Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opprqusmulr Structured version   Visualization version   GIF version

Theorem opprqusmulr 33448
Description: The multiplication operation of the quotient of the opposite ring is the same as the multiplication operation of the opposite of the quotient ring. (Contributed by Thierry Arnoux, 9-Mar-2025.)
Hypotheses
Ref Expression
opprqus.b 𝐵 = (Base‘𝑅)
opprqus.o 𝑂 = (oppr𝑅)
opprqus.q 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼))
opprqus1r.r (𝜑𝑅 ∈ Ring)
opprqus1r.i (𝜑𝐼 ∈ (2Ideal‘𝑅))
opprqusmulr.e 𝐸 = (Base‘𝑄)
opprqusmulr.x (𝜑𝑋𝐸)
opprqusmulr.y (𝜑𝑌𝐸)
Assertion
Ref Expression
opprqusmulr (𝜑 → (𝑋(.r‘(oppr𝑄))𝑌) = (𝑋(.r‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑌))

Proof of Theorem opprqusmulr
Dummy variables 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opprqusmulr.e . . 3 𝐸 = (Base‘𝑄)
2 eqid 2731 . . 3 (.r𝑄) = (.r𝑄)
3 eqid 2731 . . 3 (oppr𝑄) = (oppr𝑄)
4 eqid 2731 . . 3 (.r‘(oppr𝑄)) = (.r‘(oppr𝑄))
51, 2, 3, 4opprmul 20253 . 2 (𝑋(.r‘(oppr𝑄))𝑌) = (𝑌(.r𝑄)𝑋)
6 opprqus.q . . . . . 6 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼))
7 opprqus.b . . . . . 6 𝐵 = (Base‘𝑅)
8 eqid 2731 . . . . . 6 (.r𝑅) = (.r𝑅)
9 opprqus1r.r . . . . . . 7 (𝜑𝑅 ∈ Ring)
109ad4antr 732 . . . . . 6 (((((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → 𝑅 ∈ Ring)
11 opprqus1r.i . . . . . . 7 (𝜑𝐼 ∈ (2Ideal‘𝑅))
1211ad4antr 732 . . . . . 6 (((((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → 𝐼 ∈ (2Ideal‘𝑅))
13 simplr 768 . . . . . 6 (((((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → 𝑞𝐵)
14 simp-4r 783 . . . . . 6 (((((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → 𝑝𝐵)
156, 7, 8, 2, 10, 12, 13, 14qusmul2idl 21211 . . . . 5 (((((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → ([𝑞](𝑅 ~QG 𝐼)(.r𝑄)[𝑝](𝑅 ~QG 𝐼)) = [(𝑞(.r𝑅)𝑝)](𝑅 ~QG 𝐼))
16 simpr 484 . . . . . 6 (((((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → 𝑌 = [𝑞](𝑅 ~QG 𝐼))
17 simpllr 775 . . . . . 6 (((((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → 𝑋 = [𝑝](𝑅 ~QG 𝐼))
1816, 17oveq12d 7359 . . . . 5 (((((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → (𝑌(.r𝑄)𝑋) = ([𝑞](𝑅 ~QG 𝐼)(.r𝑄)[𝑝](𝑅 ~QG 𝐼)))
19 eqid 2731 . . . . . . 7 (𝑂 /s (𝑂 ~QG 𝐼)) = (𝑂 /s (𝑂 ~QG 𝐼))
20 opprqus.o . . . . . . . 8 𝑂 = (oppr𝑅)
2120, 7opprbas 20256 . . . . . . 7 𝐵 = (Base‘𝑂)
22 eqid 2731 . . . . . . 7 (.r𝑂) = (.r𝑂)
23 eqid 2731 . . . . . . 7 (.r‘(𝑂 /s (𝑂 ~QG 𝐼))) = (.r‘(𝑂 /s (𝑂 ~QG 𝐼)))
2420opprring 20260 . . . . . . . . 9 (𝑅 ∈ Ring → 𝑂 ∈ Ring)
259, 24syl 17 . . . . . . . 8 (𝜑𝑂 ∈ Ring)
2625ad4antr 732 . . . . . . 7 (((((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → 𝑂 ∈ Ring)
2720, 9oppr2idl 33443 . . . . . . . . 9 (𝜑 → (2Ideal‘𝑅) = (2Ideal‘𝑂))
2811, 27eleqtrd 2833 . . . . . . . 8 (𝜑𝐼 ∈ (2Ideal‘𝑂))
2928ad4antr 732 . . . . . . 7 (((((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → 𝐼 ∈ (2Ideal‘𝑂))
3019, 21, 22, 23, 26, 29, 14, 13qusmul2idl 21211 . . . . . 6 (((((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → ([𝑝](𝑂 ~QG 𝐼)(.r‘(𝑂 /s (𝑂 ~QG 𝐼)))[𝑞](𝑂 ~QG 𝐼)) = [(𝑝(.r𝑂)𝑞)](𝑂 ~QG 𝐼))
31112idllidld 21186 . . . . . . . . . . . 12 (𝜑𝐼 ∈ (LIdeal‘𝑅))
32 eqid 2731 . . . . . . . . . . . . 13 (LIdeal‘𝑅) = (LIdeal‘𝑅)
337, 32lidlss 21144 . . . . . . . . . . . 12 (𝐼 ∈ (LIdeal‘𝑅) → 𝐼𝐵)
3431, 33syl 17 . . . . . . . . . . 11 (𝜑𝐼𝐵)
3520, 7oppreqg 33440 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝐼𝐵) → (𝑅 ~QG 𝐼) = (𝑂 ~QG 𝐼))
369, 34, 35syl2anc 584 . . . . . . . . . 10 (𝜑 → (𝑅 ~QG 𝐼) = (𝑂 ~QG 𝐼))
3736ad4antr 732 . . . . . . . . 9 (((((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → (𝑅 ~QG 𝐼) = (𝑂 ~QG 𝐼))
3837eceq2d 8660 . . . . . . . 8 (((((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → [𝑝](𝑅 ~QG 𝐼) = [𝑝](𝑂 ~QG 𝐼))
3917, 38eqtrd 2766 . . . . . . 7 (((((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → 𝑋 = [𝑝](𝑂 ~QG 𝐼))
4037eceq2d 8660 . . . . . . . 8 (((((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → [𝑞](𝑅 ~QG 𝐼) = [𝑞](𝑂 ~QG 𝐼))
4116, 40eqtrd 2766 . . . . . . 7 (((((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → 𝑌 = [𝑞](𝑂 ~QG 𝐼))
4239, 41oveq12d 7359 . . . . . 6 (((((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → (𝑋(.r‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑌) = ([𝑝](𝑂 ~QG 𝐼)(.r‘(𝑂 /s (𝑂 ~QG 𝐼)))[𝑞](𝑂 ~QG 𝐼)))
437, 8, 20, 22opprmul 20253 . . . . . . . . 9 (𝑝(.r𝑂)𝑞) = (𝑞(.r𝑅)𝑝)
4443a1i 11 . . . . . . . 8 (((((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → (𝑝(.r𝑂)𝑞) = (𝑞(.r𝑅)𝑝))
4544eceq1d 8657 . . . . . . 7 (((((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → [(𝑝(.r𝑂)𝑞)](𝑅 ~QG 𝐼) = [(𝑞(.r𝑅)𝑝)](𝑅 ~QG 𝐼))
4637eceq2d 8660 . . . . . . 7 (((((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → [(𝑝(.r𝑂)𝑞)](𝑅 ~QG 𝐼) = [(𝑝(.r𝑂)𝑞)](𝑂 ~QG 𝐼))
4745, 46eqtr3d 2768 . . . . . 6 (((((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → [(𝑞(.r𝑅)𝑝)](𝑅 ~QG 𝐼) = [(𝑝(.r𝑂)𝑞)](𝑂 ~QG 𝐼))
4830, 42, 473eqtr4d 2776 . . . . 5 (((((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → (𝑋(.r‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑌) = [(𝑞(.r𝑅)𝑝)](𝑅 ~QG 𝐼))
4915, 18, 483eqtr4d 2776 . . . 4 (((((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) ∧ 𝑞𝐵) ∧ 𝑌 = [𝑞](𝑅 ~QG 𝐼)) → (𝑌(.r𝑄)𝑋) = (𝑋(.r‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑌))
50 opprqusmulr.y . . . . . . . 8 (𝜑𝑌𝐸)
513, 1opprbas 20256 . . . . . . . 8 𝐸 = (Base‘(oppr𝑄))
5250, 51eleqtrdi 2841 . . . . . . 7 (𝜑𝑌 ∈ (Base‘(oppr𝑄)))
5352ad2antrr 726 . . . . . 6 (((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) → 𝑌 ∈ (Base‘(oppr𝑄)))
546a1i 11 . . . . . . . . 9 (𝜑𝑄 = (𝑅 /s (𝑅 ~QG 𝐼)))
557a1i 11 . . . . . . . . 9 (𝜑𝐵 = (Base‘𝑅))
56 ovexd 7376 . . . . . . . . 9 (𝜑 → (𝑅 ~QG 𝐼) ∈ V)
5754, 55, 56, 9qusbas 17444 . . . . . . . 8 (𝜑 → (𝐵 / (𝑅 ~QG 𝐼)) = (Base‘𝑄))
581, 51eqtr3i 2756 . . . . . . . 8 (Base‘𝑄) = (Base‘(oppr𝑄))
5957, 58eqtr2di 2783 . . . . . . 7 (𝜑 → (Base‘(oppr𝑄)) = (𝐵 / (𝑅 ~QG 𝐼)))
6059ad2antrr 726 . . . . . 6 (((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) → (Base‘(oppr𝑄)) = (𝐵 / (𝑅 ~QG 𝐼)))
6153, 60eleqtrd 2833 . . . . 5 (((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) → 𝑌 ∈ (𝐵 / (𝑅 ~QG 𝐼)))
62 elqsi 8685 . . . . 5 (𝑌 ∈ (𝐵 / (𝑅 ~QG 𝐼)) → ∃𝑞𝐵 𝑌 = [𝑞](𝑅 ~QG 𝐼))
6361, 62syl 17 . . . 4 (((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) → ∃𝑞𝐵 𝑌 = [𝑞](𝑅 ~QG 𝐼))
6449, 63r19.29a 3140 . . 3 (((𝜑𝑝𝐵) ∧ 𝑋 = [𝑝](𝑅 ~QG 𝐼)) → (𝑌(.r𝑄)𝑋) = (𝑋(.r‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑌))
65 opprqusmulr.x . . . . . 6 (𝜑𝑋𝐸)
6665, 51eleqtrdi 2841 . . . . 5 (𝜑𝑋 ∈ (Base‘(oppr𝑄)))
6766, 59eleqtrd 2833 . . . 4 (𝜑𝑋 ∈ (𝐵 / (𝑅 ~QG 𝐼)))
68 elqsi 8685 . . . 4 (𝑋 ∈ (𝐵 / (𝑅 ~QG 𝐼)) → ∃𝑝𝐵 𝑋 = [𝑝](𝑅 ~QG 𝐼))
6967, 68syl 17 . . 3 (𝜑 → ∃𝑝𝐵 𝑋 = [𝑝](𝑅 ~QG 𝐼))
7064, 69r19.29a 3140 . 2 (𝜑 → (𝑌(.r𝑄)𝑋) = (𝑋(.r‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑌))
715, 70eqtrid 2778 1 (𝜑 → (𝑋(.r‘(oppr𝑄))𝑌) = (𝑋(.r‘(𝑂 /s (𝑂 ~QG 𝐼)))𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wrex 3056  Vcvv 3436  wss 3897  cfv 6476  (class class class)co 7341  [cec 8615   / cqs 8616  Basecbs 17115  .rcmulr 17157   /s cqus 17404   ~QG cqg 19030  Ringcrg 20146  opprcoppr 20249  LIdealclidl 21138  2Idealc2idl 21181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-tp 4576  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-tpos 8151  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-er 8617  df-ec 8619  df-qs 8623  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-sup 9321  df-inf 9322  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-nn 12121  df-2 12183  df-3 12184  df-4 12185  df-5 12186  df-6 12187  df-7 12188  df-8 12189  df-9 12190  df-n0 12377  df-z 12464  df-dec 12584  df-uz 12728  df-fz 13403  df-struct 17053  df-sets 17070  df-slot 17088  df-ndx 17100  df-base 17116  df-ress 17137  df-plusg 17169  df-mulr 17170  df-sca 17172  df-vsca 17173  df-ip 17174  df-tset 17175  df-ple 17176  df-ds 17178  df-0g 17340  df-imas 17407  df-qus 17408  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-grp 18844  df-minusg 18845  df-sbg 18846  df-subg 19031  df-eqg 19033  df-cmn 19689  df-abl 19690  df-mgp 20054  df-rng 20066  df-ur 20095  df-ring 20148  df-oppr 20250  df-subrg 20480  df-lmod 20790  df-lss 20860  df-sra 21102  df-rgmod 21103  df-lidl 21140  df-2idl 21182
This theorem is referenced by:  opprqus1r  33449  opprqusdrng  33450  qsdrngi  33452
  Copyright terms: Public domain W3C validator