Step | Hyp | Ref
| Expression |
1 | | simpr 488 |
. . . . . . 7
⊢ (((𝜑 ∧ ℎ ∈ 𝑆) ∧ 𝑓 = ran (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁))) → 𝑓 = ran (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁))) |
2 | | nsgqusf1o.s |
. . . . . . . . . 10
⊢ 𝑆 = {ℎ ∈ (SubGrp‘𝐺) ∣ 𝑁 ⊆ ℎ} |
3 | 2 | rabeq2i 3400 |
. . . . . . . . 9
⊢ (ℎ ∈ 𝑆 ↔ (ℎ ∈ (SubGrp‘𝐺) ∧ 𝑁 ⊆ ℎ)) |
4 | | nsgqusf1o.b |
. . . . . . . . . . . 12
⊢ 𝐵 = (Base‘𝐺) |
5 | | nsgqusf1o.t |
. . . . . . . . . . . 12
⊢ 𝑇 = (SubGrp‘𝑄) |
6 | | nsgqusf1o.1 |
. . . . . . . . . . . 12
⊢ ≤ =
(le‘(toInc‘𝑆)) |
7 | | nsgqusf1o.2 |
. . . . . . . . . . . 12
⊢ ≲ =
(le‘(toInc‘𝑇)) |
8 | | nsgqusf1o.q |
. . . . . . . . . . . 12
⊢ 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁)) |
9 | | nsgqusf1o.p |
. . . . . . . . . . . 12
⊢ ⊕ =
(LSSum‘𝐺) |
10 | | nsgqusf1o.e |
. . . . . . . . . . . 12
⊢ 𝐸 = (ℎ ∈ 𝑆 ↦ ran (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁))) |
11 | | nsgqusf1o.f |
. . . . . . . . . . . 12
⊢ 𝐹 = (𝑓 ∈ 𝑇 ↦ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝑓}) |
12 | | nsgqusf1o.n |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑁 ∈ (NrmSGrp‘𝐺)) |
13 | 4, 2, 5, 6, 7, 8, 9, 10, 11, 12 | nsgqusf1olem1 31123 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ℎ ∈ (SubGrp‘𝐺)) ∧ 𝑁 ⊆ ℎ) → ran (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁)) ∈ 𝑇) |
14 | 13 | anasss 470 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (ℎ ∈ (SubGrp‘𝐺) ∧ 𝑁 ⊆ ℎ)) → ran (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁)) ∈ 𝑇) |
15 | 14, 5 | eleqtrdi 2862 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (ℎ ∈ (SubGrp‘𝐺) ∧ 𝑁 ⊆ ℎ)) → ran (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁)) ∈ (SubGrp‘𝑄)) |
16 | 3, 15 | sylan2b 596 |
. . . . . . . 8
⊢ ((𝜑 ∧ ℎ ∈ 𝑆) → ran (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁)) ∈ (SubGrp‘𝑄)) |
17 | 16 | adantr 484 |
. . . . . . 7
⊢ (((𝜑 ∧ ℎ ∈ 𝑆) ∧ 𝑓 = ran (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁))) → ran (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁)) ∈ (SubGrp‘𝑄)) |
18 | 1, 17 | eqeltrd 2852 |
. . . . . 6
⊢ (((𝜑 ∧ ℎ ∈ 𝑆) ∧ 𝑓 = ran (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁))) → 𝑓 ∈ (SubGrp‘𝑄)) |
19 | 18 | r19.29an 3212 |
. . . . 5
⊢ ((𝜑 ∧ ∃ℎ ∈ 𝑆 𝑓 = ran (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁))) → 𝑓 ∈ (SubGrp‘𝑄)) |
20 | | sseq2 3920 |
. . . . . . . 8
⊢ (ℎ = {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝑓} → (𝑁 ⊆ ℎ ↔ 𝑁 ⊆ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝑓})) |
21 | 12 | adantr 484 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑓 ∈ (SubGrp‘𝑄)) → 𝑁 ∈ (NrmSGrp‘𝐺)) |
22 | | simpr 488 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑓 ∈ (SubGrp‘𝑄)) → 𝑓 ∈ (SubGrp‘𝑄)) |
23 | 4, 8, 9, 21, 22 | nsgmgclem 31121 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑓 ∈ (SubGrp‘𝑄)) → {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝑓} ∈ (SubGrp‘𝐺)) |
24 | 5 | eleq2i 2843 |
. . . . . . . . 9
⊢ (𝑓 ∈ 𝑇 ↔ 𝑓 ∈ (SubGrp‘𝑄)) |
25 | | nsgsubg 18382 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈ (NrmSGrp‘𝐺) → 𝑁 ∈ (SubGrp‘𝐺)) |
26 | 12, 25 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑁 ∈ (SubGrp‘𝐺)) |
27 | 4 | subgss 18352 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈ (SubGrp‘𝐺) → 𝑁 ⊆ 𝐵) |
28 | 26, 27 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑁 ⊆ 𝐵) |
29 | 28 | adantr 484 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑇) → 𝑁 ⊆ 𝐵) |
30 | 26 | ad2antrr 725 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑓 ∈ 𝑇) ∧ 𝑎 ∈ 𝑁) → 𝑁 ∈ (SubGrp‘𝐺)) |
31 | 9 | grplsmid 31117 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ (SubGrp‘𝐺) ∧ 𝑎 ∈ 𝑁) → ({𝑎} ⊕ 𝑁) = 𝑁) |
32 | 30, 31 | sylancom 591 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑓 ∈ 𝑇) ∧ 𝑎 ∈ 𝑁) → ({𝑎} ⊕ 𝑁) = 𝑁) |
33 | 24 | biimpi 219 |
. . . . . . . . . . . . 13
⊢ (𝑓 ∈ 𝑇 → 𝑓 ∈ (SubGrp‘𝑄)) |
34 | 8 | nsgqus0 31120 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ (NrmSGrp‘𝐺) ∧ 𝑓 ∈ (SubGrp‘𝑄)) → 𝑁 ∈ 𝑓) |
35 | 12, 33, 34 | syl2an 598 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑇) → 𝑁 ∈ 𝑓) |
36 | 35 | adantr 484 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑓 ∈ 𝑇) ∧ 𝑎 ∈ 𝑁) → 𝑁 ∈ 𝑓) |
37 | 32, 36 | eqeltrd 2852 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑓 ∈ 𝑇) ∧ 𝑎 ∈ 𝑁) → ({𝑎} ⊕ 𝑁) ∈ 𝑓) |
38 | 29, 37 | ssrabdv 3980 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑇) → 𝑁 ⊆ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝑓}) |
39 | 24, 38 | sylan2br 597 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑓 ∈ (SubGrp‘𝑄)) → 𝑁 ⊆ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝑓}) |
40 | 20, 23, 39 | elrabd 3606 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑓 ∈ (SubGrp‘𝑄)) → {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝑓} ∈ {ℎ ∈ (SubGrp‘𝐺) ∣ 𝑁 ⊆ ℎ}) |
41 | 40, 2 | eleqtrrdi 2863 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑓 ∈ (SubGrp‘𝑄)) → {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝑓} ∈ 𝑆) |
42 | | mpteq1 5123 |
. . . . . . . . 9
⊢ (ℎ = {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝑓} → (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁)) = (𝑥 ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝑓} ↦ ({𝑥} ⊕ 𝑁))) |
43 | 42 | rneqd 5783 |
. . . . . . . 8
⊢ (ℎ = {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝑓} → ran (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁)) = ran (𝑥 ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝑓} ↦ ({𝑥} ⊕ 𝑁))) |
44 | 43 | eqeq2d 2769 |
. . . . . . 7
⊢ (ℎ = {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝑓} → (𝑓 = ran (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁)) ↔ 𝑓 = ran (𝑥 ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝑓} ↦ ({𝑥} ⊕ 𝑁)))) |
45 | 44 | adantl 485 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑓 ∈ (SubGrp‘𝑄)) ∧ ℎ = {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝑓}) → (𝑓 = ran (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁)) ↔ 𝑓 = ran (𝑥 ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝑓} ↦ ({𝑥} ⊕ 𝑁)))) |
46 | | eqid 2758 |
. . . . . . . . . . . . . . 15
⊢
(Base‘𝑄) =
(Base‘𝑄) |
47 | 46 | subgss 18352 |
. . . . . . . . . . . . . 14
⊢ (𝑓 ∈ (SubGrp‘𝑄) → 𝑓 ⊆ (Base‘𝑄)) |
48 | 47 | adantl 485 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑓 ∈ (SubGrp‘𝑄)) → 𝑓 ⊆ (Base‘𝑄)) |
49 | 48 | sselda 3894 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑓 ∈ (SubGrp‘𝑄)) ∧ 𝑖 ∈ 𝑓) → 𝑖 ∈ (Base‘𝑄)) |
50 | 8 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑓 ∈ (SubGrp‘𝑄)) ∧ 𝑖 ∈ 𝑓) → 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁))) |
51 | 4 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑓 ∈ (SubGrp‘𝑄)) ∧ 𝑖 ∈ 𝑓) → 𝐵 = (Base‘𝐺)) |
52 | | ovexd 7190 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑓 ∈ (SubGrp‘𝑄)) ∧ 𝑖 ∈ 𝑓) → (𝐺 ~QG 𝑁) ∈ V) |
53 | | subgrcl 18356 |
. . . . . . . . . . . . . . 15
⊢ (𝑁 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) |
54 | 26, 53 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐺 ∈ Grp) |
55 | 54 | ad2antrr 725 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑓 ∈ (SubGrp‘𝑄)) ∧ 𝑖 ∈ 𝑓) → 𝐺 ∈ Grp) |
56 | 50, 51, 52, 55 | qusbas 16881 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑓 ∈ (SubGrp‘𝑄)) ∧ 𝑖 ∈ 𝑓) → (𝐵 / (𝐺 ~QG 𝑁)) = (Base‘𝑄)) |
57 | 49, 56 | eleqtrrd 2855 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑓 ∈ (SubGrp‘𝑄)) ∧ 𝑖 ∈ 𝑓) → 𝑖 ∈ (𝐵 / (𝐺 ~QG 𝑁))) |
58 | | elqsi 8365 |
. . . . . . . . . . 11
⊢ (𝑖 ∈ (𝐵 / (𝐺 ~QG 𝑁)) → ∃𝑥 ∈ 𝐵 𝑖 = [𝑥](𝐺 ~QG 𝑁)) |
59 | 57, 58 | syl 17 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑓 ∈ (SubGrp‘𝑄)) ∧ 𝑖 ∈ 𝑓) → ∃𝑥 ∈ 𝐵 𝑖 = [𝑥](𝐺 ~QG 𝑁)) |
60 | | sneq 4535 |
. . . . . . . . . . . . . . . 16
⊢ (𝑎 = 𝑥 → {𝑎} = {𝑥}) |
61 | 60 | oveq1d 7170 |
. . . . . . . . . . . . . . 15
⊢ (𝑎 = 𝑥 → ({𝑎} ⊕ 𝑁) = ({𝑥} ⊕ 𝑁)) |
62 | 61 | eleq1d 2836 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = 𝑥 → (({𝑎} ⊕ 𝑁) ∈ 𝑓 ↔ ({𝑥} ⊕ 𝑁) ∈ 𝑓)) |
63 | | simplr 768 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑓 ∈ (SubGrp‘𝑄)) ∧ 𝑖 ∈ 𝑓) ∧ 𝑥 ∈ 𝐵) ∧ 𝑖 = [𝑥](𝐺 ~QG 𝑁)) → 𝑥 ∈ 𝐵) |
64 | | simpr 488 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑓 ∈ (SubGrp‘𝑄)) ∧ 𝑖 ∈ 𝑓) ∧ 𝑥 ∈ 𝐵) ∧ 𝑖 = [𝑥](𝐺 ~QG 𝑁)) → 𝑖 = [𝑥](𝐺 ~QG 𝑁)) |
65 | 26 | ad4antr 731 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑓 ∈ (SubGrp‘𝑄)) ∧ 𝑖 ∈ 𝑓) ∧ 𝑥 ∈ 𝐵) ∧ 𝑖 = [𝑥](𝐺 ~QG 𝑁)) → 𝑁 ∈ (SubGrp‘𝐺)) |
66 | 4, 9, 65, 63 | quslsm 31118 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑓 ∈ (SubGrp‘𝑄)) ∧ 𝑖 ∈ 𝑓) ∧ 𝑥 ∈ 𝐵) ∧ 𝑖 = [𝑥](𝐺 ~QG 𝑁)) → [𝑥](𝐺 ~QG 𝑁) = ({𝑥} ⊕ 𝑁)) |
67 | 64, 66 | eqtrd 2793 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑓 ∈ (SubGrp‘𝑄)) ∧ 𝑖 ∈ 𝑓) ∧ 𝑥 ∈ 𝐵) ∧ 𝑖 = [𝑥](𝐺 ~QG 𝑁)) → 𝑖 = ({𝑥} ⊕ 𝑁)) |
68 | | simpllr 775 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑓 ∈ (SubGrp‘𝑄)) ∧ 𝑖 ∈ 𝑓) ∧ 𝑥 ∈ 𝐵) ∧ 𝑖 = [𝑥](𝐺 ~QG 𝑁)) → 𝑖 ∈ 𝑓) |
69 | 67, 68 | eqeltrrd 2853 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑓 ∈ (SubGrp‘𝑄)) ∧ 𝑖 ∈ 𝑓) ∧ 𝑥 ∈ 𝐵) ∧ 𝑖 = [𝑥](𝐺 ~QG 𝑁)) → ({𝑥} ⊕ 𝑁) ∈ 𝑓) |
70 | 62, 63, 69 | elrabd 3606 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑓 ∈ (SubGrp‘𝑄)) ∧ 𝑖 ∈ 𝑓) ∧ 𝑥 ∈ 𝐵) ∧ 𝑖 = [𝑥](𝐺 ~QG 𝑁)) → 𝑥 ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝑓}) |
71 | 70, 67 | jca 515 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑓 ∈ (SubGrp‘𝑄)) ∧ 𝑖 ∈ 𝑓) ∧ 𝑥 ∈ 𝐵) ∧ 𝑖 = [𝑥](𝐺 ~QG 𝑁)) → (𝑥 ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝑓} ∧ 𝑖 = ({𝑥} ⊕ 𝑁))) |
72 | 71 | expl 461 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑓 ∈ (SubGrp‘𝑄)) ∧ 𝑖 ∈ 𝑓) → ((𝑥 ∈ 𝐵 ∧ 𝑖 = [𝑥](𝐺 ~QG 𝑁)) → (𝑥 ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝑓} ∧ 𝑖 = ({𝑥} ⊕ 𝑁)))) |
73 | 72 | reximdv2 3195 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑓 ∈ (SubGrp‘𝑄)) ∧ 𝑖 ∈ 𝑓) → (∃𝑥 ∈ 𝐵 𝑖 = [𝑥](𝐺 ~QG 𝑁) → ∃𝑥 ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝑓}𝑖 = ({𝑥} ⊕ 𝑁))) |
74 | 59, 73 | mpd 15 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑓 ∈ (SubGrp‘𝑄)) ∧ 𝑖 ∈ 𝑓) → ∃𝑥 ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝑓}𝑖 = ({𝑥} ⊕ 𝑁)) |
75 | | simplr 768 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑓 ∈ (SubGrp‘𝑄)) ∧ 𝑥 ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝑓}) ∧ 𝑖 = ({𝑥} ⊕ 𝑁)) → 𝑥 ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝑓}) |
76 | 62 | elrab 3604 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝑓} ↔ (𝑥 ∈ 𝐵 ∧ ({𝑥} ⊕ 𝑁) ∈ 𝑓)) |
77 | 75, 76 | sylib 221 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑓 ∈ (SubGrp‘𝑄)) ∧ 𝑥 ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝑓}) ∧ 𝑖 = ({𝑥} ⊕ 𝑁)) → (𝑥 ∈ 𝐵 ∧ ({𝑥} ⊕ 𝑁) ∈ 𝑓)) |
78 | | simpllr 775 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑓 ∈ (SubGrp‘𝑄)) ∧ 𝑖 = ({𝑥} ⊕ 𝑁)) ∧ 𝑥 ∈ 𝐵) ∧ ({𝑥} ⊕ 𝑁) ∈ 𝑓) → 𝑖 = ({𝑥} ⊕ 𝑁)) |
79 | | simpr 488 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑓 ∈ (SubGrp‘𝑄)) ∧ 𝑖 = ({𝑥} ⊕ 𝑁)) ∧ 𝑥 ∈ 𝐵) ∧ ({𝑥} ⊕ 𝑁) ∈ 𝑓) → ({𝑥} ⊕ 𝑁) ∈ 𝑓) |
80 | 78, 79 | eqeltrd 2852 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑓 ∈ (SubGrp‘𝑄)) ∧ 𝑖 = ({𝑥} ⊕ 𝑁)) ∧ 𝑥 ∈ 𝐵) ∧ ({𝑥} ⊕ 𝑁) ∈ 𝑓) → 𝑖 ∈ 𝑓) |
81 | 80 | anasss 470 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑓 ∈ (SubGrp‘𝑄)) ∧ 𝑖 = ({𝑥} ⊕ 𝑁)) ∧ (𝑥 ∈ 𝐵 ∧ ({𝑥} ⊕ 𝑁) ∈ 𝑓)) → 𝑖 ∈ 𝑓) |
82 | 81 | adantllr 718 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑓 ∈ (SubGrp‘𝑄)) ∧ 𝑥 ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝑓}) ∧ 𝑖 = ({𝑥} ⊕ 𝑁)) ∧ (𝑥 ∈ 𝐵 ∧ ({𝑥} ⊕ 𝑁) ∈ 𝑓)) → 𝑖 ∈ 𝑓) |
83 | 77, 82 | mpdan 686 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑓 ∈ (SubGrp‘𝑄)) ∧ 𝑥 ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝑓}) ∧ 𝑖 = ({𝑥} ⊕ 𝑁)) → 𝑖 ∈ 𝑓) |
84 | 83 | r19.29an 3212 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑓 ∈ (SubGrp‘𝑄)) ∧ ∃𝑥 ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝑓}𝑖 = ({𝑥} ⊕ 𝑁)) → 𝑖 ∈ 𝑓) |
85 | 74, 84 | impbida 800 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑓 ∈ (SubGrp‘𝑄)) → (𝑖 ∈ 𝑓 ↔ ∃𝑥 ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝑓}𝑖 = ({𝑥} ⊕ 𝑁))) |
86 | | eqid 2758 |
. . . . . . . . . 10
⊢ (𝑥 ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝑓} ↦ ({𝑥} ⊕ 𝑁)) = (𝑥 ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝑓} ↦ ({𝑥} ⊕ 𝑁)) |
87 | 86 | elrnmpt 5801 |
. . . . . . . . 9
⊢ (𝑖 ∈ V → (𝑖 ∈ ran (𝑥 ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝑓} ↦ ({𝑥} ⊕ 𝑁)) ↔ ∃𝑥 ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝑓}𝑖 = ({𝑥} ⊕ 𝑁))) |
88 | 87 | elv 3415 |
. . . . . . . 8
⊢ (𝑖 ∈ ran (𝑥 ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝑓} ↦ ({𝑥} ⊕ 𝑁)) ↔ ∃𝑥 ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝑓}𝑖 = ({𝑥} ⊕ 𝑁)) |
89 | 85, 88 | bitr4di 292 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑓 ∈ (SubGrp‘𝑄)) → (𝑖 ∈ 𝑓 ↔ 𝑖 ∈ ran (𝑥 ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝑓} ↦ ({𝑥} ⊕ 𝑁)))) |
90 | 89 | eqrdv 2756 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑓 ∈ (SubGrp‘𝑄)) → 𝑓 = ran (𝑥 ∈ {𝑎 ∈ 𝐵 ∣ ({𝑎} ⊕ 𝑁) ∈ 𝑓} ↦ ({𝑥} ⊕ 𝑁))) |
91 | 41, 45, 90 | rspcedvd 3546 |
. . . . 5
⊢ ((𝜑 ∧ 𝑓 ∈ (SubGrp‘𝑄)) → ∃ℎ ∈ 𝑆 𝑓 = ran (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁))) |
92 | 19, 91 | impbida 800 |
. . . 4
⊢ (𝜑 → (∃ℎ ∈ 𝑆 𝑓 = ran (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁)) ↔ 𝑓 ∈ (SubGrp‘𝑄))) |
93 | 92 | abbidv 2822 |
. . 3
⊢ (𝜑 → {𝑓 ∣ ∃ℎ ∈ 𝑆 𝑓 = ran (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁))} = {𝑓 ∣ 𝑓 ∈ (SubGrp‘𝑄)}) |
94 | 10 | rnmpt 5800 |
. . 3
⊢ ran 𝐸 = {𝑓 ∣ ∃ℎ ∈ 𝑆 𝑓 = ran (𝑥 ∈ ℎ ↦ ({𝑥} ⊕ 𝑁))} |
95 | | abid1 2893 |
. . 3
⊢
(SubGrp‘𝑄) =
{𝑓 ∣ 𝑓 ∈ (SubGrp‘𝑄)} |
96 | 93, 94, 95 | 3eqtr4g 2818 |
. 2
⊢ (𝜑 → ran 𝐸 = (SubGrp‘𝑄)) |
97 | 96, 5 | eqtr4di 2811 |
1
⊢ (𝜑 → ran 𝐸 = 𝑇) |