Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elrlocbasi Structured version   Visualization version   GIF version

Theorem elrlocbasi 33233
Description: Membership in the basis of a ring localization. (Contributed by Thierry Arnoux, 4-May-2025.)
Hypothesis
Ref Expression
elrlocbasi.x (𝜑𝑋 ∈ ((𝐵 × 𝑆) / ))
Assertion
Ref Expression
elrlocbasi (𝜑 → ∃𝑎𝐵𝑏𝑆 𝑋 = [⟨𝑎, 𝑏⟩] )
Distinct variable groups:   ,𝑎,𝑏   𝐵,𝑎,𝑏   𝑆,𝑎,𝑏   𝑋,𝑎,𝑏   𝜑,𝑎,𝑏

Proof of Theorem elrlocbasi
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 simp-4r 783 . . . 4 ((((((𝜑𝑧 ∈ (𝐵 × 𝑆)) ∧ 𝑋 = [𝑧] ) ∧ 𝑎𝐵) ∧ 𝑏𝑆) ∧ 𝑧 = ⟨𝑎, 𝑏⟩) → 𝑋 = [𝑧] )
2 simpr 484 . . . . 5 ((((((𝜑𝑧 ∈ (𝐵 × 𝑆)) ∧ 𝑋 = [𝑧] ) ∧ 𝑎𝐵) ∧ 𝑏𝑆) ∧ 𝑧 = ⟨𝑎, 𝑏⟩) → 𝑧 = ⟨𝑎, 𝑏⟩)
32eceq1d 8662 . . . 4 ((((((𝜑𝑧 ∈ (𝐵 × 𝑆)) ∧ 𝑋 = [𝑧] ) ∧ 𝑎𝐵) ∧ 𝑏𝑆) ∧ 𝑧 = ⟨𝑎, 𝑏⟩) → [𝑧] = [⟨𝑎, 𝑏⟩] )
41, 3eqtrd 2766 . . 3 ((((((𝜑𝑧 ∈ (𝐵 × 𝑆)) ∧ 𝑋 = [𝑧] ) ∧ 𝑎𝐵) ∧ 𝑏𝑆) ∧ 𝑧 = ⟨𝑎, 𝑏⟩) → 𝑋 = [⟨𝑎, 𝑏⟩] )
5 elxp2 5638 . . . . 5 (𝑧 ∈ (𝐵 × 𝑆) ↔ ∃𝑎𝐵𝑏𝑆 𝑧 = ⟨𝑎, 𝑏⟩)
65biimpi 216 . . . 4 (𝑧 ∈ (𝐵 × 𝑆) → ∃𝑎𝐵𝑏𝑆 𝑧 = ⟨𝑎, 𝑏⟩)
76ad2antlr 727 . . 3 (((𝜑𝑧 ∈ (𝐵 × 𝑆)) ∧ 𝑋 = [𝑧] ) → ∃𝑎𝐵𝑏𝑆 𝑧 = ⟨𝑎, 𝑏⟩)
84, 7reximddv2 3191 . 2 (((𝜑𝑧 ∈ (𝐵 × 𝑆)) ∧ 𝑋 = [𝑧] ) → ∃𝑎𝐵𝑏𝑆 𝑋 = [⟨𝑎, 𝑏⟩] )
9 elrlocbasi.x . . 3 (𝜑𝑋 ∈ ((𝐵 × 𝑆) / ))
10 elqsi 8690 . . 3 (𝑋 ∈ ((𝐵 × 𝑆) / ) → ∃𝑧 ∈ (𝐵 × 𝑆)𝑋 = [𝑧] )
119, 10syl 17 . 2 (𝜑 → ∃𝑧 ∈ (𝐵 × 𝑆)𝑋 = [𝑧] )
128, 11r19.29a 3140 1 (𝜑 → ∃𝑎𝐵𝑏𝑆 𝑋 = [⟨𝑎, 𝑏⟩] )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wrex 3056  cop 4579   × cxp 5612  [cec 8620   / cqs 8621
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090  df-opab 5152  df-xp 5620  df-cnv 5622  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-ec 8624  df-qs 8628
This theorem is referenced by:  rloccring  33237  rloc1r  33239  fracfld  33274  zringfrac  33519
  Copyright terms: Public domain W3C validator