Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qsdrnglem2 Structured version   Visualization version   GIF version

Theorem qsdrnglem2 33433
Description: Lemma for qsdrng 33434. (Contributed by Thierry Arnoux, 13-Mar-2025.)
Hypotheses
Ref Expression
qsdrng.0 𝑂 = (oppr𝑅)
qsdrng.q 𝑄 = (𝑅 /s (𝑅 ~QG 𝑀))
qsdrng.r (𝜑𝑅 ∈ NzRing)
qsdrng.2 (𝜑𝑀 ∈ (2Ideal‘𝑅))
qsdrnglem2.1 𝐵 = (Base‘𝑅)
qsdrnglem2.q (𝜑𝑄 ∈ DivRing)
qsdrnglem2.j (𝜑𝐽 ∈ (LIdeal‘𝑅))
qsdrnglem2.m (𝜑𝑀𝐽)
qsdrnglem2.x (𝜑𝑋 ∈ (𝐽𝑀))
Assertion
Ref Expression
qsdrnglem2 (𝜑𝐽 = 𝐵)

Proof of Theorem qsdrnglem2
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 qsdrng.r . . . . 5 (𝜑𝑅 ∈ NzRing)
2 nzrring 20401 . . . . 5 (𝑅 ∈ NzRing → 𝑅 ∈ Ring)
31, 2syl 17 . . . 4 (𝜑𝑅 ∈ Ring)
43ad2antrr 726 . . 3 (((𝜑𝑠𝐵) ∧ ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → 𝑅 ∈ Ring)
5 qsdrnglem2.j . . . 4 (𝜑𝐽 ∈ (LIdeal‘𝑅))
65ad2antrr 726 . . 3 (((𝜑𝑠𝐵) ∧ ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → 𝐽 ∈ (LIdeal‘𝑅))
74ringgrpd 20127 . . . . 5 (((𝜑𝑠𝐵) ∧ ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → 𝑅 ∈ Grp)
8 qsdrnglem2.1 . . . . . . . 8 𝐵 = (Base‘𝑅)
9 eqid 2729 . . . . . . . 8 (LIdeal‘𝑅) = (LIdeal‘𝑅)
108, 9lidlss 21119 . . . . . . 7 (𝐽 ∈ (LIdeal‘𝑅) → 𝐽𝐵)
116, 10syl 17 . . . . . 6 (((𝜑𝑠𝐵) ∧ ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → 𝐽𝐵)
12 simplr 768 . . . . . . 7 (((𝜑𝑠𝐵) ∧ ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → 𝑠𝐵)
13 qsdrnglem2.x . . . . . . . . 9 (𝜑𝑋 ∈ (𝐽𝑀))
1413eldifad 3915 . . . . . . . 8 (𝜑𝑋𝐽)
1514ad2antrr 726 . . . . . . 7 (((𝜑𝑠𝐵) ∧ ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → 𝑋𝐽)
16 eqid 2729 . . . . . . . 8 (.r𝑅) = (.r𝑅)
179, 8, 16lidlmcl 21132 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐽 ∈ (LIdeal‘𝑅)) ∧ (𝑠𝐵𝑋𝐽)) → (𝑠(.r𝑅)𝑋) ∈ 𝐽)
184, 6, 12, 15, 17syl22anc 838 . . . . . 6 (((𝜑𝑠𝐵) ∧ ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → (𝑠(.r𝑅)𝑋) ∈ 𝐽)
1911, 18sseldd 3936 . . . . 5 (((𝜑𝑠𝐵) ∧ ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → (𝑠(.r𝑅)𝑋) ∈ 𝐵)
20 eqid 2729 . . . . . . 7 (1r𝑅) = (1r𝑅)
218, 20ringidcl 20150 . . . . . 6 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝐵)
224, 21syl 17 . . . . 5 (((𝜑𝑠𝐵) ∧ ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → (1r𝑅) ∈ 𝐵)
23 eqid 2729 . . . . . 6 (+g𝑅) = (+g𝑅)
24 eqid 2729 . . . . . 6 (invg𝑅) = (invg𝑅)
258, 23, 24grpasscan1 18880 . . . . 5 ((𝑅 ∈ Grp ∧ (𝑠(.r𝑅)𝑋) ∈ 𝐵 ∧ (1r𝑅) ∈ 𝐵) → ((𝑠(.r𝑅)𝑋)(+g𝑅)(((invg𝑅)‘(𝑠(.r𝑅)𝑋))(+g𝑅)(1r𝑅))) = (1r𝑅))
267, 19, 22, 25syl3anc 1373 . . . 4 (((𝜑𝑠𝐵) ∧ ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → ((𝑠(.r𝑅)𝑋)(+g𝑅)(((invg𝑅)‘(𝑠(.r𝑅)𝑋))(+g𝑅)(1r𝑅))) = (1r𝑅))
27 qsdrnglem2.m . . . . . . 7 (𝜑𝑀𝐽)
2827ad2antrr 726 . . . . . 6 (((𝜑𝑠𝐵) ∧ ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → 𝑀𝐽)
295, 10syl 17 . . . . . . . . 9 (𝜑𝐽𝐵)
3027, 29sstrd 3946 . . . . . . . 8 (𝜑𝑀𝐵)
3130ad2antrr 726 . . . . . . 7 (((𝜑𝑠𝐵) ∧ ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → 𝑀𝐵)
32 simpr 484 . . . . . . . . . . 11 (((𝜑𝑠𝐵) ∧ ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀))
3332oveq1d 7364 . . . . . . . . . 10 (((𝜑𝑠𝐵) ∧ ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → (((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀))(.r𝑄)[𝑋](𝑅 ~QG 𝑀)) = ([𝑠](𝑅 ~QG 𝑀)(.r𝑄)[𝑋](𝑅 ~QG 𝑀)))
34 eqid 2729 . . . . . . . . . . 11 (Base‘𝑄) = (Base‘𝑄)
35 eqid 2729 . . . . . . . . . . 11 (0g𝑄) = (0g𝑄)
36 eqid 2729 . . . . . . . . . . 11 (.r𝑄) = (.r𝑄)
37 eqid 2729 . . . . . . . . . . 11 (1r𝑄) = (1r𝑄)
38 eqid 2729 . . . . . . . . . . 11 (invr𝑄) = (invr𝑄)
39 qsdrnglem2.q . . . . . . . . . . . 12 (𝜑𝑄 ∈ DivRing)
4039ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑠𝐵) ∧ ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → 𝑄 ∈ DivRing)
4129, 14sseldd 3936 . . . . . . . . . . . . . 14 (𝜑𝑋𝐵)
42 ovex 7382 . . . . . . . . . . . . . . 15 (𝑅 ~QG 𝑀) ∈ V
4342ecelqsi 8697 . . . . . . . . . . . . . 14 (𝑋𝐵 → [𝑋](𝑅 ~QG 𝑀) ∈ (𝐵 / (𝑅 ~QG 𝑀)))
4441, 43syl 17 . . . . . . . . . . . . 13 (𝜑 → [𝑋](𝑅 ~QG 𝑀) ∈ (𝐵 / (𝑅 ~QG 𝑀)))
45 qsdrng.q . . . . . . . . . . . . . . 15 𝑄 = (𝑅 /s (𝑅 ~QG 𝑀))
4645a1i 11 . . . . . . . . . . . . . 14 (𝜑𝑄 = (𝑅 /s (𝑅 ~QG 𝑀)))
478a1i 11 . . . . . . . . . . . . . 14 (𝜑𝐵 = (Base‘𝑅))
4842a1i 11 . . . . . . . . . . . . . 14 (𝜑 → (𝑅 ~QG 𝑀) ∈ V)
4946, 47, 48, 1qusbas 17449 . . . . . . . . . . . . 13 (𝜑 → (𝐵 / (𝑅 ~QG 𝑀)) = (Base‘𝑄))
5044, 49eleqtrd 2830 . . . . . . . . . . . 12 (𝜑 → [𝑋](𝑅 ~QG 𝑀) ∈ (Base‘𝑄))
5150ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑠𝐵) ∧ ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → [𝑋](𝑅 ~QG 𝑀) ∈ (Base‘𝑄))
52 qsdrng.2 . . . . . . . . . . . . . . . . . 18 (𝜑𝑀 ∈ (2Ideal‘𝑅))
53522idllidld 21161 . . . . . . . . . . . . . . . . 17 (𝜑𝑀 ∈ (LIdeal‘𝑅))
549lidlsubg 21130 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ Ring ∧ 𝑀 ∈ (LIdeal‘𝑅)) → 𝑀 ∈ (SubGrp‘𝑅))
553, 53, 54syl2anc 584 . . . . . . . . . . . . . . . 16 (𝜑𝑀 ∈ (SubGrp‘𝑅))
56 eqid 2729 . . . . . . . . . . . . . . . . 17 (𝑅 ~QG 𝑀) = (𝑅 ~QG 𝑀)
578, 56eqger 19057 . . . . . . . . . . . . . . . 16 (𝑀 ∈ (SubGrp‘𝑅) → (𝑅 ~QG 𝑀) Er 𝐵)
5855, 57syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝑅 ~QG 𝑀) Er 𝐵)
59 ecref 8670 . . . . . . . . . . . . . . 15 (((𝑅 ~QG 𝑀) Er 𝐵𝑋𝐵) → 𝑋 ∈ [𝑋](𝑅 ~QG 𝑀))
6058, 41, 59syl2anc 584 . . . . . . . . . . . . . 14 (𝜑𝑋 ∈ [𝑋](𝑅 ~QG 𝑀))
6113eldifbd 3916 . . . . . . . . . . . . . 14 (𝜑 → ¬ 𝑋𝑀)
62 nelne1 3022 . . . . . . . . . . . . . 14 ((𝑋 ∈ [𝑋](𝑅 ~QG 𝑀) ∧ ¬ 𝑋𝑀) → [𝑋](𝑅 ~QG 𝑀) ≠ 𝑀)
6360, 61, 62syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → [𝑋](𝑅 ~QG 𝑀) ≠ 𝑀)
64 lidlnsg 21155 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ 𝑀 ∈ (LIdeal‘𝑅)) → 𝑀 ∈ (NrmSGrp‘𝑅))
653, 53, 64syl2anc 584 . . . . . . . . . . . . . 14 (𝜑𝑀 ∈ (NrmSGrp‘𝑅))
6645qus0g 33344 . . . . . . . . . . . . . 14 (𝑀 ∈ (NrmSGrp‘𝑅) → (0g𝑄) = 𝑀)
6765, 66syl 17 . . . . . . . . . . . . 13 (𝜑 → (0g𝑄) = 𝑀)
6863, 67neeqtrrd 2999 . . . . . . . . . . . 12 (𝜑 → [𝑋](𝑅 ~QG 𝑀) ≠ (0g𝑄))
6968ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑠𝐵) ∧ ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → [𝑋](𝑅 ~QG 𝑀) ≠ (0g𝑄))
7034, 35, 36, 37, 38, 40, 51, 69drnginvrld 20643 . . . . . . . . . 10 (((𝜑𝑠𝐵) ∧ ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → (((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀))(.r𝑄)[𝑋](𝑅 ~QG 𝑀)) = (1r𝑄))
7152ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑠𝐵) ∧ ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → 𝑀 ∈ (2Ideal‘𝑅))
7241ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑠𝐵) ∧ ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → 𝑋𝐵)
7345, 8, 16, 36, 4, 71, 12, 72qusmul2idl 21186 . . . . . . . . . 10 (((𝜑𝑠𝐵) ∧ ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → ([𝑠](𝑅 ~QG 𝑀)(.r𝑄)[𝑋](𝑅 ~QG 𝑀)) = [(𝑠(.r𝑅)𝑋)](𝑅 ~QG 𝑀))
7433, 70, 733eqtr3rd 2773 . . . . . . . . 9 (((𝜑𝑠𝐵) ∧ ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → [(𝑠(.r𝑅)𝑋)](𝑅 ~QG 𝑀) = (1r𝑄))
75 eqid 2729 . . . . . . . . . . . 12 (2Ideal‘𝑅) = (2Ideal‘𝑅)
7645, 75, 20qus1 21181 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝑀 ∈ (2Ideal‘𝑅)) → (𝑄 ∈ Ring ∧ [(1r𝑅)](𝑅 ~QG 𝑀) = (1r𝑄)))
7776simprd 495 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑀 ∈ (2Ideal‘𝑅)) → [(1r𝑅)](𝑅 ~QG 𝑀) = (1r𝑄))
784, 71, 77syl2anc 584 . . . . . . . . 9 (((𝜑𝑠𝐵) ∧ ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → [(1r𝑅)](𝑅 ~QG 𝑀) = (1r𝑄))
7974, 78eqtr4d 2767 . . . . . . . 8 (((𝜑𝑠𝐵) ∧ ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → [(𝑠(.r𝑅)𝑋)](𝑅 ~QG 𝑀) = [(1r𝑅)](𝑅 ~QG 𝑀))
8055ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑠𝐵) ∧ ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → 𝑀 ∈ (SubGrp‘𝑅))
8180, 57syl 17 . . . . . . . . 9 (((𝜑𝑠𝐵) ∧ ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → (𝑅 ~QG 𝑀) Er 𝐵)
8281, 22erth2 8680 . . . . . . . 8 (((𝜑𝑠𝐵) ∧ ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → ((𝑠(.r𝑅)𝑋)(𝑅 ~QG 𝑀)(1r𝑅) ↔ [(𝑠(.r𝑅)𝑋)](𝑅 ~QG 𝑀) = [(1r𝑅)](𝑅 ~QG 𝑀)))
8379, 82mpbird 257 . . . . . . 7 (((𝜑𝑠𝐵) ∧ ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → (𝑠(.r𝑅)𝑋)(𝑅 ~QG 𝑀)(1r𝑅))
848, 24, 23, 56eqgval 19056 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → ((𝑠(.r𝑅)𝑋)(𝑅 ~QG 𝑀)(1r𝑅) ↔ ((𝑠(.r𝑅)𝑋) ∈ 𝐵 ∧ (1r𝑅) ∈ 𝐵 ∧ (((invg𝑅)‘(𝑠(.r𝑅)𝑋))(+g𝑅)(1r𝑅)) ∈ 𝑀)))
8584biimpa 476 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠(.r𝑅)𝑋)(𝑅 ~QG 𝑀)(1r𝑅)) → ((𝑠(.r𝑅)𝑋) ∈ 𝐵 ∧ (1r𝑅) ∈ 𝐵 ∧ (((invg𝑅)‘(𝑠(.r𝑅)𝑋))(+g𝑅)(1r𝑅)) ∈ 𝑀))
8685simp3d 1144 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠(.r𝑅)𝑋)(𝑅 ~QG 𝑀)(1r𝑅)) → (((invg𝑅)‘(𝑠(.r𝑅)𝑋))(+g𝑅)(1r𝑅)) ∈ 𝑀)
874, 31, 83, 86syl21anc 837 . . . . . 6 (((𝜑𝑠𝐵) ∧ ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → (((invg𝑅)‘(𝑠(.r𝑅)𝑋))(+g𝑅)(1r𝑅)) ∈ 𝑀)
8828, 87sseldd 3936 . . . . 5 (((𝜑𝑠𝐵) ∧ ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → (((invg𝑅)‘(𝑠(.r𝑅)𝑋))(+g𝑅)(1r𝑅)) ∈ 𝐽)
899, 23lidlacl 21128 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐽 ∈ (LIdeal‘𝑅)) ∧ ((𝑠(.r𝑅)𝑋) ∈ 𝐽 ∧ (((invg𝑅)‘(𝑠(.r𝑅)𝑋))(+g𝑅)(1r𝑅)) ∈ 𝐽)) → ((𝑠(.r𝑅)𝑋)(+g𝑅)(((invg𝑅)‘(𝑠(.r𝑅)𝑋))(+g𝑅)(1r𝑅))) ∈ 𝐽)
904, 6, 18, 88, 89syl22anc 838 . . . 4 (((𝜑𝑠𝐵) ∧ ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → ((𝑠(.r𝑅)𝑋)(+g𝑅)(((invg𝑅)‘(𝑠(.r𝑅)𝑋))(+g𝑅)(1r𝑅))) ∈ 𝐽)
9126, 90eqeltrrd 2829 . . 3 (((𝜑𝑠𝐵) ∧ ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → (1r𝑅) ∈ 𝐽)
929, 8, 20lidl1el 21133 . . . 4 ((𝑅 ∈ Ring ∧ 𝐽 ∈ (LIdeal‘𝑅)) → ((1r𝑅) ∈ 𝐽𝐽 = 𝐵))
9392biimpa 476 . . 3 (((𝑅 ∈ Ring ∧ 𝐽 ∈ (LIdeal‘𝑅)) ∧ (1r𝑅) ∈ 𝐽) → 𝐽 = 𝐵)
944, 6, 91, 93syl21anc 837 . 2 (((𝜑𝑠𝐵) ∧ ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → 𝐽 = 𝐵)
9534, 35, 38, 39, 50, 68drnginvrcld 20640 . . . 4 (𝜑 → ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) ∈ (Base‘𝑄))
9695, 49eleqtrrd 2831 . . 3 (𝜑 → ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) ∈ (𝐵 / (𝑅 ~QG 𝑀)))
97 elqsi 8693 . . 3 (((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) ∈ (𝐵 / (𝑅 ~QG 𝑀)) → ∃𝑠𝐵 ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀))
9896, 97syl 17 . 2 (𝜑 → ∃𝑠𝐵 ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀))
9994, 98r19.29a 3137 1 (𝜑𝐽 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053  Vcvv 3436  cdif 3900  wss 3903   class class class wbr 5092  cfv 6482  (class class class)co 7349   Er wer 8622  [cec 8623   / cqs 8624  Basecbs 17120  +gcplusg 17161  .rcmulr 17162  0gc0g 17343   /s cqus 17409  Grpcgrp 18812  invgcminusg 18813  SubGrpcsubg 18999  NrmSGrpcnsg 19000   ~QG cqg 19001  1rcur 20066  Ringcrg 20118  opprcoppr 20221  invrcinvr 20272  NzRingcnzr 20397  DivRingcdr 20614  LIdealclidl 21113  2Idealc2idl 21156
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-tpos 8159  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-ec 8627  df-qs 8631  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-sup 9332  df-inf 9333  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-fz 13411  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-0g 17345  df-imas 17412  df-qus 17413  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-submnd 18658  df-grp 18815  df-minusg 18816  df-sbg 18817  df-subg 19002  df-nsg 19003  df-eqg 19004  df-oppg 19225  df-lsm 19515  df-cmn 19661  df-abl 19662  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-oppr 20222  df-dvdsr 20242  df-unit 20243  df-invr 20273  df-nzr 20398  df-subrg 20455  df-drng 20616  df-lmod 20765  df-lss 20835  df-sra 21077  df-rgmod 21078  df-lidl 21115  df-2idl 21157
This theorem is referenced by:  qsdrng  33434
  Copyright terms: Public domain W3C validator