Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elrlocbasi Structured version   Visualization version   GIF version

Theorem elrlocbasi 33238
Description: Membership in the basis of a ring localization. (Contributed by Thierry Arnoux, 4-May-2025.)
Hypothesis
Ref Expression
elrlocbasi.x (𝜑𝑋 ∈ ((𝐵 × 𝑆) / ))
Assertion
Ref Expression
elrlocbasi (𝜑 → ∃𝑎𝐵𝑏𝑆 𝑋 = [⟨𝑎, 𝑏⟩] )
Distinct variable groups:   ,𝑎,𝑏   𝐵,𝑎,𝑏   𝑆,𝑎,𝑏   𝑋,𝑎,𝑏   𝜑,𝑎,𝑏

Proof of Theorem elrlocbasi
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 simp-4r 783 . . . 4 ((((((𝜑𝑧 ∈ (𝐵 × 𝑆)) ∧ 𝑋 = [𝑧] ) ∧ 𝑎𝐵) ∧ 𝑏𝑆) ∧ 𝑧 = ⟨𝑎, 𝑏⟩) → 𝑋 = [𝑧] )
2 simpr 484 . . . . 5 ((((((𝜑𝑧 ∈ (𝐵 × 𝑆)) ∧ 𝑋 = [𝑧] ) ∧ 𝑎𝐵) ∧ 𝑏𝑆) ∧ 𝑧 = ⟨𝑎, 𝑏⟩) → 𝑧 = ⟨𝑎, 𝑏⟩)
32eceq1d 8803 . . . 4 ((((((𝜑𝑧 ∈ (𝐵 × 𝑆)) ∧ 𝑋 = [𝑧] ) ∧ 𝑎𝐵) ∧ 𝑏𝑆) ∧ 𝑧 = ⟨𝑎, 𝑏⟩) → [𝑧] = [⟨𝑎, 𝑏⟩] )
41, 3eqtrd 2780 . . 3 ((((((𝜑𝑧 ∈ (𝐵 × 𝑆)) ∧ 𝑋 = [𝑧] ) ∧ 𝑎𝐵) ∧ 𝑏𝑆) ∧ 𝑧 = ⟨𝑎, 𝑏⟩) → 𝑋 = [⟨𝑎, 𝑏⟩] )
5 elxp2 5724 . . . . 5 (𝑧 ∈ (𝐵 × 𝑆) ↔ ∃𝑎𝐵𝑏𝑆 𝑧 = ⟨𝑎, 𝑏⟩)
65biimpi 216 . . . 4 (𝑧 ∈ (𝐵 × 𝑆) → ∃𝑎𝐵𝑏𝑆 𝑧 = ⟨𝑎, 𝑏⟩)
76ad2antlr 726 . . 3 (((𝜑𝑧 ∈ (𝐵 × 𝑆)) ∧ 𝑋 = [𝑧] ) → ∃𝑎𝐵𝑏𝑆 𝑧 = ⟨𝑎, 𝑏⟩)
84, 7reximddv2 3221 . 2 (((𝜑𝑧 ∈ (𝐵 × 𝑆)) ∧ 𝑋 = [𝑧] ) → ∃𝑎𝐵𝑏𝑆 𝑋 = [⟨𝑎, 𝑏⟩] )
9 elrlocbasi.x . . 3 (𝜑𝑋 ∈ ((𝐵 × 𝑆) / ))
10 elqsi 8828 . . 3 (𝑋 ∈ ((𝐵 × 𝑆) / ) → ∃𝑧 ∈ (𝐵 × 𝑆)𝑋 = [𝑧] )
119, 10syl 17 . 2 (𝜑 → ∃𝑧 ∈ (𝐵 × 𝑆)𝑋 = [𝑧] )
128, 11r19.29a 3168 1 (𝜑 → ∃𝑎𝐵𝑏𝑆 𝑋 = [⟨𝑎, 𝑏⟩] )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wrex 3076  cop 4654   × cxp 5698  [cec 8761   / cqs 8762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5706  df-cnv 5708  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ec 8765  df-qs 8769
This theorem is referenced by:  rloccring  33242  rloc1r  33244  fracfld  33275  zringfrac  33547
  Copyright terms: Public domain W3C validator