| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ecoptocl | Structured version Visualization version GIF version | ||
| Description: Implicit substitution of class for equivalence class of ordered pair. (Contributed by NM, 23-Jul-1995.) |
| Ref | Expression |
|---|---|
| ecoptocl.1 | ⊢ 𝑆 = ((𝐵 × 𝐶) / 𝑅) |
| ecoptocl.2 | ⊢ ([〈𝑥, 𝑦〉]𝑅 = 𝐴 → (𝜑 ↔ 𝜓)) |
| ecoptocl.3 | ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶) → 𝜑) |
| Ref | Expression |
|---|---|
| ecoptocl | ⊢ (𝐴 ∈ 𝑆 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elqsi 8742 | . . 3 ⊢ (𝐴 ∈ ((𝐵 × 𝐶) / 𝑅) → ∃𝑧 ∈ (𝐵 × 𝐶)𝐴 = [𝑧]𝑅) | |
| 2 | eqid 2730 | . . . . 5 ⊢ (𝐵 × 𝐶) = (𝐵 × 𝐶) | |
| 3 | eceq1 8713 | . . . . . . 7 ⊢ (〈𝑥, 𝑦〉 = 𝑧 → [〈𝑥, 𝑦〉]𝑅 = [𝑧]𝑅) | |
| 4 | 3 | eqeq2d 2741 | . . . . . 6 ⊢ (〈𝑥, 𝑦〉 = 𝑧 → (𝐴 = [〈𝑥, 𝑦〉]𝑅 ↔ 𝐴 = [𝑧]𝑅)) |
| 5 | 4 | imbi1d 341 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 = 𝑧 → ((𝐴 = [〈𝑥, 𝑦〉]𝑅 → 𝜓) ↔ (𝐴 = [𝑧]𝑅 → 𝜓))) |
| 6 | ecoptocl.3 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶) → 𝜑) | |
| 7 | ecoptocl.2 | . . . . . . 7 ⊢ ([〈𝑥, 𝑦〉]𝑅 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 8 | 7 | eqcoms 2738 | . . . . . 6 ⊢ (𝐴 = [〈𝑥, 𝑦〉]𝑅 → (𝜑 ↔ 𝜓)) |
| 9 | 6, 8 | syl5ibcom 245 | . . . . 5 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶) → (𝐴 = [〈𝑥, 𝑦〉]𝑅 → 𝜓)) |
| 10 | 2, 5, 9 | optocl 5736 | . . . 4 ⊢ (𝑧 ∈ (𝐵 × 𝐶) → (𝐴 = [𝑧]𝑅 → 𝜓)) |
| 11 | 10 | rexlimiv 3128 | . . 3 ⊢ (∃𝑧 ∈ (𝐵 × 𝐶)𝐴 = [𝑧]𝑅 → 𝜓) |
| 12 | 1, 11 | syl 17 | . 2 ⊢ (𝐴 ∈ ((𝐵 × 𝐶) / 𝑅) → 𝜓) |
| 13 | ecoptocl.1 | . 2 ⊢ 𝑆 = ((𝐵 × 𝐶) / 𝑅) | |
| 14 | 12, 13 | eleq2s 2847 | 1 ⊢ (𝐴 ∈ 𝑆 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3054 〈cop 4598 × cxp 5639 [cec 8672 / cqs 8673 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-xp 5647 df-cnv 5649 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-ec 8676 df-qs 8680 |
| This theorem is referenced by: 2ecoptocl 8784 3ecoptocl 8785 0idsr 11057 1idsr 11058 00sr 11059 recexsrlem 11063 map2psrpr 11070 |
| Copyright terms: Public domain | W3C validator |