Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opprqusplusg Structured version   Visualization version   GIF version

Theorem opprqusplusg 33497
Description: The group operation of the quotient of the opposite ring is the same as the group operation of the opposite of the quotient ring. (Contributed by Thierry Arnoux, 13-Mar-2025.)
Hypotheses
Ref Expression
opprqus.b 𝐵 = (Base‘𝑅)
opprqus.o 𝑂 = (oppr𝑅)
opprqus.q 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼))
opprqus.i (𝜑𝐼 ∈ (NrmSGrp‘𝑅))
opprqusplusg.e 𝐸 = (Base‘𝑄)
opprqusplusg.x (𝜑𝑋𝐸)
opprqusplusg.y (𝜑𝑌𝐸)
Assertion
Ref Expression
opprqusplusg (𝜑 → (𝑋(+g‘(oppr𝑄))𝑌) = (𝑋(+g‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑌))

Proof of Theorem opprqusplusg
Dummy variables 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2735 . . . 4 (oppr𝑄) = (oppr𝑄)
2 eqid 2735 . . . 4 (+g𝑄) = (+g𝑄)
31, 2oppradd 20360 . . 3 (+g𝑄) = (+g‘(oppr𝑄))
43oveqi 7444 . 2 (𝑋(+g𝑄)𝑌) = (𝑋(+g‘(oppr𝑄))𝑌)
5 opprqus.i . . . . . . 7 (𝜑𝐼 ∈ (NrmSGrp‘𝑅))
65ad4antr 732 . . . . . 6 (((((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → 𝐼 ∈ (NrmSGrp‘𝑅))
7 simp-4r 784 . . . . . 6 (((((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → 𝑝𝐵)
8 simplr 769 . . . . . 6 (((((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → 𝑞𝐵)
9 opprqus.q . . . . . . 7 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼))
10 opprqus.b . . . . . . 7 𝐵 = (Base‘𝑅)
11 eqid 2735 . . . . . . 7 (+g𝑅) = (+g𝑅)
129, 10, 11, 2qusadd 19219 . . . . . 6 ((𝐼 ∈ (NrmSGrp‘𝑅) ∧ 𝑝𝐵𝑞𝐵) → ([𝑝](𝑅 ~QG 𝐼)(+g𝑄)[𝑞](𝑅 ~QG 𝐼)) = [(𝑝(+g𝑅)𝑞)](𝑅 ~QG 𝐼))
136, 7, 8, 12syl3anc 1370 . . . . 5 (((((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → ([𝑝](𝑅 ~QG 𝐼)(+g𝑄)[𝑞](𝑅 ~QG 𝐼)) = [(𝑝(+g𝑅)𝑞)](𝑅 ~QG 𝐼))
14 simpllr 776 . . . . . 6 (((((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → 𝑋 = [𝑝](𝑅 ~QG 𝐼))
15 simpr 484 . . . . . 6 (((((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → 𝑌 = [𝑞](𝑅 ~QG 𝐼))
1614, 15oveq12d 7449 . . . . 5 (((((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → (𝑋(+g𝑄)𝑌) = ([𝑝](𝑅 ~QG 𝐼)(+g𝑄)[𝑞](𝑅 ~QG 𝐼)))
175elfvexd 6946 . . . . . . . . . . 11 (𝜑𝑅 ∈ V)
18 nsgsubg 19189 . . . . . . . . . . . 12 (𝐼 ∈ (NrmSGrp‘𝑅) → 𝐼 ∈ (SubGrp‘𝑅))
1910subgss 19158 . . . . . . . . . . . 12 (𝐼 ∈ (SubGrp‘𝑅) → 𝐼𝐵)
205, 18, 193syl 18 . . . . . . . . . . 11 (𝜑𝐼𝐵)
21 opprqus.o . . . . . . . . . . . 12 𝑂 = (oppr𝑅)
2221, 10oppreqg 33491 . . . . . . . . . . 11 ((𝑅 ∈ V ∧ 𝐼𝐵) → (𝑅 ~QG 𝐼) = (𝑂 ~QG 𝐼))
2317, 20, 22syl2anc 584 . . . . . . . . . 10 (𝜑 → (𝑅 ~QG 𝐼) = (𝑂 ~QG 𝐼))
2423eceq2d 8787 . . . . . . . . 9 (𝜑 → [𝑝](𝑅 ~QG 𝐼) = [𝑝](𝑂 ~QG 𝐼))
2523eceq2d 8787 . . . . . . . . 9 (𝜑 → [𝑞](𝑅 ~QG 𝐼) = [𝑞](𝑂 ~QG 𝐼))
2624, 25oveq12d 7449 . . . . . . . 8 (𝜑 → ([𝑝](𝑅 ~QG 𝐼)(+g‘(𝑂 /s (𝑂 ~QG 𝐼)))[𝑞](𝑅 ~QG 𝐼)) = ([𝑝](𝑂 ~QG 𝐼)(+g‘(𝑂 /s (𝑂 ~QG 𝐼)))[𝑞](𝑂 ~QG 𝐼)))
2726ad4antr 732 . . . . . . 7 (((((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → ([𝑝](𝑅 ~QG 𝐼)(+g‘(𝑂 /s (𝑂 ~QG 𝐼)))[𝑞](𝑅 ~QG 𝐼)) = ([𝑝](𝑂 ~QG 𝐼)(+g‘(𝑂 /s (𝑂 ~QG 𝐼)))[𝑞](𝑂 ~QG 𝐼)))
2821opprnsg 33492 . . . . . . . . . 10 (NrmSGrp‘𝑅) = (NrmSGrp‘𝑂)
295, 28eleqtrdi 2849 . . . . . . . . 9 (𝜑𝐼 ∈ (NrmSGrp‘𝑂))
3029ad4antr 732 . . . . . . . 8 (((((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → 𝐼 ∈ (NrmSGrp‘𝑂))
317, 10eleqtrdi 2849 . . . . . . . 8 (((((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → 𝑝 ∈ (Base‘𝑅))
328, 10eleqtrdi 2849 . . . . . . . 8 (((((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → 𝑞 ∈ (Base‘𝑅))
33 eqid 2735 . . . . . . . . 9 (𝑂 /s (𝑂 ~QG 𝐼)) = (𝑂 /s (𝑂 ~QG 𝐼))
3421, 10opprbas 20358 . . . . . . . . . 10 𝐵 = (Base‘𝑂)
3510, 34eqtr3i 2765 . . . . . . . . 9 (Base‘𝑅) = (Base‘𝑂)
3621, 11oppradd 20360 . . . . . . . . 9 (+g𝑅) = (+g𝑂)
37 eqid 2735 . . . . . . . . 9 (+g‘(𝑂 /s (𝑂 ~QG 𝐼))) = (+g‘(𝑂 /s (𝑂 ~QG 𝐼)))
3833, 35, 36, 37qusadd 19219 . . . . . . . 8 ((𝐼 ∈ (NrmSGrp‘𝑂) ∧ 𝑝 ∈ (Base‘𝑅) ∧ 𝑞 ∈ (Base‘𝑅)) → ([𝑝](𝑂 ~QG 𝐼)(+g‘(𝑂 /s (𝑂 ~QG 𝐼)))[𝑞](𝑂 ~QG 𝐼)) = [(𝑝(+g𝑅)𝑞)](𝑂 ~QG 𝐼))
3930, 31, 32, 38syl3anc 1370 . . . . . . 7 (((((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → ([𝑝](𝑂 ~QG 𝐼)(+g‘(𝑂 /s (𝑂 ~QG 𝐼)))[𝑞](𝑂 ~QG 𝐼)) = [(𝑝(+g𝑅)𝑞)](𝑂 ~QG 𝐼))
4027, 39eqtrd 2775 . . . . . 6 (((((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → ([𝑝](𝑅 ~QG 𝐼)(+g‘(𝑂 /s (𝑂 ~QG 𝐼)))[𝑞](𝑅 ~QG 𝐼)) = [(𝑝(+g𝑅)𝑞)](𝑂 ~QG 𝐼))
4114, 15oveq12d 7449 . . . . . 6 (((((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → (𝑋(+g‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑌) = ([𝑝](𝑅 ~QG 𝐼)(+g‘(𝑂 /s (𝑂 ~QG 𝐼)))[𝑞](𝑅 ~QG 𝐼)))
4223ad4antr 732 . . . . . . 7 (((((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → (𝑅 ~QG 𝐼) = (𝑂 ~QG 𝐼))
4342eceq2d 8787 . . . . . 6 (((((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → [(𝑝(+g𝑅)𝑞)](𝑅 ~QG 𝐼) = [(𝑝(+g𝑅)𝑞)](𝑂 ~QG 𝐼))
4440, 41, 433eqtr4d 2785 . . . . 5 (((((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → (𝑋(+g‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑌) = [(𝑝(+g𝑅)𝑞)](𝑅 ~QG 𝐼))
4513, 16, 443eqtr4d 2785 . . . 4 (((((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → (𝑋(+g𝑄)𝑌) = (𝑋(+g‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑌))
46 opprqusplusg.y . . . . . . 7 (𝜑𝑌𝐸)
47 opprqusplusg.e . . . . . . . 8 𝐸 = (Base‘𝑄)
489a1i 11 . . . . . . . . 9 (𝜑𝑄 = (𝑅 /s (𝑅 ~QG 𝐼)))
4910a1i 11 . . . . . . . . 9 (𝜑𝐵 = (Base‘𝑅))
50 ovexd 7466 . . . . . . . . 9 (𝜑 → (𝑅 ~QG 𝐼) ∈ V)
5148, 49, 50, 17qusbas 17592 . . . . . . . 8 (𝜑 → (𝐵 / (𝑅 ~QG 𝐼)) = (Base‘𝑄))
5247, 51eqtr4id 2794 . . . . . . 7 (𝜑𝐸 = (𝐵 / (𝑅 ~QG 𝐼)))
5346, 52eleqtrd 2841 . . . . . 6 (𝜑𝑌 ∈ (𝐵 / (𝑅 ~QG 𝐼)))
5453ad2antrr 726 . . . . 5 (((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) → 𝑌 ∈ (𝐵 / (𝑅 ~QG 𝐼)))
55 elqsi 8809 . . . . 5 (𝑌 ∈ (𝐵 / (𝑅 ~QG 𝐼)) → ∃𝑞𝐵 𝑌 = [𝑞](𝑅 ~QG 𝐼))
5654, 55syl 17 . . . 4 (((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) → ∃𝑞𝐵 𝑌 = [𝑞](𝑅 ~QG 𝐼))
5745, 56r19.29a 3160 . . 3 (((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) → (𝑋(+g𝑄)𝑌) = (𝑋(+g‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑌))
58 opprqusplusg.x . . . . 5 (𝜑𝑋𝐸)
5958, 52eleqtrd 2841 . . . 4 (𝜑𝑋 ∈ (𝐵 / (𝑅 ~QG 𝐼)))
60 elqsi 8809 . . . 4 (𝑋 ∈ (𝐵 / (𝑅 ~QG 𝐼)) → ∃𝑝𝐵 𝑋 = [𝑝](𝑅 ~QG 𝐼))
6159, 60syl 17 . . 3 (𝜑 → ∃𝑝𝐵 𝑋 = [𝑝](𝑅 ~QG 𝐼))
6257, 61r19.29a 3160 . 2 (𝜑 → (𝑋(+g𝑄)𝑌) = (𝑋(+g‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑌))
634, 62eqtr3id 2789 1 (𝜑 → (𝑋(+g‘(oppr𝑄))𝑌) = (𝑋(+g‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  wrex 3068  Vcvv 3478  wss 3963  cfv 6563  (class class class)co 7431  [cec 8742   / cqs 8743  Basecbs 17245  +gcplusg 17298   /s cqus 17552  SubGrpcsubg 19151  NrmSGrpcnsg 19152   ~QG cqg 19153  opprcoppr 20350
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-tpos 8250  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-ec 8746  df-qs 8750  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-inf 9481  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-fz 13545  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-0g 17488  df-imas 17555  df-qus 17556  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-grp 18967  df-minusg 18968  df-subg 19154  df-nsg 19155  df-eqg 19156  df-oppr 20351
This theorem is referenced by:  opprqus0g  33498
  Copyright terms: Public domain W3C validator