Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opprqusplusg Structured version   Visualization version   GIF version

Theorem opprqusplusg 33454
Description: The group operation of the quotient of the opposite ring is the same as the group operation of the opposite of the quotient ring. (Contributed by Thierry Arnoux, 13-Mar-2025.)
Hypotheses
Ref Expression
opprqus.b 𝐵 = (Base‘𝑅)
opprqus.o 𝑂 = (oppr𝑅)
opprqus.q 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼))
opprqus.i (𝜑𝐼 ∈ (NrmSGrp‘𝑅))
opprqusplusg.e 𝐸 = (Base‘𝑄)
opprqusplusg.x (𝜑𝑋𝐸)
opprqusplusg.y (𝜑𝑌𝐸)
Assertion
Ref Expression
opprqusplusg (𝜑 → (𝑋(+g‘(oppr𝑄))𝑌) = (𝑋(+g‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑌))

Proof of Theorem opprqusplusg
Dummy variables 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . . 4 (oppr𝑄) = (oppr𝑄)
2 eqid 2731 . . . 4 (+g𝑄) = (+g𝑄)
31, 2oppradd 20262 . . 3 (+g𝑄) = (+g‘(oppr𝑄))
43oveqi 7359 . 2 (𝑋(+g𝑄)𝑌) = (𝑋(+g‘(oppr𝑄))𝑌)
5 opprqus.i . . . . . . 7 (𝜑𝐼 ∈ (NrmSGrp‘𝑅))
65ad4antr 732 . . . . . 6 (((((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → 𝐼 ∈ (NrmSGrp‘𝑅))
7 simp-4r 783 . . . . . 6 (((((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → 𝑝𝐵)
8 simplr 768 . . . . . 6 (((((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → 𝑞𝐵)
9 opprqus.q . . . . . . 7 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼))
10 opprqus.b . . . . . . 7 𝐵 = (Base‘𝑅)
11 eqid 2731 . . . . . . 7 (+g𝑅) = (+g𝑅)
129, 10, 11, 2qusadd 19100 . . . . . 6 ((𝐼 ∈ (NrmSGrp‘𝑅) ∧ 𝑝𝐵𝑞𝐵) → ([𝑝](𝑅 ~QG 𝐼)(+g𝑄)[𝑞](𝑅 ~QG 𝐼)) = [(𝑝(+g𝑅)𝑞)](𝑅 ~QG 𝐼))
136, 7, 8, 12syl3anc 1373 . . . . 5 (((((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → ([𝑝](𝑅 ~QG 𝐼)(+g𝑄)[𝑞](𝑅 ~QG 𝐼)) = [(𝑝(+g𝑅)𝑞)](𝑅 ~QG 𝐼))
14 simpllr 775 . . . . . 6 (((((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → 𝑋 = [𝑝](𝑅 ~QG 𝐼))
15 simpr 484 . . . . . 6 (((((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → 𝑌 = [𝑞](𝑅 ~QG 𝐼))
1614, 15oveq12d 7364 . . . . 5 (((((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → (𝑋(+g𝑄)𝑌) = ([𝑝](𝑅 ~QG 𝐼)(+g𝑄)[𝑞](𝑅 ~QG 𝐼)))
175elfvexd 6858 . . . . . . . . . . 11 (𝜑𝑅 ∈ V)
18 nsgsubg 19070 . . . . . . . . . . . 12 (𝐼 ∈ (NrmSGrp‘𝑅) → 𝐼 ∈ (SubGrp‘𝑅))
1910subgss 19040 . . . . . . . . . . . 12 (𝐼 ∈ (SubGrp‘𝑅) → 𝐼𝐵)
205, 18, 193syl 18 . . . . . . . . . . 11 (𝜑𝐼𝐵)
21 opprqus.o . . . . . . . . . . . 12 𝑂 = (oppr𝑅)
2221, 10oppreqg 33448 . . . . . . . . . . 11 ((𝑅 ∈ V ∧ 𝐼𝐵) → (𝑅 ~QG 𝐼) = (𝑂 ~QG 𝐼))
2317, 20, 22syl2anc 584 . . . . . . . . . 10 (𝜑 → (𝑅 ~QG 𝐼) = (𝑂 ~QG 𝐼))
2423eceq2d 8665 . . . . . . . . 9 (𝜑 → [𝑝](𝑅 ~QG 𝐼) = [𝑝](𝑂 ~QG 𝐼))
2523eceq2d 8665 . . . . . . . . 9 (𝜑 → [𝑞](𝑅 ~QG 𝐼) = [𝑞](𝑂 ~QG 𝐼))
2624, 25oveq12d 7364 . . . . . . . 8 (𝜑 → ([𝑝](𝑅 ~QG 𝐼)(+g‘(𝑂 /s (𝑂 ~QG 𝐼)))[𝑞](𝑅 ~QG 𝐼)) = ([𝑝](𝑂 ~QG 𝐼)(+g‘(𝑂 /s (𝑂 ~QG 𝐼)))[𝑞](𝑂 ~QG 𝐼)))
2726ad4antr 732 . . . . . . 7 (((((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → ([𝑝](𝑅 ~QG 𝐼)(+g‘(𝑂 /s (𝑂 ~QG 𝐼)))[𝑞](𝑅 ~QG 𝐼)) = ([𝑝](𝑂 ~QG 𝐼)(+g‘(𝑂 /s (𝑂 ~QG 𝐼)))[𝑞](𝑂 ~QG 𝐼)))
2821opprnsg 33449 . . . . . . . . . 10 (NrmSGrp‘𝑅) = (NrmSGrp‘𝑂)
295, 28eleqtrdi 2841 . . . . . . . . 9 (𝜑𝐼 ∈ (NrmSGrp‘𝑂))
3029ad4antr 732 . . . . . . . 8 (((((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → 𝐼 ∈ (NrmSGrp‘𝑂))
317, 10eleqtrdi 2841 . . . . . . . 8 (((((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → 𝑝 ∈ (Base‘𝑅))
328, 10eleqtrdi 2841 . . . . . . . 8 (((((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → 𝑞 ∈ (Base‘𝑅))
33 eqid 2731 . . . . . . . . 9 (𝑂 /s (𝑂 ~QG 𝐼)) = (𝑂 /s (𝑂 ~QG 𝐼))
3421, 10opprbas 20261 . . . . . . . . . 10 𝐵 = (Base‘𝑂)
3510, 34eqtr3i 2756 . . . . . . . . 9 (Base‘𝑅) = (Base‘𝑂)
3621, 11oppradd 20262 . . . . . . . . 9 (+g𝑅) = (+g𝑂)
37 eqid 2731 . . . . . . . . 9 (+g‘(𝑂 /s (𝑂 ~QG 𝐼))) = (+g‘(𝑂 /s (𝑂 ~QG 𝐼)))
3833, 35, 36, 37qusadd 19100 . . . . . . . 8 ((𝐼 ∈ (NrmSGrp‘𝑂) ∧ 𝑝 ∈ (Base‘𝑅) ∧ 𝑞 ∈ (Base‘𝑅)) → ([𝑝](𝑂 ~QG 𝐼)(+g‘(𝑂 /s (𝑂 ~QG 𝐼)))[𝑞](𝑂 ~QG 𝐼)) = [(𝑝(+g𝑅)𝑞)](𝑂 ~QG 𝐼))
3930, 31, 32, 38syl3anc 1373 . . . . . . 7 (((((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → ([𝑝](𝑂 ~QG 𝐼)(+g‘(𝑂 /s (𝑂 ~QG 𝐼)))[𝑞](𝑂 ~QG 𝐼)) = [(𝑝(+g𝑅)𝑞)](𝑂 ~QG 𝐼))
4027, 39eqtrd 2766 . . . . . 6 (((((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → ([𝑝](𝑅 ~QG 𝐼)(+g‘(𝑂 /s (𝑂 ~QG 𝐼)))[𝑞](𝑅 ~QG 𝐼)) = [(𝑝(+g𝑅)𝑞)](𝑂 ~QG 𝐼))
4114, 15oveq12d 7364 . . . . . 6 (((((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → (𝑋(+g‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑌) = ([𝑝](𝑅 ~QG 𝐼)(+g‘(𝑂 /s (𝑂 ~QG 𝐼)))[𝑞](𝑅 ~QG 𝐼)))
4223ad4antr 732 . . . . . . 7 (((((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → (𝑅 ~QG 𝐼) = (𝑂 ~QG 𝐼))
4342eceq2d 8665 . . . . . 6 (((((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → [(𝑝(+g𝑅)𝑞)](𝑅 ~QG 𝐼) = [(𝑝(+g𝑅)𝑞)](𝑂 ~QG 𝐼))
4440, 41, 433eqtr4d 2776 . . . . 5 (((((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → (𝑋(+g‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑌) = [(𝑝(+g𝑅)𝑞)](𝑅 ~QG 𝐼))
4513, 16, 443eqtr4d 2776 . . . 4 (((((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → (𝑋(+g𝑄)𝑌) = (𝑋(+g‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑌))
46 opprqusplusg.y . . . . . . 7 (𝜑𝑌𝐸)
47 opprqusplusg.e . . . . . . . 8 𝐸 = (Base‘𝑄)
489a1i 11 . . . . . . . . 9 (𝜑𝑄 = (𝑅 /s (𝑅 ~QG 𝐼)))
4910a1i 11 . . . . . . . . 9 (𝜑𝐵 = (Base‘𝑅))
50 ovexd 7381 . . . . . . . . 9 (𝜑 → (𝑅 ~QG 𝐼) ∈ V)
5148, 49, 50, 17qusbas 17449 . . . . . . . 8 (𝜑 → (𝐵 / (𝑅 ~QG 𝐼)) = (Base‘𝑄))
5247, 51eqtr4id 2785 . . . . . . 7 (𝜑𝐸 = (𝐵 / (𝑅 ~QG 𝐼)))
5346, 52eleqtrd 2833 . . . . . 6 (𝜑𝑌 ∈ (𝐵 / (𝑅 ~QG 𝐼)))
5453ad2antrr 726 . . . . 5 (((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) → 𝑌 ∈ (𝐵 / (𝑅 ~QG 𝐼)))
55 elqsi 8690 . . . . 5 (𝑌 ∈ (𝐵 / (𝑅 ~QG 𝐼)) → ∃𝑞𝐵 𝑌 = [𝑞](𝑅 ~QG 𝐼))
5654, 55syl 17 . . . 4 (((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) → ∃𝑞𝐵 𝑌 = [𝑞](𝑅 ~QG 𝐼))
5745, 56r19.29a 3140 . . 3 (((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) → (𝑋(+g𝑄)𝑌) = (𝑋(+g‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑌))
58 opprqusplusg.x . . . . 5 (𝜑𝑋𝐸)
5958, 52eleqtrd 2833 . . . 4 (𝜑𝑋 ∈ (𝐵 / (𝑅 ~QG 𝐼)))
60 elqsi 8690 . . . 4 (𝑋 ∈ (𝐵 / (𝑅 ~QG 𝐼)) → ∃𝑝𝐵 𝑋 = [𝑝](𝑅 ~QG 𝐼))
6159, 60syl 17 . . 3 (𝜑 → ∃𝑝𝐵 𝑋 = [𝑝](𝑅 ~QG 𝐼))
6257, 61r19.29a 3140 . 2 (𝜑 → (𝑋(+g𝑄)𝑌) = (𝑋(+g‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑌))
634, 62eqtr3id 2780 1 (𝜑 → (𝑋(+g‘(oppr𝑄))𝑌) = (𝑋(+g‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wrex 3056  Vcvv 3436  wss 3897  cfv 6481  (class class class)co 7346  [cec 8620   / cqs 8621  Basecbs 17120  +gcplusg 17161   /s cqus 17409  SubGrpcsubg 19033  NrmSGrpcnsg 19034   ~QG cqg 19035  opprcoppr 20254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-tpos 8156  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-ec 8624  df-qs 8628  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-fz 13408  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-0g 17345  df-imas 17412  df-qus 17413  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-grp 18849  df-minusg 18850  df-subg 19036  df-nsg 19037  df-eqg 19038  df-oppr 20255
This theorem is referenced by:  opprqus0g  33455
  Copyright terms: Public domain W3C validator