Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opprqusplusg Structured version   Visualization version   GIF version

Theorem opprqusplusg 33433
Description: The group operation of the quotient of the opposite ring is the same as the group operation of the opposite of the quotient ring. (Contributed by Thierry Arnoux, 13-Mar-2025.)
Hypotheses
Ref Expression
opprqus.b 𝐵 = (Base‘𝑅)
opprqus.o 𝑂 = (oppr𝑅)
opprqus.q 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼))
opprqus.i (𝜑𝐼 ∈ (NrmSGrp‘𝑅))
opprqusplusg.e 𝐸 = (Base‘𝑄)
opprqusplusg.x (𝜑𝑋𝐸)
opprqusplusg.y (𝜑𝑌𝐸)
Assertion
Ref Expression
opprqusplusg (𝜑 → (𝑋(+g‘(oppr𝑄))𝑌) = (𝑋(+g‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑌))

Proof of Theorem opprqusplusg
Dummy variables 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . 4 (oppr𝑄) = (oppr𝑄)
2 eqid 2729 . . . 4 (+g𝑄) = (+g𝑄)
31, 2oppradd 20229 . . 3 (+g𝑄) = (+g‘(oppr𝑄))
43oveqi 7382 . 2 (𝑋(+g𝑄)𝑌) = (𝑋(+g‘(oppr𝑄))𝑌)
5 opprqus.i . . . . . . 7 (𝜑𝐼 ∈ (NrmSGrp‘𝑅))
65ad4antr 732 . . . . . 6 (((((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → 𝐼 ∈ (NrmSGrp‘𝑅))
7 simp-4r 783 . . . . . 6 (((((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → 𝑝𝐵)
8 simplr 768 . . . . . 6 (((((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → 𝑞𝐵)
9 opprqus.q . . . . . . 7 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼))
10 opprqus.b . . . . . . 7 𝐵 = (Base‘𝑅)
11 eqid 2729 . . . . . . 7 (+g𝑅) = (+g𝑅)
129, 10, 11, 2qusadd 19096 . . . . . 6 ((𝐼 ∈ (NrmSGrp‘𝑅) ∧ 𝑝𝐵𝑞𝐵) → ([𝑝](𝑅 ~QG 𝐼)(+g𝑄)[𝑞](𝑅 ~QG 𝐼)) = [(𝑝(+g𝑅)𝑞)](𝑅 ~QG 𝐼))
136, 7, 8, 12syl3anc 1373 . . . . 5 (((((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → ([𝑝](𝑅 ~QG 𝐼)(+g𝑄)[𝑞](𝑅 ~QG 𝐼)) = [(𝑝(+g𝑅)𝑞)](𝑅 ~QG 𝐼))
14 simpllr 775 . . . . . 6 (((((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → 𝑋 = [𝑝](𝑅 ~QG 𝐼))
15 simpr 484 . . . . . 6 (((((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → 𝑌 = [𝑞](𝑅 ~QG 𝐼))
1614, 15oveq12d 7387 . . . . 5 (((((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → (𝑋(+g𝑄)𝑌) = ([𝑝](𝑅 ~QG 𝐼)(+g𝑄)[𝑞](𝑅 ~QG 𝐼)))
175elfvexd 6879 . . . . . . . . . . 11 (𝜑𝑅 ∈ V)
18 nsgsubg 19066 . . . . . . . . . . . 12 (𝐼 ∈ (NrmSGrp‘𝑅) → 𝐼 ∈ (SubGrp‘𝑅))
1910subgss 19035 . . . . . . . . . . . 12 (𝐼 ∈ (SubGrp‘𝑅) → 𝐼𝐵)
205, 18, 193syl 18 . . . . . . . . . . 11 (𝜑𝐼𝐵)
21 opprqus.o . . . . . . . . . . . 12 𝑂 = (oppr𝑅)
2221, 10oppreqg 33427 . . . . . . . . . . 11 ((𝑅 ∈ V ∧ 𝐼𝐵) → (𝑅 ~QG 𝐼) = (𝑂 ~QG 𝐼))
2317, 20, 22syl2anc 584 . . . . . . . . . 10 (𝜑 → (𝑅 ~QG 𝐼) = (𝑂 ~QG 𝐼))
2423eceq2d 8691 . . . . . . . . 9 (𝜑 → [𝑝](𝑅 ~QG 𝐼) = [𝑝](𝑂 ~QG 𝐼))
2523eceq2d 8691 . . . . . . . . 9 (𝜑 → [𝑞](𝑅 ~QG 𝐼) = [𝑞](𝑂 ~QG 𝐼))
2624, 25oveq12d 7387 . . . . . . . 8 (𝜑 → ([𝑝](𝑅 ~QG 𝐼)(+g‘(𝑂 /s (𝑂 ~QG 𝐼)))[𝑞](𝑅 ~QG 𝐼)) = ([𝑝](𝑂 ~QG 𝐼)(+g‘(𝑂 /s (𝑂 ~QG 𝐼)))[𝑞](𝑂 ~QG 𝐼)))
2726ad4antr 732 . . . . . . 7 (((((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → ([𝑝](𝑅 ~QG 𝐼)(+g‘(𝑂 /s (𝑂 ~QG 𝐼)))[𝑞](𝑅 ~QG 𝐼)) = ([𝑝](𝑂 ~QG 𝐼)(+g‘(𝑂 /s (𝑂 ~QG 𝐼)))[𝑞](𝑂 ~QG 𝐼)))
2821opprnsg 33428 . . . . . . . . . 10 (NrmSGrp‘𝑅) = (NrmSGrp‘𝑂)
295, 28eleqtrdi 2838 . . . . . . . . 9 (𝜑𝐼 ∈ (NrmSGrp‘𝑂))
3029ad4antr 732 . . . . . . . 8 (((((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → 𝐼 ∈ (NrmSGrp‘𝑂))
317, 10eleqtrdi 2838 . . . . . . . 8 (((((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → 𝑝 ∈ (Base‘𝑅))
328, 10eleqtrdi 2838 . . . . . . . 8 (((((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → 𝑞 ∈ (Base‘𝑅))
33 eqid 2729 . . . . . . . . 9 (𝑂 /s (𝑂 ~QG 𝐼)) = (𝑂 /s (𝑂 ~QG 𝐼))
3421, 10opprbas 20228 . . . . . . . . . 10 𝐵 = (Base‘𝑂)
3510, 34eqtr3i 2754 . . . . . . . . 9 (Base‘𝑅) = (Base‘𝑂)
3621, 11oppradd 20229 . . . . . . . . 9 (+g𝑅) = (+g𝑂)
37 eqid 2729 . . . . . . . . 9 (+g‘(𝑂 /s (𝑂 ~QG 𝐼))) = (+g‘(𝑂 /s (𝑂 ~QG 𝐼)))
3833, 35, 36, 37qusadd 19096 . . . . . . . 8 ((𝐼 ∈ (NrmSGrp‘𝑂) ∧ 𝑝 ∈ (Base‘𝑅) ∧ 𝑞 ∈ (Base‘𝑅)) → ([𝑝](𝑂 ~QG 𝐼)(+g‘(𝑂 /s (𝑂 ~QG 𝐼)))[𝑞](𝑂 ~QG 𝐼)) = [(𝑝(+g𝑅)𝑞)](𝑂 ~QG 𝐼))
3930, 31, 32, 38syl3anc 1373 . . . . . . 7 (((((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → ([𝑝](𝑂 ~QG 𝐼)(+g‘(𝑂 /s (𝑂 ~QG 𝐼)))[𝑞](𝑂 ~QG 𝐼)) = [(𝑝(+g𝑅)𝑞)](𝑂 ~QG 𝐼))
4027, 39eqtrd 2764 . . . . . 6 (((((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → ([𝑝](𝑅 ~QG 𝐼)(+g‘(𝑂 /s (𝑂 ~QG 𝐼)))[𝑞](𝑅 ~QG 𝐼)) = [(𝑝(+g𝑅)𝑞)](𝑂 ~QG 𝐼))
4114, 15oveq12d 7387 . . . . . 6 (((((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → (𝑋(+g‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑌) = ([𝑝](𝑅 ~QG 𝐼)(+g‘(𝑂 /s (𝑂 ~QG 𝐼)))[𝑞](𝑅 ~QG 𝐼)))
4223ad4antr 732 . . . . . . 7 (((((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → (𝑅 ~QG 𝐼) = (𝑂 ~QG 𝐼))
4342eceq2d 8691 . . . . . 6 (((((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → [(𝑝(+g𝑅)𝑞)](𝑅 ~QG 𝐼) = [(𝑝(+g𝑅)𝑞)](𝑂 ~QG 𝐼))
4440, 41, 433eqtr4d 2774 . . . . 5 (((((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → (𝑋(+g‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑌) = [(𝑝(+g𝑅)𝑞)](𝑅 ~QG 𝐼))
4513, 16, 443eqtr4d 2774 . . . 4 (((((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → (𝑋(+g𝑄)𝑌) = (𝑋(+g‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑌))
46 opprqusplusg.y . . . . . . 7 (𝜑𝑌𝐸)
47 opprqusplusg.e . . . . . . . 8 𝐸 = (Base‘𝑄)
489a1i 11 . . . . . . . . 9 (𝜑𝑄 = (𝑅 /s (𝑅 ~QG 𝐼)))
4910a1i 11 . . . . . . . . 9 (𝜑𝐵 = (Base‘𝑅))
50 ovexd 7404 . . . . . . . . 9 (𝜑 → (𝑅 ~QG 𝐼) ∈ V)
5148, 49, 50, 17qusbas 17484 . . . . . . . 8 (𝜑 → (𝐵 / (𝑅 ~QG 𝐼)) = (Base‘𝑄))
5247, 51eqtr4id 2783 . . . . . . 7 (𝜑𝐸 = (𝐵 / (𝑅 ~QG 𝐼)))
5346, 52eleqtrd 2830 . . . . . 6 (𝜑𝑌 ∈ (𝐵 / (𝑅 ~QG 𝐼)))
5453ad2antrr 726 . . . . 5 (((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) → 𝑌 ∈ (𝐵 / (𝑅 ~QG 𝐼)))
55 elqsi 8716 . . . . 5 (𝑌 ∈ (𝐵 / (𝑅 ~QG 𝐼)) → ∃𝑞𝐵 𝑌 = [𝑞](𝑅 ~QG 𝐼))
5654, 55syl 17 . . . 4 (((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) → ∃𝑞𝐵 𝑌 = [𝑞](𝑅 ~QG 𝐼))
5745, 56r19.29a 3141 . . 3 (((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) → (𝑋(+g𝑄)𝑌) = (𝑋(+g‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑌))
58 opprqusplusg.x . . . . 5 (𝜑𝑋𝐸)
5958, 52eleqtrd 2830 . . . 4 (𝜑𝑋 ∈ (𝐵 / (𝑅 ~QG 𝐼)))
60 elqsi 8716 . . . 4 (𝑋 ∈ (𝐵 / (𝑅 ~QG 𝐼)) → ∃𝑝𝐵 𝑋 = [𝑝](𝑅 ~QG 𝐼))
6159, 60syl 17 . . 3 (𝜑 → ∃𝑝𝐵 𝑋 = [𝑝](𝑅 ~QG 𝐼))
6257, 61r19.29a 3141 . 2 (𝜑 → (𝑋(+g𝑄)𝑌) = (𝑋(+g‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑌))
634, 62eqtr3id 2778 1 (𝜑 → (𝑋(+g‘(oppr𝑄))𝑌) = (𝑋(+g‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wrex 3053  Vcvv 3444  wss 3911  cfv 6499  (class class class)co 7369  [cec 8646   / cqs 8647  Basecbs 17155  +gcplusg 17196   /s cqus 17444  SubGrpcsubg 19028  NrmSGrpcnsg 19029   ~QG cqg 19030  opprcoppr 20221
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-tpos 8182  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-ec 8650  df-qs 8654  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-inf 9370  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-fz 13445  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-0g 17380  df-imas 17447  df-qus 17448  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-grp 18844  df-minusg 18845  df-subg 19031  df-nsg 19032  df-eqg 19033  df-oppr 20222
This theorem is referenced by:  opprqus0g  33434
  Copyright terms: Public domain W3C validator