Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opprqusplusg Structured version   Visualization version   GIF version

Theorem opprqusplusg 33509
Description: The group operation of the quotient of the opposite ring is the same as the group operation of the opposite of the quotient ring. (Contributed by Thierry Arnoux, 13-Mar-2025.)
Hypotheses
Ref Expression
opprqus.b 𝐵 = (Base‘𝑅)
opprqus.o 𝑂 = (oppr𝑅)
opprqus.q 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼))
opprqus.i (𝜑𝐼 ∈ (NrmSGrp‘𝑅))
opprqusplusg.e 𝐸 = (Base‘𝑄)
opprqusplusg.x (𝜑𝑋𝐸)
opprqusplusg.y (𝜑𝑌𝐸)
Assertion
Ref Expression
opprqusplusg (𝜑 → (𝑋(+g‘(oppr𝑄))𝑌) = (𝑋(+g‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑌))

Proof of Theorem opprqusplusg
Dummy variables 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . . 4 (oppr𝑄) = (oppr𝑄)
2 eqid 2736 . . . 4 (+g𝑄) = (+g𝑄)
31, 2oppradd 20309 . . 3 (+g𝑄) = (+g‘(oppr𝑄))
43oveqi 7423 . 2 (𝑋(+g𝑄)𝑌) = (𝑋(+g‘(oppr𝑄))𝑌)
5 opprqus.i . . . . . . 7 (𝜑𝐼 ∈ (NrmSGrp‘𝑅))
65ad4antr 732 . . . . . 6 (((((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → 𝐼 ∈ (NrmSGrp‘𝑅))
7 simp-4r 783 . . . . . 6 (((((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → 𝑝𝐵)
8 simplr 768 . . . . . 6 (((((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → 𝑞𝐵)
9 opprqus.q . . . . . . 7 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼))
10 opprqus.b . . . . . . 7 𝐵 = (Base‘𝑅)
11 eqid 2736 . . . . . . 7 (+g𝑅) = (+g𝑅)
129, 10, 11, 2qusadd 19176 . . . . . 6 ((𝐼 ∈ (NrmSGrp‘𝑅) ∧ 𝑝𝐵𝑞𝐵) → ([𝑝](𝑅 ~QG 𝐼)(+g𝑄)[𝑞](𝑅 ~QG 𝐼)) = [(𝑝(+g𝑅)𝑞)](𝑅 ~QG 𝐼))
136, 7, 8, 12syl3anc 1373 . . . . 5 (((((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → ([𝑝](𝑅 ~QG 𝐼)(+g𝑄)[𝑞](𝑅 ~QG 𝐼)) = [(𝑝(+g𝑅)𝑞)](𝑅 ~QG 𝐼))
14 simpllr 775 . . . . . 6 (((((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → 𝑋 = [𝑝](𝑅 ~QG 𝐼))
15 simpr 484 . . . . . 6 (((((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → 𝑌 = [𝑞](𝑅 ~QG 𝐼))
1614, 15oveq12d 7428 . . . . 5 (((((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → (𝑋(+g𝑄)𝑌) = ([𝑝](𝑅 ~QG 𝐼)(+g𝑄)[𝑞](𝑅 ~QG 𝐼)))
175elfvexd 6920 . . . . . . . . . . 11 (𝜑𝑅 ∈ V)
18 nsgsubg 19146 . . . . . . . . . . . 12 (𝐼 ∈ (NrmSGrp‘𝑅) → 𝐼 ∈ (SubGrp‘𝑅))
1910subgss 19115 . . . . . . . . . . . 12 (𝐼 ∈ (SubGrp‘𝑅) → 𝐼𝐵)
205, 18, 193syl 18 . . . . . . . . . . 11 (𝜑𝐼𝐵)
21 opprqus.o . . . . . . . . . . . 12 𝑂 = (oppr𝑅)
2221, 10oppreqg 33503 . . . . . . . . . . 11 ((𝑅 ∈ V ∧ 𝐼𝐵) → (𝑅 ~QG 𝐼) = (𝑂 ~QG 𝐼))
2317, 20, 22syl2anc 584 . . . . . . . . . 10 (𝜑 → (𝑅 ~QG 𝐼) = (𝑂 ~QG 𝐼))
2423eceq2d 8767 . . . . . . . . 9 (𝜑 → [𝑝](𝑅 ~QG 𝐼) = [𝑝](𝑂 ~QG 𝐼))
2523eceq2d 8767 . . . . . . . . 9 (𝜑 → [𝑞](𝑅 ~QG 𝐼) = [𝑞](𝑂 ~QG 𝐼))
2624, 25oveq12d 7428 . . . . . . . 8 (𝜑 → ([𝑝](𝑅 ~QG 𝐼)(+g‘(𝑂 /s (𝑂 ~QG 𝐼)))[𝑞](𝑅 ~QG 𝐼)) = ([𝑝](𝑂 ~QG 𝐼)(+g‘(𝑂 /s (𝑂 ~QG 𝐼)))[𝑞](𝑂 ~QG 𝐼)))
2726ad4antr 732 . . . . . . 7 (((((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → ([𝑝](𝑅 ~QG 𝐼)(+g‘(𝑂 /s (𝑂 ~QG 𝐼)))[𝑞](𝑅 ~QG 𝐼)) = ([𝑝](𝑂 ~QG 𝐼)(+g‘(𝑂 /s (𝑂 ~QG 𝐼)))[𝑞](𝑂 ~QG 𝐼)))
2821opprnsg 33504 . . . . . . . . . 10 (NrmSGrp‘𝑅) = (NrmSGrp‘𝑂)
295, 28eleqtrdi 2845 . . . . . . . . 9 (𝜑𝐼 ∈ (NrmSGrp‘𝑂))
3029ad4antr 732 . . . . . . . 8 (((((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → 𝐼 ∈ (NrmSGrp‘𝑂))
317, 10eleqtrdi 2845 . . . . . . . 8 (((((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → 𝑝 ∈ (Base‘𝑅))
328, 10eleqtrdi 2845 . . . . . . . 8 (((((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → 𝑞 ∈ (Base‘𝑅))
33 eqid 2736 . . . . . . . . 9 (𝑂 /s (𝑂 ~QG 𝐼)) = (𝑂 /s (𝑂 ~QG 𝐼))
3421, 10opprbas 20308 . . . . . . . . . 10 𝐵 = (Base‘𝑂)
3510, 34eqtr3i 2761 . . . . . . . . 9 (Base‘𝑅) = (Base‘𝑂)
3621, 11oppradd 20309 . . . . . . . . 9 (+g𝑅) = (+g𝑂)
37 eqid 2736 . . . . . . . . 9 (+g‘(𝑂 /s (𝑂 ~QG 𝐼))) = (+g‘(𝑂 /s (𝑂 ~QG 𝐼)))
3833, 35, 36, 37qusadd 19176 . . . . . . . 8 ((𝐼 ∈ (NrmSGrp‘𝑂) ∧ 𝑝 ∈ (Base‘𝑅) ∧ 𝑞 ∈ (Base‘𝑅)) → ([𝑝](𝑂 ~QG 𝐼)(+g‘(𝑂 /s (𝑂 ~QG 𝐼)))[𝑞](𝑂 ~QG 𝐼)) = [(𝑝(+g𝑅)𝑞)](𝑂 ~QG 𝐼))
3930, 31, 32, 38syl3anc 1373 . . . . . . 7 (((((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → ([𝑝](𝑂 ~QG 𝐼)(+g‘(𝑂 /s (𝑂 ~QG 𝐼)))[𝑞](𝑂 ~QG 𝐼)) = [(𝑝(+g𝑅)𝑞)](𝑂 ~QG 𝐼))
4027, 39eqtrd 2771 . . . . . 6 (((((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → ([𝑝](𝑅 ~QG 𝐼)(+g‘(𝑂 /s (𝑂 ~QG 𝐼)))[𝑞](𝑅 ~QG 𝐼)) = [(𝑝(+g𝑅)𝑞)](𝑂 ~QG 𝐼))
4114, 15oveq12d 7428 . . . . . 6 (((((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → (𝑋(+g‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑌) = ([𝑝](𝑅 ~QG 𝐼)(+g‘(𝑂 /s (𝑂 ~QG 𝐼)))[𝑞](𝑅 ~QG 𝐼)))
4223ad4antr 732 . . . . . . 7 (((((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → (𝑅 ~QG 𝐼) = (𝑂 ~QG 𝐼))
4342eceq2d 8767 . . . . . 6 (((((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → [(𝑝(+g𝑅)𝑞)](𝑅 ~QG 𝐼) = [(𝑝(+g𝑅)𝑞)](𝑂 ~QG 𝐼))
4440, 41, 433eqtr4d 2781 . . . . 5 (((((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → (𝑋(+g‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑌) = [(𝑝(+g𝑅)𝑞)](𝑅 ~QG 𝐼))
4513, 16, 443eqtr4d 2781 . . . 4 (((((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → (𝑋(+g𝑄)𝑌) = (𝑋(+g‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑌))
46 opprqusplusg.y . . . . . . 7 (𝜑𝑌𝐸)
47 opprqusplusg.e . . . . . . . 8 𝐸 = (Base‘𝑄)
489a1i 11 . . . . . . . . 9 (𝜑𝑄 = (𝑅 /s (𝑅 ~QG 𝐼)))
4910a1i 11 . . . . . . . . 9 (𝜑𝐵 = (Base‘𝑅))
50 ovexd 7445 . . . . . . . . 9 (𝜑 → (𝑅 ~QG 𝐼) ∈ V)
5148, 49, 50, 17qusbas 17564 . . . . . . . 8 (𝜑 → (𝐵 / (𝑅 ~QG 𝐼)) = (Base‘𝑄))
5247, 51eqtr4id 2790 . . . . . . 7 (𝜑𝐸 = (𝐵 / (𝑅 ~QG 𝐼)))
5346, 52eleqtrd 2837 . . . . . 6 (𝜑𝑌 ∈ (𝐵 / (𝑅 ~QG 𝐼)))
5453ad2antrr 726 . . . . 5 (((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) → 𝑌 ∈ (𝐵 / (𝑅 ~QG 𝐼)))
55 elqsi 8789 . . . . 5 (𝑌 ∈ (𝐵 / (𝑅 ~QG 𝐼)) → ∃𝑞𝐵 𝑌 = [𝑞](𝑅 ~QG 𝐼))
5654, 55syl 17 . . . 4 (((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) → ∃𝑞𝐵 𝑌 = [𝑞](𝑅 ~QG 𝐼))
5745, 56r19.29a 3149 . . 3 (((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) → (𝑋(+g𝑄)𝑌) = (𝑋(+g‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑌))
58 opprqusplusg.x . . . . 5 (𝜑𝑋𝐸)
5958, 52eleqtrd 2837 . . . 4 (𝜑𝑋 ∈ (𝐵 / (𝑅 ~QG 𝐼)))
60 elqsi 8789 . . . 4 (𝑋 ∈ (𝐵 / (𝑅 ~QG 𝐼)) → ∃𝑝𝐵 𝑋 = [𝑝](𝑅 ~QG 𝐼))
6159, 60syl 17 . . 3 (𝜑 → ∃𝑝𝐵 𝑋 = [𝑝](𝑅 ~QG 𝐼))
6257, 61r19.29a 3149 . 2 (𝜑 → (𝑋(+g𝑄)𝑌) = (𝑋(+g‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑌))
634, 62eqtr3id 2785 1 (𝜑 → (𝑋(+g‘(oppr𝑄))𝑌) = (𝑋(+g‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wrex 3061  Vcvv 3464  wss 3931  cfv 6536  (class class class)co 7410  [cec 8722   / cqs 8723  Basecbs 17233  +gcplusg 17276   /s cqus 17524  SubGrpcsubg 19108  NrmSGrpcnsg 19109   ~QG cqg 19110  opprcoppr 20301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-tpos 8230  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-ec 8726  df-qs 8730  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9459  df-inf 9460  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-fz 13530  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-sca 17292  df-vsca 17293  df-ip 17294  df-tset 17295  df-ple 17296  df-ds 17298  df-0g 17460  df-imas 17527  df-qus 17528  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-grp 18924  df-minusg 18925  df-subg 19111  df-nsg 19112  df-eqg 19113  df-oppr 20302
This theorem is referenced by:  opprqus0g  33510
  Copyright terms: Public domain W3C validator