Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elrlocbasi Structured version   Visualization version   GIF version

Theorem elrlocbasi 33224
Description: Membership in the basis of a ring localization. (Contributed by Thierry Arnoux, 4-May-2025.)
Hypothesis
Ref Expression
elrlocbasi.x (𝜑𝑋 ∈ ((𝐵 × 𝑆) / ))
Assertion
Ref Expression
elrlocbasi (𝜑 → ∃𝑎𝐵𝑏𝑆 𝑋 = [⟨𝑎, 𝑏⟩] )
Distinct variable groups:   ,𝑎,𝑏   𝐵,𝑎,𝑏   𝑆,𝑎,𝑏   𝑋,𝑎,𝑏   𝜑,𝑎,𝑏

Proof of Theorem elrlocbasi
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 simp-4r 783 . . . 4 ((((((𝜑𝑧 ∈ (𝐵 × 𝑆)) ∧ 𝑋 = [𝑧] ) ∧ 𝑎𝐵) ∧ 𝑏𝑆) ∧ 𝑧 = ⟨𝑎, 𝑏⟩) → 𝑋 = [𝑧] )
2 simpr 484 . . . . 5 ((((((𝜑𝑧 ∈ (𝐵 × 𝑆)) ∧ 𝑋 = [𝑧] ) ∧ 𝑎𝐵) ∧ 𝑏𝑆) ∧ 𝑧 = ⟨𝑎, 𝑏⟩) → 𝑧 = ⟨𝑎, 𝑏⟩)
32eceq1d 8714 . . . 4 ((((((𝜑𝑧 ∈ (𝐵 × 𝑆)) ∧ 𝑋 = [𝑧] ) ∧ 𝑎𝐵) ∧ 𝑏𝑆) ∧ 𝑧 = ⟨𝑎, 𝑏⟩) → [𝑧] = [⟨𝑎, 𝑏⟩] )
41, 3eqtrd 2765 . . 3 ((((((𝜑𝑧 ∈ (𝐵 × 𝑆)) ∧ 𝑋 = [𝑧] ) ∧ 𝑎𝐵) ∧ 𝑏𝑆) ∧ 𝑧 = ⟨𝑎, 𝑏⟩) → 𝑋 = [⟨𝑎, 𝑏⟩] )
5 elxp2 5665 . . . . 5 (𝑧 ∈ (𝐵 × 𝑆) ↔ ∃𝑎𝐵𝑏𝑆 𝑧 = ⟨𝑎, 𝑏⟩)
65biimpi 216 . . . 4 (𝑧 ∈ (𝐵 × 𝑆) → ∃𝑎𝐵𝑏𝑆 𝑧 = ⟨𝑎, 𝑏⟩)
76ad2antlr 727 . . 3 (((𝜑𝑧 ∈ (𝐵 × 𝑆)) ∧ 𝑋 = [𝑧] ) → ∃𝑎𝐵𝑏𝑆 𝑧 = ⟨𝑎, 𝑏⟩)
84, 7reximddv2 3197 . 2 (((𝜑𝑧 ∈ (𝐵 × 𝑆)) ∧ 𝑋 = [𝑧] ) → ∃𝑎𝐵𝑏𝑆 𝑋 = [⟨𝑎, 𝑏⟩] )
9 elrlocbasi.x . . 3 (𝜑𝑋 ∈ ((𝐵 × 𝑆) / ))
10 elqsi 8742 . . 3 (𝑋 ∈ ((𝐵 × 𝑆) / ) → ∃𝑧 ∈ (𝐵 × 𝑆)𝑋 = [𝑧] )
119, 10syl 17 . 2 (𝜑 → ∃𝑧 ∈ (𝐵 × 𝑆)𝑋 = [𝑧] )
128, 11r19.29a 3142 1 (𝜑 → ∃𝑎𝐵𝑏𝑆 𝑋 = [⟨𝑎, 𝑏⟩] )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wrex 3054  cop 4598   × cxp 5639  [cec 8672   / cqs 8673
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-xp 5647  df-cnv 5649  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-ec 8676  df-qs 8680
This theorem is referenced by:  rloccring  33228  rloc1r  33230  fracfld  33265  zringfrac  33532
  Copyright terms: Public domain W3C validator