| Step | Hyp | Ref
| Expression |
| 1 | | eqid 2736 |
. . . 4
⊢
(oppr‘𝑄) = (oppr‘𝑄) |
| 2 | | eqid 2736 |
. . . 4
⊢
(+g‘𝑄) = (+g‘𝑄) |
| 3 | 1, 2 | oppradd 20309 |
. . 3
⊢
(+g‘𝑄) =
(+g‘(oppr‘𝑄)) |
| 4 | 3 | oveqi 7423 |
. 2
⊢ (𝑋(+g‘𝑄)𝑌) = (𝑋(+g‘(oppr‘𝑄))𝑌) |
| 5 | | opprqus.i |
. . . . . . 7
⊢ (𝜑 → 𝐼 ∈ (NrmSGrp‘𝑅)) |
| 6 | 5 | ad4antr 732 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝑝 ∈ 𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞 ∈ 𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → 𝐼 ∈ (NrmSGrp‘𝑅)) |
| 7 | | simp-4r 783 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝑝 ∈ 𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞 ∈ 𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → 𝑝 ∈ 𝐵) |
| 8 | | simplr 768 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝑝 ∈ 𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞 ∈ 𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → 𝑞 ∈ 𝐵) |
| 9 | | opprqus.q |
. . . . . . 7
⊢ 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼)) |
| 10 | | opprqus.b |
. . . . . . 7
⊢ 𝐵 = (Base‘𝑅) |
| 11 | | eqid 2736 |
. . . . . . 7
⊢
(+g‘𝑅) = (+g‘𝑅) |
| 12 | 9, 10, 11, 2 | qusadd 19176 |
. . . . . 6
⊢ ((𝐼 ∈ (NrmSGrp‘𝑅) ∧ 𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵) → ([𝑝](𝑅 ~QG 𝐼)(+g‘𝑄)[𝑞](𝑅 ~QG 𝐼)) = [(𝑝(+g‘𝑅)𝑞)](𝑅 ~QG 𝐼)) |
| 13 | 6, 7, 8, 12 | syl3anc 1373 |
. . . . 5
⊢
(((((𝜑 ∧ 𝑝 ∈ 𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞 ∈ 𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → ([𝑝](𝑅 ~QG 𝐼)(+g‘𝑄)[𝑞](𝑅 ~QG 𝐼)) = [(𝑝(+g‘𝑅)𝑞)](𝑅 ~QG 𝐼)) |
| 14 | | simpllr 775 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝑝 ∈ 𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞 ∈ 𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → 𝑋 = [𝑝](𝑅 ~QG 𝐼)) |
| 15 | | simpr 484 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝑝 ∈ 𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞 ∈ 𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → 𝑌 = [𝑞](𝑅 ~QG 𝐼)) |
| 16 | 14, 15 | oveq12d 7428 |
. . . . 5
⊢
(((((𝜑 ∧ 𝑝 ∈ 𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞 ∈ 𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → (𝑋(+g‘𝑄)𝑌) = ([𝑝](𝑅 ~QG 𝐼)(+g‘𝑄)[𝑞](𝑅 ~QG 𝐼))) |
| 17 | 5 | elfvexd 6920 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑅 ∈ V) |
| 18 | | nsgsubg 19146 |
. . . . . . . . . . . 12
⊢ (𝐼 ∈ (NrmSGrp‘𝑅) → 𝐼 ∈ (SubGrp‘𝑅)) |
| 19 | 10 | subgss 19115 |
. . . . . . . . . . . 12
⊢ (𝐼 ∈ (SubGrp‘𝑅) → 𝐼 ⊆ 𝐵) |
| 20 | 5, 18, 19 | 3syl 18 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐼 ⊆ 𝐵) |
| 21 | | opprqus.o |
. . . . . . . . . . . 12
⊢ 𝑂 =
(oppr‘𝑅) |
| 22 | 21, 10 | oppreqg 33503 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ V ∧ 𝐼 ⊆ 𝐵) → (𝑅 ~QG 𝐼) = (𝑂 ~QG 𝐼)) |
| 23 | 17, 20, 22 | syl2anc 584 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑅 ~QG 𝐼) = (𝑂 ~QG 𝐼)) |
| 24 | 23 | eceq2d 8767 |
. . . . . . . . 9
⊢ (𝜑 → [𝑝](𝑅 ~QG 𝐼) = [𝑝](𝑂 ~QG 𝐼)) |
| 25 | 23 | eceq2d 8767 |
. . . . . . . . 9
⊢ (𝜑 → [𝑞](𝑅 ~QG 𝐼) = [𝑞](𝑂 ~QG 𝐼)) |
| 26 | 24, 25 | oveq12d 7428 |
. . . . . . . 8
⊢ (𝜑 → ([𝑝](𝑅 ~QG 𝐼)(+g‘(𝑂 /s (𝑂 ~QG 𝐼)))[𝑞](𝑅 ~QG 𝐼)) = ([𝑝](𝑂 ~QG 𝐼)(+g‘(𝑂 /s (𝑂 ~QG 𝐼)))[𝑞](𝑂 ~QG 𝐼))) |
| 27 | 26 | ad4antr 732 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑝 ∈ 𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞 ∈ 𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → ([𝑝](𝑅 ~QG 𝐼)(+g‘(𝑂 /s (𝑂 ~QG 𝐼)))[𝑞](𝑅 ~QG 𝐼)) = ([𝑝](𝑂 ~QG 𝐼)(+g‘(𝑂 /s (𝑂 ~QG 𝐼)))[𝑞](𝑂 ~QG 𝐼))) |
| 28 | 21 | opprnsg 33504 |
. . . . . . . . . 10
⊢
(NrmSGrp‘𝑅) =
(NrmSGrp‘𝑂) |
| 29 | 5, 28 | eleqtrdi 2845 |
. . . . . . . . 9
⊢ (𝜑 → 𝐼 ∈ (NrmSGrp‘𝑂)) |
| 30 | 29 | ad4antr 732 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑝 ∈ 𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞 ∈ 𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → 𝐼 ∈ (NrmSGrp‘𝑂)) |
| 31 | 7, 10 | eleqtrdi 2845 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑝 ∈ 𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞 ∈ 𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → 𝑝 ∈ (Base‘𝑅)) |
| 32 | 8, 10 | eleqtrdi 2845 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑝 ∈ 𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞 ∈ 𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → 𝑞 ∈ (Base‘𝑅)) |
| 33 | | eqid 2736 |
. . . . . . . . 9
⊢ (𝑂 /s (𝑂 ~QG 𝐼)) = (𝑂 /s (𝑂 ~QG 𝐼)) |
| 34 | 21, 10 | opprbas 20308 |
. . . . . . . . . 10
⊢ 𝐵 = (Base‘𝑂) |
| 35 | 10, 34 | eqtr3i 2761 |
. . . . . . . . 9
⊢
(Base‘𝑅) =
(Base‘𝑂) |
| 36 | 21, 11 | oppradd 20309 |
. . . . . . . . 9
⊢
(+g‘𝑅) = (+g‘𝑂) |
| 37 | | eqid 2736 |
. . . . . . . . 9
⊢
(+g‘(𝑂 /s (𝑂 ~QG 𝐼))) = (+g‘(𝑂 /s (𝑂 ~QG 𝐼))) |
| 38 | 33, 35, 36, 37 | qusadd 19176 |
. . . . . . . 8
⊢ ((𝐼 ∈ (NrmSGrp‘𝑂) ∧ 𝑝 ∈ (Base‘𝑅) ∧ 𝑞 ∈ (Base‘𝑅)) → ([𝑝](𝑂 ~QG 𝐼)(+g‘(𝑂 /s (𝑂 ~QG 𝐼)))[𝑞](𝑂 ~QG 𝐼)) = [(𝑝(+g‘𝑅)𝑞)](𝑂 ~QG 𝐼)) |
| 39 | 30, 31, 32, 38 | syl3anc 1373 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑝 ∈ 𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞 ∈ 𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → ([𝑝](𝑂 ~QG 𝐼)(+g‘(𝑂 /s (𝑂 ~QG 𝐼)))[𝑞](𝑂 ~QG 𝐼)) = [(𝑝(+g‘𝑅)𝑞)](𝑂 ~QG 𝐼)) |
| 40 | 27, 39 | eqtrd 2771 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝑝 ∈ 𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞 ∈ 𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → ([𝑝](𝑅 ~QG 𝐼)(+g‘(𝑂 /s (𝑂 ~QG 𝐼)))[𝑞](𝑅 ~QG 𝐼)) = [(𝑝(+g‘𝑅)𝑞)](𝑂 ~QG 𝐼)) |
| 41 | 14, 15 | oveq12d 7428 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝑝 ∈ 𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞 ∈ 𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → (𝑋(+g‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑌) = ([𝑝](𝑅 ~QG 𝐼)(+g‘(𝑂 /s (𝑂 ~QG 𝐼)))[𝑞](𝑅 ~QG 𝐼))) |
| 42 | 23 | ad4antr 732 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑝 ∈ 𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞 ∈ 𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → (𝑅 ~QG 𝐼) = (𝑂 ~QG 𝐼)) |
| 43 | 42 | eceq2d 8767 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝑝 ∈ 𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞 ∈ 𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → [(𝑝(+g‘𝑅)𝑞)](𝑅 ~QG 𝐼) = [(𝑝(+g‘𝑅)𝑞)](𝑂 ~QG 𝐼)) |
| 44 | 40, 41, 43 | 3eqtr4d 2781 |
. . . . 5
⊢
(((((𝜑 ∧ 𝑝 ∈ 𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞 ∈ 𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → (𝑋(+g‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑌) = [(𝑝(+g‘𝑅)𝑞)](𝑅 ~QG 𝐼)) |
| 45 | 13, 16, 44 | 3eqtr4d 2781 |
. . . 4
⊢
(((((𝜑 ∧ 𝑝 ∈ 𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞 ∈ 𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → (𝑋(+g‘𝑄)𝑌) = (𝑋(+g‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑌)) |
| 46 | | opprqusplusg.y |
. . . . . . 7
⊢ (𝜑 → 𝑌 ∈ 𝐸) |
| 47 | | opprqusplusg.e |
. . . . . . . 8
⊢ 𝐸 = (Base‘𝑄) |
| 48 | 9 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼))) |
| 49 | 10 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → 𝐵 = (Base‘𝑅)) |
| 50 | | ovexd 7445 |
. . . . . . . . 9
⊢ (𝜑 → (𝑅 ~QG 𝐼) ∈ V) |
| 51 | 48, 49, 50, 17 | qusbas 17564 |
. . . . . . . 8
⊢ (𝜑 → (𝐵 / (𝑅 ~QG 𝐼)) = (Base‘𝑄)) |
| 52 | 47, 51 | eqtr4id 2790 |
. . . . . . 7
⊢ (𝜑 → 𝐸 = (𝐵 / (𝑅 ~QG 𝐼))) |
| 53 | 46, 52 | eleqtrd 2837 |
. . . . . 6
⊢ (𝜑 → 𝑌 ∈ (𝐵 / (𝑅 ~QG 𝐼))) |
| 54 | 53 | ad2antrr 726 |
. . . . 5
⊢ (((𝜑 ∧ 𝑝 ∈ 𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) → 𝑌 ∈ (𝐵 / (𝑅 ~QG 𝐼))) |
| 55 | | elqsi 8789 |
. . . . 5
⊢ (𝑌 ∈ (𝐵 / (𝑅 ~QG 𝐼)) → ∃𝑞 ∈ 𝐵 𝑌 = [𝑞](𝑅 ~QG 𝐼)) |
| 56 | 54, 55 | syl 17 |
. . . 4
⊢ (((𝜑 ∧ 𝑝 ∈ 𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) → ∃𝑞 ∈ 𝐵 𝑌 = [𝑞](𝑅 ~QG 𝐼)) |
| 57 | 45, 56 | r19.29a 3149 |
. . 3
⊢ (((𝜑 ∧ 𝑝 ∈ 𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) → (𝑋(+g‘𝑄)𝑌) = (𝑋(+g‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑌)) |
| 58 | | opprqusplusg.x |
. . . . 5
⊢ (𝜑 → 𝑋 ∈ 𝐸) |
| 59 | 58, 52 | eleqtrd 2837 |
. . . 4
⊢ (𝜑 → 𝑋 ∈ (𝐵 / (𝑅 ~QG 𝐼))) |
| 60 | | elqsi 8789 |
. . . 4
⊢ (𝑋 ∈ (𝐵 / (𝑅 ~QG 𝐼)) → ∃𝑝 ∈ 𝐵 𝑋 = [𝑝](𝑅 ~QG 𝐼)) |
| 61 | 59, 60 | syl 17 |
. . 3
⊢ (𝜑 → ∃𝑝 ∈ 𝐵 𝑋 = [𝑝](𝑅 ~QG 𝐼)) |
| 62 | 57, 61 | r19.29a 3149 |
. 2
⊢ (𝜑 → (𝑋(+g‘𝑄)𝑌) = (𝑋(+g‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑌)) |
| 63 | 4, 62 | eqtr3id 2785 |
1
⊢ (𝜑 → (𝑋(+g‘(oppr‘𝑄))𝑌) = (𝑋(+g‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑌)) |