| Step | Hyp | Ref
| Expression |
| 1 | | qsdrng.r |
. . . . 5
⊢ (𝜑 → 𝑅 ∈ NzRing) |
| 2 | | nzrring 20517 |
. . . . 5
⊢ (𝑅 ∈ NzRing → 𝑅 ∈ Ring) |
| 3 | 1, 2 | syl 17 |
. . . 4
⊢ (𝜑 → 𝑅 ∈ Ring) |
| 4 | 3 | ad2antrr 726 |
. . 3
⊢ (((𝜑 ∧ 𝑠 ∈ 𝐵) ∧ ((invr‘𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → 𝑅 ∈ Ring) |
| 5 | | qsdrnglem2.j |
. . . 4
⊢ (𝜑 → 𝐽 ∈ (LIdeal‘𝑅)) |
| 6 | 5 | ad2antrr 726 |
. . 3
⊢ (((𝜑 ∧ 𝑠 ∈ 𝐵) ∧ ((invr‘𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → 𝐽 ∈ (LIdeal‘𝑅)) |
| 7 | 4 | ringgrpd 20240 |
. . . . 5
⊢ (((𝜑 ∧ 𝑠 ∈ 𝐵) ∧ ((invr‘𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → 𝑅 ∈ Grp) |
| 8 | | qsdrnglem2.1 |
. . . . . . . 8
⊢ 𝐵 = (Base‘𝑅) |
| 9 | | eqid 2736 |
. . . . . . . 8
⊢
(LIdeal‘𝑅) =
(LIdeal‘𝑅) |
| 10 | 8, 9 | lidlss 21223 |
. . . . . . 7
⊢ (𝐽 ∈ (LIdeal‘𝑅) → 𝐽 ⊆ 𝐵) |
| 11 | 6, 10 | syl 17 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑠 ∈ 𝐵) ∧ ((invr‘𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → 𝐽 ⊆ 𝐵) |
| 12 | | simplr 768 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑠 ∈ 𝐵) ∧ ((invr‘𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → 𝑠 ∈ 𝐵) |
| 13 | | qsdrnglem2.x |
. . . . . . . . 9
⊢ (𝜑 → 𝑋 ∈ (𝐽 ∖ 𝑀)) |
| 14 | 13 | eldifad 3962 |
. . . . . . . 8
⊢ (𝜑 → 𝑋 ∈ 𝐽) |
| 15 | 14 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑠 ∈ 𝐵) ∧ ((invr‘𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → 𝑋 ∈ 𝐽) |
| 16 | | eqid 2736 |
. . . . . . . 8
⊢
(.r‘𝑅) = (.r‘𝑅) |
| 17 | 9, 8, 16 | lidlmcl 21236 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝐽 ∈ (LIdeal‘𝑅)) ∧ (𝑠 ∈ 𝐵 ∧ 𝑋 ∈ 𝐽)) → (𝑠(.r‘𝑅)𝑋) ∈ 𝐽) |
| 18 | 4, 6, 12, 15, 17 | syl22anc 838 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑠 ∈ 𝐵) ∧ ((invr‘𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → (𝑠(.r‘𝑅)𝑋) ∈ 𝐽) |
| 19 | 11, 18 | sseldd 3983 |
. . . . 5
⊢ (((𝜑 ∧ 𝑠 ∈ 𝐵) ∧ ((invr‘𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → (𝑠(.r‘𝑅)𝑋) ∈ 𝐵) |
| 20 | | eqid 2736 |
. . . . . . 7
⊢
(1r‘𝑅) = (1r‘𝑅) |
| 21 | 8, 20 | ringidcl 20263 |
. . . . . 6
⊢ (𝑅 ∈ Ring →
(1r‘𝑅)
∈ 𝐵) |
| 22 | 4, 21 | syl 17 |
. . . . 5
⊢ (((𝜑 ∧ 𝑠 ∈ 𝐵) ∧ ((invr‘𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → (1r‘𝑅) ∈ 𝐵) |
| 23 | | eqid 2736 |
. . . . . 6
⊢
(+g‘𝑅) = (+g‘𝑅) |
| 24 | | eqid 2736 |
. . . . . 6
⊢
(invg‘𝑅) = (invg‘𝑅) |
| 25 | 8, 23, 24 | grpasscan1 19020 |
. . . . 5
⊢ ((𝑅 ∈ Grp ∧ (𝑠(.r‘𝑅)𝑋) ∈ 𝐵 ∧ (1r‘𝑅) ∈ 𝐵) → ((𝑠(.r‘𝑅)𝑋)(+g‘𝑅)(((invg‘𝑅)‘(𝑠(.r‘𝑅)𝑋))(+g‘𝑅)(1r‘𝑅))) = (1r‘𝑅)) |
| 26 | 7, 19, 22, 25 | syl3anc 1372 |
. . . 4
⊢ (((𝜑 ∧ 𝑠 ∈ 𝐵) ∧ ((invr‘𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → ((𝑠(.r‘𝑅)𝑋)(+g‘𝑅)(((invg‘𝑅)‘(𝑠(.r‘𝑅)𝑋))(+g‘𝑅)(1r‘𝑅))) = (1r‘𝑅)) |
| 27 | | qsdrnglem2.m |
. . . . . . 7
⊢ (𝜑 → 𝑀 ⊆ 𝐽) |
| 28 | 27 | ad2antrr 726 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑠 ∈ 𝐵) ∧ ((invr‘𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → 𝑀 ⊆ 𝐽) |
| 29 | 5, 10 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝐽 ⊆ 𝐵) |
| 30 | 27, 29 | sstrd 3993 |
. . . . . . . 8
⊢ (𝜑 → 𝑀 ⊆ 𝐵) |
| 31 | 30 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑠 ∈ 𝐵) ∧ ((invr‘𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → 𝑀 ⊆ 𝐵) |
| 32 | | simpr 484 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑠 ∈ 𝐵) ∧ ((invr‘𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → ((invr‘𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) |
| 33 | 32 | oveq1d 7447 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑠 ∈ 𝐵) ∧ ((invr‘𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → (((invr‘𝑄)‘[𝑋](𝑅 ~QG 𝑀))(.r‘𝑄)[𝑋](𝑅 ~QG 𝑀)) = ([𝑠](𝑅 ~QG 𝑀)(.r‘𝑄)[𝑋](𝑅 ~QG 𝑀))) |
| 34 | | eqid 2736 |
. . . . . . . . . . 11
⊢
(Base‘𝑄) =
(Base‘𝑄) |
| 35 | | eqid 2736 |
. . . . . . . . . . 11
⊢
(0g‘𝑄) = (0g‘𝑄) |
| 36 | | eqid 2736 |
. . . . . . . . . . 11
⊢
(.r‘𝑄) = (.r‘𝑄) |
| 37 | | eqid 2736 |
. . . . . . . . . . 11
⊢
(1r‘𝑄) = (1r‘𝑄) |
| 38 | | eqid 2736 |
. . . . . . . . . . 11
⊢
(invr‘𝑄) = (invr‘𝑄) |
| 39 | | qsdrnglem2.q |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑄 ∈ DivRing) |
| 40 | 39 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑠 ∈ 𝐵) ∧ ((invr‘𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → 𝑄 ∈ DivRing) |
| 41 | 29, 14 | sseldd 3983 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| 42 | | ovex 7465 |
. . . . . . . . . . . . . . 15
⊢ (𝑅 ~QG 𝑀) ∈ V |
| 43 | 42 | ecelqsi 8814 |
. . . . . . . . . . . . . 14
⊢ (𝑋 ∈ 𝐵 → [𝑋](𝑅 ~QG 𝑀) ∈ (𝐵 / (𝑅 ~QG 𝑀))) |
| 44 | 41, 43 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → [𝑋](𝑅 ~QG 𝑀) ∈ (𝐵 / (𝑅 ~QG 𝑀))) |
| 45 | | qsdrng.q |
. . . . . . . . . . . . . . 15
⊢ 𝑄 = (𝑅 /s (𝑅 ~QG 𝑀)) |
| 46 | 45 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑄 = (𝑅 /s (𝑅 ~QG 𝑀))) |
| 47 | 8 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐵 = (Base‘𝑅)) |
| 48 | 42 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑅 ~QG 𝑀) ∈ V) |
| 49 | 46, 47, 48, 1 | qusbas 17591 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐵 / (𝑅 ~QG 𝑀)) = (Base‘𝑄)) |
| 50 | 44, 49 | eleqtrd 2842 |
. . . . . . . . . . . 12
⊢ (𝜑 → [𝑋](𝑅 ~QG 𝑀) ∈ (Base‘𝑄)) |
| 51 | 50 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑠 ∈ 𝐵) ∧ ((invr‘𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → [𝑋](𝑅 ~QG 𝑀) ∈ (Base‘𝑄)) |
| 52 | | qsdrng.2 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑀 ∈ (2Ideal‘𝑅)) |
| 53 | 52 | 2idllidld 21265 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑀 ∈ (LIdeal‘𝑅)) |
| 54 | 9 | lidlsubg 21234 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ (LIdeal‘𝑅)) → 𝑀 ∈ (SubGrp‘𝑅)) |
| 55 | 3, 53, 54 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑀 ∈ (SubGrp‘𝑅)) |
| 56 | | eqid 2736 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑅 ~QG 𝑀) = (𝑅 ~QG 𝑀) |
| 57 | 8, 56 | eqger 19197 |
. . . . . . . . . . . . . . . 16
⊢ (𝑀 ∈ (SubGrp‘𝑅) → (𝑅 ~QG 𝑀) Er 𝐵) |
| 58 | 55, 57 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑅 ~QG 𝑀) Er 𝐵) |
| 59 | | ecref 8791 |
. . . . . . . . . . . . . . 15
⊢ (((𝑅 ~QG 𝑀) Er 𝐵 ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ [𝑋](𝑅 ~QG 𝑀)) |
| 60 | 58, 41, 59 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑋 ∈ [𝑋](𝑅 ~QG 𝑀)) |
| 61 | 13 | eldifbd 3963 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ¬ 𝑋 ∈ 𝑀) |
| 62 | | nelne1 3038 |
. . . . . . . . . . . . . 14
⊢ ((𝑋 ∈ [𝑋](𝑅 ~QG 𝑀) ∧ ¬ 𝑋 ∈ 𝑀) → [𝑋](𝑅 ~QG 𝑀) ≠ 𝑀) |
| 63 | 60, 61, 62 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ (𝜑 → [𝑋](𝑅 ~QG 𝑀) ≠ 𝑀) |
| 64 | | lidlnsg 21259 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ (LIdeal‘𝑅)) → 𝑀 ∈ (NrmSGrp‘𝑅)) |
| 65 | 3, 53, 64 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑀 ∈ (NrmSGrp‘𝑅)) |
| 66 | 45 | qus0g 33436 |
. . . . . . . . . . . . . 14
⊢ (𝑀 ∈ (NrmSGrp‘𝑅) →
(0g‘𝑄) =
𝑀) |
| 67 | 65, 66 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (0g‘𝑄) = 𝑀) |
| 68 | 63, 67 | neeqtrrd 3014 |
. . . . . . . . . . . 12
⊢ (𝜑 → [𝑋](𝑅 ~QG 𝑀) ≠ (0g‘𝑄)) |
| 69 | 68 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑠 ∈ 𝐵) ∧ ((invr‘𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → [𝑋](𝑅 ~QG 𝑀) ≠ (0g‘𝑄)) |
| 70 | 34, 35, 36, 37, 38, 40, 51, 69 | drnginvrld 20759 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑠 ∈ 𝐵) ∧ ((invr‘𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → (((invr‘𝑄)‘[𝑋](𝑅 ~QG 𝑀))(.r‘𝑄)[𝑋](𝑅 ~QG 𝑀)) = (1r‘𝑄)) |
| 71 | 52 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑠 ∈ 𝐵) ∧ ((invr‘𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → 𝑀 ∈ (2Ideal‘𝑅)) |
| 72 | 41 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑠 ∈ 𝐵) ∧ ((invr‘𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → 𝑋 ∈ 𝐵) |
| 73 | 45, 8, 16, 36, 4, 71, 12, 72 | qusmul2idl 21290 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑠 ∈ 𝐵) ∧ ((invr‘𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → ([𝑠](𝑅 ~QG 𝑀)(.r‘𝑄)[𝑋](𝑅 ~QG 𝑀)) = [(𝑠(.r‘𝑅)𝑋)](𝑅 ~QG 𝑀)) |
| 74 | 33, 70, 73 | 3eqtr3rd 2785 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑠 ∈ 𝐵) ∧ ((invr‘𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → [(𝑠(.r‘𝑅)𝑋)](𝑅 ~QG 𝑀) = (1r‘𝑄)) |
| 75 | | eqid 2736 |
. . . . . . . . . . . 12
⊢
(2Ideal‘𝑅) =
(2Ideal‘𝑅) |
| 76 | 45, 75, 20 | qus1 21285 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ (2Ideal‘𝑅)) → (𝑄 ∈ Ring ∧
[(1r‘𝑅)](𝑅 ~QG 𝑀) = (1r‘𝑄))) |
| 77 | 76 | simprd 495 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ (2Ideal‘𝑅)) →
[(1r‘𝑅)](𝑅 ~QG 𝑀) = (1r‘𝑄)) |
| 78 | 4, 71, 77 | syl2anc 584 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑠 ∈ 𝐵) ∧ ((invr‘𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → [(1r‘𝑅)](𝑅 ~QG 𝑀) = (1r‘𝑄)) |
| 79 | 74, 78 | eqtr4d 2779 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑠 ∈ 𝐵) ∧ ((invr‘𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → [(𝑠(.r‘𝑅)𝑋)](𝑅 ~QG 𝑀) = [(1r‘𝑅)](𝑅 ~QG 𝑀)) |
| 80 | 55 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑠 ∈ 𝐵) ∧ ((invr‘𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → 𝑀 ∈ (SubGrp‘𝑅)) |
| 81 | 80, 57 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑠 ∈ 𝐵) ∧ ((invr‘𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → (𝑅 ~QG 𝑀) Er 𝐵) |
| 82 | 81, 22 | erth2 8798 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑠 ∈ 𝐵) ∧ ((invr‘𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → ((𝑠(.r‘𝑅)𝑋)(𝑅 ~QG 𝑀)(1r‘𝑅) ↔ [(𝑠(.r‘𝑅)𝑋)](𝑅 ~QG 𝑀) = [(1r‘𝑅)](𝑅 ~QG 𝑀))) |
| 83 | 79, 82 | mpbird 257 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑠 ∈ 𝐵) ∧ ((invr‘𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → (𝑠(.r‘𝑅)𝑋)(𝑅 ~QG 𝑀)(1r‘𝑅)) |
| 84 | 8, 24, 23, 56 | eqgval 19196 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧ 𝑀 ⊆ 𝐵) → ((𝑠(.r‘𝑅)𝑋)(𝑅 ~QG 𝑀)(1r‘𝑅) ↔ ((𝑠(.r‘𝑅)𝑋) ∈ 𝐵 ∧ (1r‘𝑅) ∈ 𝐵 ∧ (((invg‘𝑅)‘(𝑠(.r‘𝑅)𝑋))(+g‘𝑅)(1r‘𝑅)) ∈ 𝑀))) |
| 85 | 84 | biimpa 476 |
. . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ 𝑀 ⊆ 𝐵) ∧ (𝑠(.r‘𝑅)𝑋)(𝑅 ~QG 𝑀)(1r‘𝑅)) → ((𝑠(.r‘𝑅)𝑋) ∈ 𝐵 ∧ (1r‘𝑅) ∈ 𝐵 ∧ (((invg‘𝑅)‘(𝑠(.r‘𝑅)𝑋))(+g‘𝑅)(1r‘𝑅)) ∈ 𝑀)) |
| 86 | 85 | simp3d 1144 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝑀 ⊆ 𝐵) ∧ (𝑠(.r‘𝑅)𝑋)(𝑅 ~QG 𝑀)(1r‘𝑅)) → (((invg‘𝑅)‘(𝑠(.r‘𝑅)𝑋))(+g‘𝑅)(1r‘𝑅)) ∈ 𝑀) |
| 87 | 4, 31, 83, 86 | syl21anc 837 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑠 ∈ 𝐵) ∧ ((invr‘𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → (((invg‘𝑅)‘(𝑠(.r‘𝑅)𝑋))(+g‘𝑅)(1r‘𝑅)) ∈ 𝑀) |
| 88 | 28, 87 | sseldd 3983 |
. . . . 5
⊢ (((𝜑 ∧ 𝑠 ∈ 𝐵) ∧ ((invr‘𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → (((invg‘𝑅)‘(𝑠(.r‘𝑅)𝑋))(+g‘𝑅)(1r‘𝑅)) ∈ 𝐽) |
| 89 | 9, 23 | lidlacl 21232 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝐽 ∈ (LIdeal‘𝑅)) ∧ ((𝑠(.r‘𝑅)𝑋) ∈ 𝐽 ∧ (((invg‘𝑅)‘(𝑠(.r‘𝑅)𝑋))(+g‘𝑅)(1r‘𝑅)) ∈ 𝐽)) → ((𝑠(.r‘𝑅)𝑋)(+g‘𝑅)(((invg‘𝑅)‘(𝑠(.r‘𝑅)𝑋))(+g‘𝑅)(1r‘𝑅))) ∈ 𝐽) |
| 90 | 4, 6, 18, 88, 89 | syl22anc 838 |
. . . 4
⊢ (((𝜑 ∧ 𝑠 ∈ 𝐵) ∧ ((invr‘𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → ((𝑠(.r‘𝑅)𝑋)(+g‘𝑅)(((invg‘𝑅)‘(𝑠(.r‘𝑅)𝑋))(+g‘𝑅)(1r‘𝑅))) ∈ 𝐽) |
| 91 | 26, 90 | eqeltrrd 2841 |
. . 3
⊢ (((𝜑 ∧ 𝑠 ∈ 𝐵) ∧ ((invr‘𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → (1r‘𝑅) ∈ 𝐽) |
| 92 | 9, 8, 20 | lidl1el 21237 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐽 ∈ (LIdeal‘𝑅)) →
((1r‘𝑅)
∈ 𝐽 ↔ 𝐽 = 𝐵)) |
| 93 | 92 | biimpa 476 |
. . 3
⊢ (((𝑅 ∈ Ring ∧ 𝐽 ∈ (LIdeal‘𝑅)) ∧
(1r‘𝑅)
∈ 𝐽) → 𝐽 = 𝐵) |
| 94 | 4, 6, 91, 93 | syl21anc 837 |
. 2
⊢ (((𝜑 ∧ 𝑠 ∈ 𝐵) ∧ ((invr‘𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → 𝐽 = 𝐵) |
| 95 | 34, 35, 38, 39, 50, 68 | drnginvrcld 20756 |
. . . 4
⊢ (𝜑 →
((invr‘𝑄)‘[𝑋](𝑅 ~QG 𝑀)) ∈ (Base‘𝑄)) |
| 96 | 95, 49 | eleqtrrd 2843 |
. . 3
⊢ (𝜑 →
((invr‘𝑄)‘[𝑋](𝑅 ~QG 𝑀)) ∈ (𝐵 / (𝑅 ~QG 𝑀))) |
| 97 | | elqsi 8811 |
. . 3
⊢
(((invr‘𝑄)‘[𝑋](𝑅 ~QG 𝑀)) ∈ (𝐵 / (𝑅 ~QG 𝑀)) → ∃𝑠 ∈ 𝐵 ((invr‘𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) |
| 98 | 96, 97 | syl 17 |
. 2
⊢ (𝜑 → ∃𝑠 ∈ 𝐵 ((invr‘𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) |
| 99 | 94, 98 | r19.29a 3161 |
1
⊢ (𝜑 → 𝐽 = 𝐵) |