![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ecoptocl | Structured version Visualization version GIF version |
Description: Implicit substitution of class for equivalence class of ordered pair. (Contributed by NM, 23-Jul-1995.) |
Ref | Expression |
---|---|
ecoptocl.1 | ⊢ 𝑆 = ((𝐵 × 𝐶) / 𝑅) |
ecoptocl.2 | ⊢ ([⟨𝑥, 𝑦⟩]𝑅 = 𝐴 → (𝜑 ↔ 𝜓)) |
ecoptocl.3 | ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶) → 𝜑) |
Ref | Expression |
---|---|
ecoptocl | ⊢ (𝐴 ∈ 𝑆 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elqsi 8763 | . . 3 ⊢ (𝐴 ∈ ((𝐵 × 𝐶) / 𝑅) → ∃𝑧 ∈ (𝐵 × 𝐶)𝐴 = [𝑧]𝑅) | |
2 | eqid 2732 | . . . . 5 ⊢ (𝐵 × 𝐶) = (𝐵 × 𝐶) | |
3 | eceq1 8740 | . . . . . . 7 ⊢ (⟨𝑥, 𝑦⟩ = 𝑧 → [⟨𝑥, 𝑦⟩]𝑅 = [𝑧]𝑅) | |
4 | 3 | eqeq2d 2743 | . . . . . 6 ⊢ (⟨𝑥, 𝑦⟩ = 𝑧 → (𝐴 = [⟨𝑥, 𝑦⟩]𝑅 ↔ 𝐴 = [𝑧]𝑅)) |
5 | 4 | imbi1d 341 | . . . . 5 ⊢ (⟨𝑥, 𝑦⟩ = 𝑧 → ((𝐴 = [⟨𝑥, 𝑦⟩]𝑅 → 𝜓) ↔ (𝐴 = [𝑧]𝑅 → 𝜓))) |
6 | ecoptocl.3 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶) → 𝜑) | |
7 | ecoptocl.2 | . . . . . . 7 ⊢ ([⟨𝑥, 𝑦⟩]𝑅 = 𝐴 → (𝜑 ↔ 𝜓)) | |
8 | 7 | eqcoms 2740 | . . . . . 6 ⊢ (𝐴 = [⟨𝑥, 𝑦⟩]𝑅 → (𝜑 ↔ 𝜓)) |
9 | 6, 8 | syl5ibcom 244 | . . . . 5 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶) → (𝐴 = [⟨𝑥, 𝑦⟩]𝑅 → 𝜓)) |
10 | 2, 5, 9 | optocl 5770 | . . . 4 ⊢ (𝑧 ∈ (𝐵 × 𝐶) → (𝐴 = [𝑧]𝑅 → 𝜓)) |
11 | 10 | rexlimiv 3148 | . . 3 ⊢ (∃𝑧 ∈ (𝐵 × 𝐶)𝐴 = [𝑧]𝑅 → 𝜓) |
12 | 1, 11 | syl 17 | . 2 ⊢ (𝐴 ∈ ((𝐵 × 𝐶) / 𝑅) → 𝜓) |
13 | ecoptocl.1 | . 2 ⊢ 𝑆 = ((𝐵 × 𝐶) / 𝑅) | |
14 | 12, 13 | eleq2s 2851 | 1 ⊢ (𝐴 ∈ 𝑆 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∃wrex 3070 ⟨cop 4634 × cxp 5674 [cec 8700 / cqs 8701 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 df-opab 5211 df-xp 5682 df-cnv 5684 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-ec 8704 df-qs 8708 |
This theorem is referenced by: 2ecoptocl 8801 3ecoptocl 8802 0idsr 11091 1idsr 11092 00sr 11093 recexsrlem 11097 map2psrpr 11104 |
Copyright terms: Public domain | W3C validator |