Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qsdrnglem2 Structured version   Visualization version   GIF version

Theorem qsdrnglem2 33489
Description: Lemma for qsdrng 33490. (Contributed by Thierry Arnoux, 13-Mar-2025.)
Hypotheses
Ref Expression
qsdrng.0 𝑂 = (oppr𝑅)
qsdrng.q 𝑄 = (𝑅 /s (𝑅 ~QG 𝑀))
qsdrng.r (𝜑𝑅 ∈ NzRing)
qsdrng.2 (𝜑𝑀 ∈ (2Ideal‘𝑅))
qsdrnglem2.1 𝐵 = (Base‘𝑅)
qsdrnglem2.q (𝜑𝑄 ∈ DivRing)
qsdrnglem2.j (𝜑𝐽 ∈ (LIdeal‘𝑅))
qsdrnglem2.m (𝜑𝑀𝐽)
qsdrnglem2.x (𝜑𝑋 ∈ (𝐽𝑀))
Assertion
Ref Expression
qsdrnglem2 (𝜑𝐽 = 𝐵)

Proof of Theorem qsdrnglem2
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 qsdrng.r . . . . 5 (𝜑𝑅 ∈ NzRing)
2 nzrring 20542 . . . . 5 (𝑅 ∈ NzRing → 𝑅 ∈ Ring)
31, 2syl 17 . . . 4 (𝜑𝑅 ∈ Ring)
43ad2antrr 725 . . 3 (((𝜑𝑠𝐵) ∧ ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → 𝑅 ∈ Ring)
5 qsdrnglem2.j . . . 4 (𝜑𝐽 ∈ (LIdeal‘𝑅))
65ad2antrr 725 . . 3 (((𝜑𝑠𝐵) ∧ ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → 𝐽 ∈ (LIdeal‘𝑅))
74ringgrpd 20269 . . . . 5 (((𝜑𝑠𝐵) ∧ ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → 𝑅 ∈ Grp)
8 qsdrnglem2.1 . . . . . . . 8 𝐵 = (Base‘𝑅)
9 eqid 2740 . . . . . . . 8 (LIdeal‘𝑅) = (LIdeal‘𝑅)
108, 9lidlss 21245 . . . . . . 7 (𝐽 ∈ (LIdeal‘𝑅) → 𝐽𝐵)
116, 10syl 17 . . . . . 6 (((𝜑𝑠𝐵) ∧ ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → 𝐽𝐵)
12 simplr 768 . . . . . . 7 (((𝜑𝑠𝐵) ∧ ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → 𝑠𝐵)
13 qsdrnglem2.x . . . . . . . . 9 (𝜑𝑋 ∈ (𝐽𝑀))
1413eldifad 3988 . . . . . . . 8 (𝜑𝑋𝐽)
1514ad2antrr 725 . . . . . . 7 (((𝜑𝑠𝐵) ∧ ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → 𝑋𝐽)
16 eqid 2740 . . . . . . . 8 (.r𝑅) = (.r𝑅)
179, 8, 16lidlmcl 21258 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐽 ∈ (LIdeal‘𝑅)) ∧ (𝑠𝐵𝑋𝐽)) → (𝑠(.r𝑅)𝑋) ∈ 𝐽)
184, 6, 12, 15, 17syl22anc 838 . . . . . 6 (((𝜑𝑠𝐵) ∧ ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → (𝑠(.r𝑅)𝑋) ∈ 𝐽)
1911, 18sseldd 4009 . . . . 5 (((𝜑𝑠𝐵) ∧ ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → (𝑠(.r𝑅)𝑋) ∈ 𝐵)
20 eqid 2740 . . . . . . 7 (1r𝑅) = (1r𝑅)
218, 20ringidcl 20289 . . . . . 6 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝐵)
224, 21syl 17 . . . . 5 (((𝜑𝑠𝐵) ∧ ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → (1r𝑅) ∈ 𝐵)
23 eqid 2740 . . . . . 6 (+g𝑅) = (+g𝑅)
24 eqid 2740 . . . . . 6 (invg𝑅) = (invg𝑅)
258, 23, 24grpasscan1 19041 . . . . 5 ((𝑅 ∈ Grp ∧ (𝑠(.r𝑅)𝑋) ∈ 𝐵 ∧ (1r𝑅) ∈ 𝐵) → ((𝑠(.r𝑅)𝑋)(+g𝑅)(((invg𝑅)‘(𝑠(.r𝑅)𝑋))(+g𝑅)(1r𝑅))) = (1r𝑅))
267, 19, 22, 25syl3anc 1371 . . . 4 (((𝜑𝑠𝐵) ∧ ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → ((𝑠(.r𝑅)𝑋)(+g𝑅)(((invg𝑅)‘(𝑠(.r𝑅)𝑋))(+g𝑅)(1r𝑅))) = (1r𝑅))
27 qsdrnglem2.m . . . . . . 7 (𝜑𝑀𝐽)
2827ad2antrr 725 . . . . . 6 (((𝜑𝑠𝐵) ∧ ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → 𝑀𝐽)
295, 10syl 17 . . . . . . . . 9 (𝜑𝐽𝐵)
3027, 29sstrd 4019 . . . . . . . 8 (𝜑𝑀𝐵)
3130ad2antrr 725 . . . . . . 7 (((𝜑𝑠𝐵) ∧ ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → 𝑀𝐵)
32 simpr 484 . . . . . . . . . . 11 (((𝜑𝑠𝐵) ∧ ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀))
3332oveq1d 7463 . . . . . . . . . 10 (((𝜑𝑠𝐵) ∧ ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → (((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀))(.r𝑄)[𝑋](𝑅 ~QG 𝑀)) = ([𝑠](𝑅 ~QG 𝑀)(.r𝑄)[𝑋](𝑅 ~QG 𝑀)))
34 eqid 2740 . . . . . . . . . . 11 (Base‘𝑄) = (Base‘𝑄)
35 eqid 2740 . . . . . . . . . . 11 (0g𝑄) = (0g𝑄)
36 eqid 2740 . . . . . . . . . . 11 (.r𝑄) = (.r𝑄)
37 eqid 2740 . . . . . . . . . . 11 (1r𝑄) = (1r𝑄)
38 eqid 2740 . . . . . . . . . . 11 (invr𝑄) = (invr𝑄)
39 qsdrnglem2.q . . . . . . . . . . . 12 (𝜑𝑄 ∈ DivRing)
4039ad2antrr 725 . . . . . . . . . . 11 (((𝜑𝑠𝐵) ∧ ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → 𝑄 ∈ DivRing)
4129, 14sseldd 4009 . . . . . . . . . . . . . 14 (𝜑𝑋𝐵)
42 ovex 7481 . . . . . . . . . . . . . . 15 (𝑅 ~QG 𝑀) ∈ V
4342ecelqsi 8831 . . . . . . . . . . . . . 14 (𝑋𝐵 → [𝑋](𝑅 ~QG 𝑀) ∈ (𝐵 / (𝑅 ~QG 𝑀)))
4441, 43syl 17 . . . . . . . . . . . . 13 (𝜑 → [𝑋](𝑅 ~QG 𝑀) ∈ (𝐵 / (𝑅 ~QG 𝑀)))
45 qsdrng.q . . . . . . . . . . . . . . 15 𝑄 = (𝑅 /s (𝑅 ~QG 𝑀))
4645a1i 11 . . . . . . . . . . . . . 14 (𝜑𝑄 = (𝑅 /s (𝑅 ~QG 𝑀)))
478a1i 11 . . . . . . . . . . . . . 14 (𝜑𝐵 = (Base‘𝑅))
4842a1i 11 . . . . . . . . . . . . . 14 (𝜑 → (𝑅 ~QG 𝑀) ∈ V)
4946, 47, 48, 1qusbas 17605 . . . . . . . . . . . . 13 (𝜑 → (𝐵 / (𝑅 ~QG 𝑀)) = (Base‘𝑄))
5044, 49eleqtrd 2846 . . . . . . . . . . . 12 (𝜑 → [𝑋](𝑅 ~QG 𝑀) ∈ (Base‘𝑄))
5150ad2antrr 725 . . . . . . . . . . 11 (((𝜑𝑠𝐵) ∧ ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → [𝑋](𝑅 ~QG 𝑀) ∈ (Base‘𝑄))
52 qsdrng.2 . . . . . . . . . . . . . . . . . 18 (𝜑𝑀 ∈ (2Ideal‘𝑅))
53522idllidld 21287 . . . . . . . . . . . . . . . . 17 (𝜑𝑀 ∈ (LIdeal‘𝑅))
549lidlsubg 21256 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ Ring ∧ 𝑀 ∈ (LIdeal‘𝑅)) → 𝑀 ∈ (SubGrp‘𝑅))
553, 53, 54syl2anc 583 . . . . . . . . . . . . . . . 16 (𝜑𝑀 ∈ (SubGrp‘𝑅))
56 eqid 2740 . . . . . . . . . . . . . . . . 17 (𝑅 ~QG 𝑀) = (𝑅 ~QG 𝑀)
578, 56eqger 19218 . . . . . . . . . . . . . . . 16 (𝑀 ∈ (SubGrp‘𝑅) → (𝑅 ~QG 𝑀) Er 𝐵)
5855, 57syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝑅 ~QG 𝑀) Er 𝐵)
59 ecref 8808 . . . . . . . . . . . . . . 15 (((𝑅 ~QG 𝑀) Er 𝐵𝑋𝐵) → 𝑋 ∈ [𝑋](𝑅 ~QG 𝑀))
6058, 41, 59syl2anc 583 . . . . . . . . . . . . . 14 (𝜑𝑋 ∈ [𝑋](𝑅 ~QG 𝑀))
6113eldifbd 3989 . . . . . . . . . . . . . 14 (𝜑 → ¬ 𝑋𝑀)
62 nelne1 3045 . . . . . . . . . . . . . 14 ((𝑋 ∈ [𝑋](𝑅 ~QG 𝑀) ∧ ¬ 𝑋𝑀) → [𝑋](𝑅 ~QG 𝑀) ≠ 𝑀)
6360, 61, 62syl2anc 583 . . . . . . . . . . . . 13 (𝜑 → [𝑋](𝑅 ~QG 𝑀) ≠ 𝑀)
64 lidlnsg 21281 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ 𝑀 ∈ (LIdeal‘𝑅)) → 𝑀 ∈ (NrmSGrp‘𝑅))
653, 53, 64syl2anc 583 . . . . . . . . . . . . . 14 (𝜑𝑀 ∈ (NrmSGrp‘𝑅))
6645qus0g 33400 . . . . . . . . . . . . . 14 (𝑀 ∈ (NrmSGrp‘𝑅) → (0g𝑄) = 𝑀)
6765, 66syl 17 . . . . . . . . . . . . 13 (𝜑 → (0g𝑄) = 𝑀)
6863, 67neeqtrrd 3021 . . . . . . . . . . . 12 (𝜑 → [𝑋](𝑅 ~QG 𝑀) ≠ (0g𝑄))
6968ad2antrr 725 . . . . . . . . . . 11 (((𝜑𝑠𝐵) ∧ ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → [𝑋](𝑅 ~QG 𝑀) ≠ (0g𝑄))
7034, 35, 36, 37, 38, 40, 51, 69drnginvrld 20780 . . . . . . . . . 10 (((𝜑𝑠𝐵) ∧ ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → (((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀))(.r𝑄)[𝑋](𝑅 ~QG 𝑀)) = (1r𝑄))
7152ad2antrr 725 . . . . . . . . . . 11 (((𝜑𝑠𝐵) ∧ ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → 𝑀 ∈ (2Ideal‘𝑅))
7241ad2antrr 725 . . . . . . . . . . 11 (((𝜑𝑠𝐵) ∧ ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → 𝑋𝐵)
7345, 8, 16, 36, 4, 71, 12, 72qusmul2idl 21312 . . . . . . . . . 10 (((𝜑𝑠𝐵) ∧ ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → ([𝑠](𝑅 ~QG 𝑀)(.r𝑄)[𝑋](𝑅 ~QG 𝑀)) = [(𝑠(.r𝑅)𝑋)](𝑅 ~QG 𝑀))
7433, 70, 733eqtr3rd 2789 . . . . . . . . 9 (((𝜑𝑠𝐵) ∧ ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → [(𝑠(.r𝑅)𝑋)](𝑅 ~QG 𝑀) = (1r𝑄))
75 eqid 2740 . . . . . . . . . . . 12 (2Ideal‘𝑅) = (2Ideal‘𝑅)
7645, 75, 20qus1 21307 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝑀 ∈ (2Ideal‘𝑅)) → (𝑄 ∈ Ring ∧ [(1r𝑅)](𝑅 ~QG 𝑀) = (1r𝑄)))
7776simprd 495 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑀 ∈ (2Ideal‘𝑅)) → [(1r𝑅)](𝑅 ~QG 𝑀) = (1r𝑄))
784, 71, 77syl2anc 583 . . . . . . . . 9 (((𝜑𝑠𝐵) ∧ ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → [(1r𝑅)](𝑅 ~QG 𝑀) = (1r𝑄))
7974, 78eqtr4d 2783 . . . . . . . 8 (((𝜑𝑠𝐵) ∧ ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → [(𝑠(.r𝑅)𝑋)](𝑅 ~QG 𝑀) = [(1r𝑅)](𝑅 ~QG 𝑀))
8055ad2antrr 725 . . . . . . . . . 10 (((𝜑𝑠𝐵) ∧ ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → 𝑀 ∈ (SubGrp‘𝑅))
8180, 57syl 17 . . . . . . . . 9 (((𝜑𝑠𝐵) ∧ ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → (𝑅 ~QG 𝑀) Er 𝐵)
8281, 22erth2 8815 . . . . . . . 8 (((𝜑𝑠𝐵) ∧ ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → ((𝑠(.r𝑅)𝑋)(𝑅 ~QG 𝑀)(1r𝑅) ↔ [(𝑠(.r𝑅)𝑋)](𝑅 ~QG 𝑀) = [(1r𝑅)](𝑅 ~QG 𝑀)))
8379, 82mpbird 257 . . . . . . 7 (((𝜑𝑠𝐵) ∧ ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → (𝑠(.r𝑅)𝑋)(𝑅 ~QG 𝑀)(1r𝑅))
848, 24, 23, 56eqgval 19217 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → ((𝑠(.r𝑅)𝑋)(𝑅 ~QG 𝑀)(1r𝑅) ↔ ((𝑠(.r𝑅)𝑋) ∈ 𝐵 ∧ (1r𝑅) ∈ 𝐵 ∧ (((invg𝑅)‘(𝑠(.r𝑅)𝑋))(+g𝑅)(1r𝑅)) ∈ 𝑀)))
8584biimpa 476 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠(.r𝑅)𝑋)(𝑅 ~QG 𝑀)(1r𝑅)) → ((𝑠(.r𝑅)𝑋) ∈ 𝐵 ∧ (1r𝑅) ∈ 𝐵 ∧ (((invg𝑅)‘(𝑠(.r𝑅)𝑋))(+g𝑅)(1r𝑅)) ∈ 𝑀))
8685simp3d 1144 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠(.r𝑅)𝑋)(𝑅 ~QG 𝑀)(1r𝑅)) → (((invg𝑅)‘(𝑠(.r𝑅)𝑋))(+g𝑅)(1r𝑅)) ∈ 𝑀)
874, 31, 83, 86syl21anc 837 . . . . . 6 (((𝜑𝑠𝐵) ∧ ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → (((invg𝑅)‘(𝑠(.r𝑅)𝑋))(+g𝑅)(1r𝑅)) ∈ 𝑀)
8828, 87sseldd 4009 . . . . 5 (((𝜑𝑠𝐵) ∧ ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → (((invg𝑅)‘(𝑠(.r𝑅)𝑋))(+g𝑅)(1r𝑅)) ∈ 𝐽)
899, 23lidlacl 21254 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐽 ∈ (LIdeal‘𝑅)) ∧ ((𝑠(.r𝑅)𝑋) ∈ 𝐽 ∧ (((invg𝑅)‘(𝑠(.r𝑅)𝑋))(+g𝑅)(1r𝑅)) ∈ 𝐽)) → ((𝑠(.r𝑅)𝑋)(+g𝑅)(((invg𝑅)‘(𝑠(.r𝑅)𝑋))(+g𝑅)(1r𝑅))) ∈ 𝐽)
904, 6, 18, 88, 89syl22anc 838 . . . 4 (((𝜑𝑠𝐵) ∧ ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → ((𝑠(.r𝑅)𝑋)(+g𝑅)(((invg𝑅)‘(𝑠(.r𝑅)𝑋))(+g𝑅)(1r𝑅))) ∈ 𝐽)
9126, 90eqeltrrd 2845 . . 3 (((𝜑𝑠𝐵) ∧ ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → (1r𝑅) ∈ 𝐽)
929, 8, 20lidl1el 21259 . . . 4 ((𝑅 ∈ Ring ∧ 𝐽 ∈ (LIdeal‘𝑅)) → ((1r𝑅) ∈ 𝐽𝐽 = 𝐵))
9392biimpa 476 . . 3 (((𝑅 ∈ Ring ∧ 𝐽 ∈ (LIdeal‘𝑅)) ∧ (1r𝑅) ∈ 𝐽) → 𝐽 = 𝐵)
944, 6, 91, 93syl21anc 837 . 2 (((𝜑𝑠𝐵) ∧ ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → 𝐽 = 𝐵)
9534, 35, 38, 39, 50, 68drnginvrcld 20777 . . . 4 (𝜑 → ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) ∈ (Base‘𝑄))
9695, 49eleqtrrd 2847 . . 3 (𝜑 → ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) ∈ (𝐵 / (𝑅 ~QG 𝑀)))
97 elqsi 8828 . . 3 (((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) ∈ (𝐵 / (𝑅 ~QG 𝑀)) → ∃𝑠𝐵 ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀))
9896, 97syl 17 . 2 (𝜑 → ∃𝑠𝐵 ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀))
9994, 98r19.29a 3168 1 (𝜑𝐽 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wrex 3076  Vcvv 3488  cdif 3973  wss 3976   class class class wbr 5166  cfv 6573  (class class class)co 7448   Er wer 8760  [cec 8761   / cqs 8762  Basecbs 17258  +gcplusg 17311  .rcmulr 17312  0gc0g 17499   /s cqus 17565  Grpcgrp 18973  invgcminusg 18974  SubGrpcsubg 19160  NrmSGrpcnsg 19161   ~QG cqg 19162  1rcur 20208  Ringcrg 20260  opprcoppr 20359  invrcinvr 20413  NzRingcnzr 20538  DivRingcdr 20751  LIdealclidl 21239  2Idealc2idl 21282
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-tpos 8267  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-ec 8765  df-qs 8769  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-0g 17501  df-imas 17568  df-qus 17569  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-grp 18976  df-minusg 18977  df-sbg 18978  df-subg 19163  df-nsg 19164  df-eqg 19165  df-oppg 19386  df-lsm 19678  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-oppr 20360  df-dvdsr 20383  df-unit 20384  df-invr 20414  df-nzr 20539  df-subrg 20597  df-drng 20753  df-lmod 20882  df-lss 20953  df-sra 21195  df-rgmod 21196  df-lidl 21241  df-2idl 21283
This theorem is referenced by:  qsdrng  33490
  Copyright terms: Public domain W3C validator