Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opprqusmulr Structured version   Visualization version   GIF version

Theorem opprqusmulr 33435
Description: The multiplication operation of the quotient of the opposite ring is the same as the multiplication operation of the opposite of the quotient ring. (Contributed by Thierry Arnoux, 9-Mar-2025.)
Hypotheses
Ref Expression
opprqus.b 𝐵 = (Base‘𝑅)
opprqus.o 𝑂 = (oppr𝑅)
opprqus.q 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼))
opprqus1r.r (𝜑𝑅 ∈ Ring)
opprqus1r.i (𝜑𝐼 ∈ (2Ideal‘𝑅))
opprqusmulr.e 𝐸 = (Base‘𝑄)
opprqusmulr.x (𝜑𝑋𝐸)
opprqusmulr.y (𝜑𝑌𝐸)
Assertion
Ref Expression
opprqusmulr (𝜑 → (𝑋(.r‘(oppr𝑄))𝑌) = (𝑋(.r‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑌))

Proof of Theorem opprqusmulr
Dummy variables 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opprqusmulr.e . . 3 𝐸 = (Base‘𝑄)
2 eqid 2729 . . 3 (.r𝑄) = (.r𝑄)
3 eqid 2729 . . 3 (oppr𝑄) = (oppr𝑄)
4 eqid 2729 . . 3 (.r‘(oppr𝑄)) = (.r‘(oppr𝑄))
51, 2, 3, 4opprmul 20225 . 2 (𝑋(.r‘(oppr𝑄))𝑌) = (𝑌(.r𝑄)𝑋)
6 opprqus.q . . . . . 6 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼))
7 opprqus.b . . . . . 6 𝐵 = (Base‘𝑅)
8 eqid 2729 . . . . . 6 (.r𝑅) = (.r𝑅)
9 opprqus1r.r . . . . . . 7 (𝜑𝑅 ∈ Ring)
109ad4antr 732 . . . . . 6 (((((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → 𝑅 ∈ Ring)
11 opprqus1r.i . . . . . . 7 (𝜑𝐼 ∈ (2Ideal‘𝑅))
1211ad4antr 732 . . . . . 6 (((((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → 𝐼 ∈ (2Ideal‘𝑅))
13 simplr 768 . . . . . 6 (((((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → 𝑞𝐵)
14 simp-4r 783 . . . . . 6 (((((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → 𝑝𝐵)
156, 7, 8, 2, 10, 12, 13, 14qusmul2idl 21165 . . . . 5 (((((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → ([𝑞](𝑅 ~QG 𝐼)(.r𝑄)[𝑝](𝑅 ~QG 𝐼)) = [(𝑞(.r𝑅)𝑝)](𝑅 ~QG 𝐼))
16 simpr 484 . . . . . 6 (((((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → 𝑌 = [𝑞](𝑅 ~QG 𝐼))
17 simpllr 775 . . . . . 6 (((((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → 𝑋 = [𝑝](𝑅 ~QG 𝐼))
1816, 17oveq12d 7387 . . . . 5 (((((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → (𝑌(.r𝑄)𝑋) = ([𝑞](𝑅 ~QG 𝐼)(.r𝑄)[𝑝](𝑅 ~QG 𝐼)))
19 eqid 2729 . . . . . . 7 (𝑂 /s (𝑂 ~QG 𝐼)) = (𝑂 /s (𝑂 ~QG 𝐼))
20 opprqus.o . . . . . . . 8 𝑂 = (oppr𝑅)
2120, 7opprbas 20228 . . . . . . 7 𝐵 = (Base‘𝑂)
22 eqid 2729 . . . . . . 7 (.r𝑂) = (.r𝑂)
23 eqid 2729 . . . . . . 7 (.r‘(𝑂 /s (𝑂 ~QG 𝐼))) = (.r‘(𝑂 /s (𝑂 ~QG 𝐼)))
2420opprring 20232 . . . . . . . . 9 (𝑅 ∈ Ring → 𝑂 ∈ Ring)
259, 24syl 17 . . . . . . . 8 (𝜑𝑂 ∈ Ring)
2625ad4antr 732 . . . . . . 7 (((((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → 𝑂 ∈ Ring)
2720, 9oppr2idl 33430 . . . . . . . . 9 (𝜑 → (2Ideal‘𝑅) = (2Ideal‘𝑂))
2811, 27eleqtrd 2830 . . . . . . . 8 (𝜑𝐼 ∈ (2Ideal‘𝑂))
2928ad4antr 732 . . . . . . 7 (((((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → 𝐼 ∈ (2Ideal‘𝑂))
3019, 21, 22, 23, 26, 29, 14, 13qusmul2idl 21165 . . . . . 6 (((((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → ([𝑝](𝑂 ~QG 𝐼)(.r‘(𝑂 /s (𝑂 ~QG 𝐼)))[𝑞](𝑂 ~QG 𝐼)) = [(𝑝(.r𝑂)𝑞)](𝑂 ~QG 𝐼))
31112idllidld 21140 . . . . . . . . . . . 12 (𝜑𝐼 ∈ (LIdeal‘𝑅))
32 eqid 2729 . . . . . . . . . . . . 13 (LIdeal‘𝑅) = (LIdeal‘𝑅)
337, 32lidlss 21098 . . . . . . . . . . . 12 (𝐼 ∈ (LIdeal‘𝑅) → 𝐼𝐵)
3431, 33syl 17 . . . . . . . . . . 11 (𝜑𝐼𝐵)
3520, 7oppreqg 33427 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝐼𝐵) → (𝑅 ~QG 𝐼) = (𝑂 ~QG 𝐼))
369, 34, 35syl2anc 584 . . . . . . . . . 10 (𝜑 → (𝑅 ~QG 𝐼) = (𝑂 ~QG 𝐼))
3736ad4antr 732 . . . . . . . . 9 (((((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → (𝑅 ~QG 𝐼) = (𝑂 ~QG 𝐼))
3837eceq2d 8691 . . . . . . . 8 (((((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → [𝑝](𝑅 ~QG 𝐼) = [𝑝](𝑂 ~QG 𝐼))
3917, 38eqtrd 2764 . . . . . . 7 (((((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → 𝑋 = [𝑝](𝑂 ~QG 𝐼))
4037eceq2d 8691 . . . . . . . 8 (((((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → [𝑞](𝑅 ~QG 𝐼) = [𝑞](𝑂 ~QG 𝐼))
4116, 40eqtrd 2764 . . . . . . 7 (((((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → 𝑌 = [𝑞](𝑂 ~QG 𝐼))
4239, 41oveq12d 7387 . . . . . 6 (((((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → (𝑋(.r‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑌) = ([𝑝](𝑂 ~QG 𝐼)(.r‘(𝑂 /s (𝑂 ~QG 𝐼)))[𝑞](𝑂 ~QG 𝐼)))
437, 8, 20, 22opprmul 20225 . . . . . . . . 9 (𝑝(.r𝑂)𝑞) = (𝑞(.r𝑅)𝑝)
4443a1i 11 . . . . . . . 8 (((((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → (𝑝(.r𝑂)𝑞) = (𝑞(.r𝑅)𝑝))
4544eceq1d 8688 . . . . . . 7 (((((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → [(𝑝(.r𝑂)𝑞)](𝑅 ~QG 𝐼) = [(𝑞(.r𝑅)𝑝)](𝑅 ~QG 𝐼))
4637eceq2d 8691 . . . . . . 7 (((((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → [(𝑝(.r𝑂)𝑞)](𝑅 ~QG 𝐼) = [(𝑝(.r𝑂)𝑞)](𝑂 ~QG 𝐼))
4745, 46eqtr3d 2766 . . . . . 6 (((((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → [(𝑞(.r𝑅)𝑝)](𝑅 ~QG 𝐼) = [(𝑝(.r𝑂)𝑞)](𝑂 ~QG 𝐼))
4830, 42, 473eqtr4d 2774 . . . . 5 (((((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → (𝑋(.r‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑌) = [(𝑞(.r𝑅)𝑝)](𝑅 ~QG 𝐼))
4915, 18, 483eqtr4d 2774 . . . 4 (((((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → (𝑌(.r𝑄)𝑋) = (𝑋(.r‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑌))
50 opprqusmulr.y . . . . . . . 8 (𝜑𝑌𝐸)
513, 1opprbas 20228 . . . . . . . 8 𝐸 = (Base‘(oppr𝑄))
5250, 51eleqtrdi 2838 . . . . . . 7 (𝜑𝑌 ∈ (Base‘(oppr𝑄)))
5352ad2antrr 726 . . . . . 6 (((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) → 𝑌 ∈ (Base‘(oppr𝑄)))
546a1i 11 . . . . . . . . 9 (𝜑𝑄 = (𝑅 /s (𝑅 ~QG 𝐼)))
557a1i 11 . . . . . . . . 9 (𝜑𝐵 = (Base‘𝑅))
56 ovexd 7404 . . . . . . . . 9 (𝜑 → (𝑅 ~QG 𝐼) ∈ V)
5754, 55, 56, 9qusbas 17484 . . . . . . . 8 (𝜑 → (𝐵 / (𝑅 ~QG 𝐼)) = (Base‘𝑄))
581, 51eqtr3i 2754 . . . . . . . 8 (Base‘𝑄) = (Base‘(oppr𝑄))
5957, 58eqtr2di 2781 . . . . . . 7 (𝜑 → (Base‘(oppr𝑄)) = (𝐵 / (𝑅 ~QG 𝐼)))
6059ad2antrr 726 . . . . . 6 (((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) → (Base‘(oppr𝑄)) = (𝐵 / (𝑅 ~QG 𝐼)))
6153, 60eleqtrd 2830 . . . . 5 (((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) → 𝑌 ∈ (𝐵 / (𝑅 ~QG 𝐼)))
62 elqsi 8716 . . . . 5 (𝑌 ∈ (𝐵 / (𝑅 ~QG 𝐼)) → ∃𝑞𝐵 𝑌 = [𝑞](𝑅 ~QG 𝐼))
6361, 62syl 17 . . . 4 (((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) → ∃𝑞𝐵 𝑌 = [𝑞](𝑅 ~QG 𝐼))
6449, 63r19.29a 3141 . . 3 (((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) → (𝑌(.r𝑄)𝑋) = (𝑋(.r‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑌))
65 opprqusmulr.x . . . . . 6 (𝜑𝑋𝐸)
6665, 51eleqtrdi 2838 . . . . 5 (𝜑𝑋 ∈ (Base‘(oppr𝑄)))
6766, 59eleqtrd 2830 . . . 4 (𝜑𝑋 ∈ (𝐵 / (𝑅 ~QG 𝐼)))
68 elqsi 8716 . . . 4 (𝑋 ∈ (𝐵 / (𝑅 ~QG 𝐼)) → ∃𝑝𝐵 𝑋 = [𝑝](𝑅 ~QG 𝐼))
6967, 68syl 17 . . 3 (𝜑 → ∃𝑝𝐵 𝑋 = [𝑝](𝑅 ~QG 𝐼))
7064, 69r19.29a 3141 . 2 (𝜑 → (𝑌(.r𝑄)𝑋) = (𝑋(.r‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑌))
715, 70eqtrid 2776 1 (𝜑 → (𝑋(.r‘(oppr𝑄))𝑌) = (𝑋(.r‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wrex 3053  Vcvv 3444  wss 3911  cfv 6499  (class class class)co 7369  [cec 8646   / cqs 8647  Basecbs 17155  .rcmulr 17197   /s cqus 17444   ~QG cqg 19030  Ringcrg 20118  opprcoppr 20221  LIdealclidl 21092  2Idealc2idl 21135
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-tpos 8182  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-ec 8650  df-qs 8654  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-inf 9370  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-fz 13445  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-0g 17380  df-imas 17447  df-qus 17448  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-grp 18844  df-minusg 18845  df-sbg 18846  df-subg 19031  df-eqg 19033  df-cmn 19688  df-abl 19689  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-oppr 20222  df-subrg 20455  df-lmod 20744  df-lss 20814  df-sra 21056  df-rgmod 21057  df-lidl 21094  df-2idl 21136
This theorem is referenced by:  opprqus1r  33436  opprqusdrng  33437  qsdrngi  33439
  Copyright terms: Public domain W3C validator