MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ecoptocl Structured version   Visualization version   GIF version

Theorem ecoptocl 8596
Description: Implicit substitution of class for equivalence class of ordered pair. (Contributed by NM, 23-Jul-1995.)
Hypotheses
Ref Expression
ecoptocl.1 𝑆 = ((𝐵 × 𝐶) / 𝑅)
ecoptocl.2 ([⟨𝑥, 𝑦⟩]𝑅 = 𝐴 → (𝜑𝜓))
ecoptocl.3 ((𝑥𝐵𝑦𝐶) → 𝜑)
Assertion
Ref Expression
ecoptocl (𝐴𝑆𝜓)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝑅,𝑦   𝜓,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝑆(𝑥,𝑦)

Proof of Theorem ecoptocl
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 elqsi 8559 . . 3 (𝐴 ∈ ((𝐵 × 𝐶) / 𝑅) → ∃𝑧 ∈ (𝐵 × 𝐶)𝐴 = [𝑧]𝑅)
2 eqid 2738 . . . . 5 (𝐵 × 𝐶) = (𝐵 × 𝐶)
3 eceq1 8536 . . . . . . 7 (⟨𝑥, 𝑦⟩ = 𝑧 → [⟨𝑥, 𝑦⟩]𝑅 = [𝑧]𝑅)
43eqeq2d 2749 . . . . . 6 (⟨𝑥, 𝑦⟩ = 𝑧 → (𝐴 = [⟨𝑥, 𝑦⟩]𝑅𝐴 = [𝑧]𝑅))
54imbi1d 342 . . . . 5 (⟨𝑥, 𝑦⟩ = 𝑧 → ((𝐴 = [⟨𝑥, 𝑦⟩]𝑅𝜓) ↔ (𝐴 = [𝑧]𝑅𝜓)))
6 ecoptocl.3 . . . . . 6 ((𝑥𝐵𝑦𝐶) → 𝜑)
7 ecoptocl.2 . . . . . . 7 ([⟨𝑥, 𝑦⟩]𝑅 = 𝐴 → (𝜑𝜓))
87eqcoms 2746 . . . . . 6 (𝐴 = [⟨𝑥, 𝑦⟩]𝑅 → (𝜑𝜓))
96, 8syl5ibcom 244 . . . . 5 ((𝑥𝐵𝑦𝐶) → (𝐴 = [⟨𝑥, 𝑦⟩]𝑅𝜓))
102, 5, 9optocl 5681 . . . 4 (𝑧 ∈ (𝐵 × 𝐶) → (𝐴 = [𝑧]𝑅𝜓))
1110rexlimiv 3209 . . 3 (∃𝑧 ∈ (𝐵 × 𝐶)𝐴 = [𝑧]𝑅𝜓)
121, 11syl 17 . 2 (𝐴 ∈ ((𝐵 × 𝐶) / 𝑅) → 𝜓)
13 ecoptocl.1 . 2 𝑆 = ((𝐵 × 𝐶) / 𝑅)
1412, 13eleq2s 2857 1 (𝐴𝑆𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wrex 3065  cop 4567   × cxp 5587  [cec 8496   / cqs 8497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-xp 5595  df-cnv 5597  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ec 8500  df-qs 8504
This theorem is referenced by:  2ecoptocl  8597  3ecoptocl  8598  0idsr  10853  1idsr  10854  00sr  10855  recexsrlem  10859  map2psrpr  10866
  Copyright terms: Public domain W3C validator