr4di 288 . . . . . . 7 ((𝜑𝑓 ∈ (SubGrp‘𝑄)) → (𝑖𝑓𝑖 ∈ ran (𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓} ↦ ({𝑥} 𝑁))))
9089eqrdv 2736 . . . . . 6 ((𝜑𝑓 ∈ (SubGrp‘𝑄)) → 𝑓 = ran (𝑥 ∈ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓} ↦ ({𝑥} 𝑁)))
9141, 45, 90rspcedvd 3555 . . . . 5 ((𝜑𝑓 ∈ (SubGrp‘𝑄)) → ∃𝑆 𝑓 = ran (𝑥 ↦ ({𝑥} 𝑁)))
9219, 91impbida 797 . . . 4 (𝜑 → (∃𝑆 𝑓 = ran (𝑥 ↦ ({𝑥} 𝑁)) ↔ 𝑓 ∈ (SubGrp‘𝑄)))
9392abbidv 2808 . . 3 (𝜑 → {𝑓 ∣ ∃𝑆 𝑓 = ran (𝑥 ↦ ({𝑥} 𝑁))} = {𝑓𝑓 ∈ (SubGrp‘𝑄)})
9410rnmpt 5853 . . 3 ran 𝐸 = {𝑓 ∣ ∃𝑆 𝑓 = ran (𝑥 ↦ ({𝑥} 𝑁))}
95 abid1 2880 . . 3 (SubGrp‘𝑄) = {𝑓𝑓 ∈ (SubGrp‘𝑄)}
9693, 94, 953eqtr4g 2804 . 2 (𝜑 → ran 𝐸 = (SubGrp‘𝑄))
9796, 5eqtr4di 2797 1 (𝜑 → ran 𝐸 = 𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  {cab 2715  wrex 3064  {crab 3067  Vcvv 3422  wss 3883  {csn 4558  cmpt 5153  ran crn 5581  cfv 6418  (class class class)co 7255  [cec 8454   / cqs 8455  Basecbs 16840  lecple 16895   /s cqus 17133  toInccipo 18160  Grpcgrp 18492  SubGrpcsubg 18664  NrmSGrpcnsg 18665   ~QG cqg 18666  LSSumclsm 19154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-tpos 8013  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-ec 8458  df-qs 8462  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-fz 13169  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-0g 17069  df-imas 17136  df-qus 17137  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-grp 18495  df-minusg 18496  df-subg 18667  df-nsg 18668  df-eqg 18669  df-oppg 18865  df-lsm 19156
This theorem is referenced by:  nsgqusf1o  31503
  Copyright terms: Public domain W3C validator