Step | Hyp | Ref
| Expression |
1 | | qsdrng.r |
. . . . 5
⊢ (𝜑 → 𝑅 ∈ NzRing) |
2 | | nzrring 20498 |
. . . . 5
⊢ (𝑅 ∈ NzRing → 𝑅 ∈ Ring) |
3 | 1, 2 | syl 17 |
. . . 4
⊢ (𝜑 → 𝑅 ∈ Ring) |
4 | 3 | ad2antrr 724 |
. . 3
⊢ (((𝜑 ∧ 𝑠 ∈ 𝐵) ∧ ((invr‘𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → 𝑅 ∈ Ring) |
5 | | qsdrnglem2.j |
. . . 4
⊢ (𝜑 → 𝐽 ∈ (LIdeal‘𝑅)) |
6 | 5 | ad2antrr 724 |
. . 3
⊢ (((𝜑 ∧ 𝑠 ∈ 𝐵) ∧ ((invr‘𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → 𝐽 ∈ (LIdeal‘𝑅)) |
7 | 4 | ringgrpd 20225 |
. . . . 5
⊢ (((𝜑 ∧ 𝑠 ∈ 𝐵) ∧ ((invr‘𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → 𝑅 ∈ Grp) |
8 | | qsdrnglem2.1 |
. . . . . . . 8
⊢ 𝐵 = (Base‘𝑅) |
9 | | eqid 2726 |
. . . . . . . 8
⊢
(LIdeal‘𝑅) =
(LIdeal‘𝑅) |
10 | 8, 9 | lidlss 21201 |
. . . . . . 7
⊢ (𝐽 ∈ (LIdeal‘𝑅) → 𝐽 ⊆ 𝐵) |
11 | 6, 10 | syl 17 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑠 ∈ 𝐵) ∧ ((invr‘𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → 𝐽 ⊆ 𝐵) |
12 | | simplr 767 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑠 ∈ 𝐵) ∧ ((invr‘𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → 𝑠 ∈ 𝐵) |
13 | | qsdrnglem2.x |
. . . . . . . . 9
⊢ (𝜑 → 𝑋 ∈ (𝐽 ∖ 𝑀)) |
14 | 13 | eldifad 3959 |
. . . . . . . 8
⊢ (𝜑 → 𝑋 ∈ 𝐽) |
15 | 14 | ad2antrr 724 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑠 ∈ 𝐵) ∧ ((invr‘𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → 𝑋 ∈ 𝐽) |
16 | | eqid 2726 |
. . . . . . . 8
⊢
(.r‘𝑅) = (.r‘𝑅) |
17 | 9, 8, 16 | lidlmcl 21214 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝐽 ∈ (LIdeal‘𝑅)) ∧ (𝑠 ∈ 𝐵 ∧ 𝑋 ∈ 𝐽)) → (𝑠(.r‘𝑅)𝑋) ∈ 𝐽) |
18 | 4, 6, 12, 15, 17 | syl22anc 837 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑠 ∈ 𝐵) ∧ ((invr‘𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → (𝑠(.r‘𝑅)𝑋) ∈ 𝐽) |
19 | 11, 18 | sseldd 3980 |
. . . . 5
⊢ (((𝜑 ∧ 𝑠 ∈ 𝐵) ∧ ((invr‘𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → (𝑠(.r‘𝑅)𝑋) ∈ 𝐵) |
20 | | eqid 2726 |
. . . . . . 7
⊢
(1r‘𝑅) = (1r‘𝑅) |
21 | 8, 20 | ringidcl 20245 |
. . . . . 6
⊢ (𝑅 ∈ Ring →
(1r‘𝑅)
∈ 𝐵) |
22 | 4, 21 | syl 17 |
. . . . 5
⊢ (((𝜑 ∧ 𝑠 ∈ 𝐵) ∧ ((invr‘𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → (1r‘𝑅) ∈ 𝐵) |
23 | | eqid 2726 |
. . . . . 6
⊢
(+g‘𝑅) = (+g‘𝑅) |
24 | | eqid 2726 |
. . . . . 6
⊢
(invg‘𝑅) = (invg‘𝑅) |
25 | 8, 23, 24 | grpasscan1 18996 |
. . . . 5
⊢ ((𝑅 ∈ Grp ∧ (𝑠(.r‘𝑅)𝑋) ∈ 𝐵 ∧ (1r‘𝑅) ∈ 𝐵) → ((𝑠(.r‘𝑅)𝑋)(+g‘𝑅)(((invg‘𝑅)‘(𝑠(.r‘𝑅)𝑋))(+g‘𝑅)(1r‘𝑅))) = (1r‘𝑅)) |
26 | 7, 19, 22, 25 | syl3anc 1368 |
. . . 4
⊢ (((𝜑 ∧ 𝑠 ∈ 𝐵) ∧ ((invr‘𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → ((𝑠(.r‘𝑅)𝑋)(+g‘𝑅)(((invg‘𝑅)‘(𝑠(.r‘𝑅)𝑋))(+g‘𝑅)(1r‘𝑅))) = (1r‘𝑅)) |
27 | | qsdrnglem2.m |
. . . . . . 7
⊢ (𝜑 → 𝑀 ⊆ 𝐽) |
28 | 27 | ad2antrr 724 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑠 ∈ 𝐵) ∧ ((invr‘𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → 𝑀 ⊆ 𝐽) |
29 | 5, 10 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝐽 ⊆ 𝐵) |
30 | 27, 29 | sstrd 3990 |
. . . . . . . 8
⊢ (𝜑 → 𝑀 ⊆ 𝐵) |
31 | 30 | ad2antrr 724 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑠 ∈ 𝐵) ∧ ((invr‘𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → 𝑀 ⊆ 𝐵) |
32 | | simpr 483 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑠 ∈ 𝐵) ∧ ((invr‘𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → ((invr‘𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) |
33 | 32 | oveq1d 7439 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑠 ∈ 𝐵) ∧ ((invr‘𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → (((invr‘𝑄)‘[𝑋](𝑅 ~QG 𝑀))(.r‘𝑄)[𝑋](𝑅 ~QG 𝑀)) = ([𝑠](𝑅 ~QG 𝑀)(.r‘𝑄)[𝑋](𝑅 ~QG 𝑀))) |
34 | | eqid 2726 |
. . . . . . . . . . 11
⊢
(Base‘𝑄) =
(Base‘𝑄) |
35 | | eqid 2726 |
. . . . . . . . . . 11
⊢
(0g‘𝑄) = (0g‘𝑄) |
36 | | eqid 2726 |
. . . . . . . . . . 11
⊢
(.r‘𝑄) = (.r‘𝑄) |
37 | | eqid 2726 |
. . . . . . . . . . 11
⊢
(1r‘𝑄) = (1r‘𝑄) |
38 | | eqid 2726 |
. . . . . . . . . . 11
⊢
(invr‘𝑄) = (invr‘𝑄) |
39 | | qsdrnglem2.q |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑄 ∈ DivRing) |
40 | 39 | ad2antrr 724 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑠 ∈ 𝐵) ∧ ((invr‘𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → 𝑄 ∈ DivRing) |
41 | 29, 14 | sseldd 3980 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑋 ∈ 𝐵) |
42 | | ovex 7457 |
. . . . . . . . . . . . . . 15
⊢ (𝑅 ~QG 𝑀) ∈ V |
43 | 42 | ecelqsi 8802 |
. . . . . . . . . . . . . 14
⊢ (𝑋 ∈ 𝐵 → [𝑋](𝑅 ~QG 𝑀) ∈ (𝐵 / (𝑅 ~QG 𝑀))) |
44 | 41, 43 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → [𝑋](𝑅 ~QG 𝑀) ∈ (𝐵 / (𝑅 ~QG 𝑀))) |
45 | | qsdrng.q |
. . . . . . . . . . . . . . 15
⊢ 𝑄 = (𝑅 /s (𝑅 ~QG 𝑀)) |
46 | 45 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑄 = (𝑅 /s (𝑅 ~QG 𝑀))) |
47 | 8 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐵 = (Base‘𝑅)) |
48 | 42 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑅 ~QG 𝑀) ∈ V) |
49 | 46, 47, 48, 1 | qusbas 17560 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐵 / (𝑅 ~QG 𝑀)) = (Base‘𝑄)) |
50 | 44, 49 | eleqtrd 2828 |
. . . . . . . . . . . 12
⊢ (𝜑 → [𝑋](𝑅 ~QG 𝑀) ∈ (Base‘𝑄)) |
51 | 50 | ad2antrr 724 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑠 ∈ 𝐵) ∧ ((invr‘𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → [𝑋](𝑅 ~QG 𝑀) ∈ (Base‘𝑄)) |
52 | | qsdrng.2 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑀 ∈ (2Ideal‘𝑅)) |
53 | 52 | 2idllidld 21243 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑀 ∈ (LIdeal‘𝑅)) |
54 | 9 | lidlsubg 21212 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ (LIdeal‘𝑅)) → 𝑀 ∈ (SubGrp‘𝑅)) |
55 | 3, 53, 54 | syl2anc 582 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑀 ∈ (SubGrp‘𝑅)) |
56 | | eqid 2726 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑅 ~QG 𝑀) = (𝑅 ~QG 𝑀) |
57 | 8, 56 | eqger 19172 |
. . . . . . . . . . . . . . . 16
⊢ (𝑀 ∈ (SubGrp‘𝑅) → (𝑅 ~QG 𝑀) Er 𝐵) |
58 | 55, 57 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑅 ~QG 𝑀) Er 𝐵) |
59 | | ecref 8779 |
. . . . . . . . . . . . . . 15
⊢ (((𝑅 ~QG 𝑀) Er 𝐵 ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ [𝑋](𝑅 ~QG 𝑀)) |
60 | 58, 41, 59 | syl2anc 582 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑋 ∈ [𝑋](𝑅 ~QG 𝑀)) |
61 | 13 | eldifbd 3960 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ¬ 𝑋 ∈ 𝑀) |
62 | | nelne1 3029 |
. . . . . . . . . . . . . 14
⊢ ((𝑋 ∈ [𝑋](𝑅 ~QG 𝑀) ∧ ¬ 𝑋 ∈ 𝑀) → [𝑋](𝑅 ~QG 𝑀) ≠ 𝑀) |
63 | 60, 61, 62 | syl2anc 582 |
. . . . . . . . . . . . 13
⊢ (𝜑 → [𝑋](𝑅 ~QG 𝑀) ≠ 𝑀) |
64 | | lidlnsg 21237 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ (LIdeal‘𝑅)) → 𝑀 ∈ (NrmSGrp‘𝑅)) |
65 | 3, 53, 64 | syl2anc 582 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑀 ∈ (NrmSGrp‘𝑅)) |
66 | 45 | qus0g 33282 |
. . . . . . . . . . . . . 14
⊢ (𝑀 ∈ (NrmSGrp‘𝑅) →
(0g‘𝑄) =
𝑀) |
67 | 65, 66 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (0g‘𝑄) = 𝑀) |
68 | 63, 67 | neeqtrrd 3005 |
. . . . . . . . . . . 12
⊢ (𝜑 → [𝑋](𝑅 ~QG 𝑀) ≠ (0g‘𝑄)) |
69 | 68 | ad2antrr 724 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑠 ∈ 𝐵) ∧ ((invr‘𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → [𝑋](𝑅 ~QG 𝑀) ≠ (0g‘𝑄)) |
70 | 34, 35, 36, 37, 38, 40, 51, 69 | drnginvrld 20736 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑠 ∈ 𝐵) ∧ ((invr‘𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → (((invr‘𝑄)‘[𝑋](𝑅 ~QG 𝑀))(.r‘𝑄)[𝑋](𝑅 ~QG 𝑀)) = (1r‘𝑄)) |
71 | 52 | ad2antrr 724 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑠 ∈ 𝐵) ∧ ((invr‘𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → 𝑀 ∈ (2Ideal‘𝑅)) |
72 | 41 | ad2antrr 724 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑠 ∈ 𝐵) ∧ ((invr‘𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → 𝑋 ∈ 𝐵) |
73 | 45, 8, 16, 36, 4, 71, 12, 72 | qusmul2idl 21268 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑠 ∈ 𝐵) ∧ ((invr‘𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → ([𝑠](𝑅 ~QG 𝑀)(.r‘𝑄)[𝑋](𝑅 ~QG 𝑀)) = [(𝑠(.r‘𝑅)𝑋)](𝑅 ~QG 𝑀)) |
74 | 33, 70, 73 | 3eqtr3rd 2775 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑠 ∈ 𝐵) ∧ ((invr‘𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → [(𝑠(.r‘𝑅)𝑋)](𝑅 ~QG 𝑀) = (1r‘𝑄)) |
75 | | eqid 2726 |
. . . . . . . . . . . 12
⊢
(2Ideal‘𝑅) =
(2Ideal‘𝑅) |
76 | 45, 75, 20 | qus1 21263 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ (2Ideal‘𝑅)) → (𝑄 ∈ Ring ∧
[(1r‘𝑅)](𝑅 ~QG 𝑀) = (1r‘𝑄))) |
77 | 76 | simprd 494 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ (2Ideal‘𝑅)) →
[(1r‘𝑅)](𝑅 ~QG 𝑀) = (1r‘𝑄)) |
78 | 4, 71, 77 | syl2anc 582 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑠 ∈ 𝐵) ∧ ((invr‘𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → [(1r‘𝑅)](𝑅 ~QG 𝑀) = (1r‘𝑄)) |
79 | 74, 78 | eqtr4d 2769 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑠 ∈ 𝐵) ∧ ((invr‘𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → [(𝑠(.r‘𝑅)𝑋)](𝑅 ~QG 𝑀) = [(1r‘𝑅)](𝑅 ~QG 𝑀)) |
80 | 55 | ad2antrr 724 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑠 ∈ 𝐵) ∧ ((invr‘𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → 𝑀 ∈ (SubGrp‘𝑅)) |
81 | 80, 57 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑠 ∈ 𝐵) ∧ ((invr‘𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → (𝑅 ~QG 𝑀) Er 𝐵) |
82 | 81, 22 | erth2 8786 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑠 ∈ 𝐵) ∧ ((invr‘𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → ((𝑠(.r‘𝑅)𝑋)(𝑅 ~QG 𝑀)(1r‘𝑅) ↔ [(𝑠(.r‘𝑅)𝑋)](𝑅 ~QG 𝑀) = [(1r‘𝑅)](𝑅 ~QG 𝑀))) |
83 | 79, 82 | mpbird 256 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑠 ∈ 𝐵) ∧ ((invr‘𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → (𝑠(.r‘𝑅)𝑋)(𝑅 ~QG 𝑀)(1r‘𝑅)) |
84 | 8, 24, 23, 56 | eqgval 19171 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧ 𝑀 ⊆ 𝐵) → ((𝑠(.r‘𝑅)𝑋)(𝑅 ~QG 𝑀)(1r‘𝑅) ↔ ((𝑠(.r‘𝑅)𝑋) ∈ 𝐵 ∧ (1r‘𝑅) ∈ 𝐵 ∧ (((invg‘𝑅)‘(𝑠(.r‘𝑅)𝑋))(+g‘𝑅)(1r‘𝑅)) ∈ 𝑀))) |
85 | 84 | biimpa 475 |
. . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ 𝑀 ⊆ 𝐵) ∧ (𝑠(.r‘𝑅)𝑋)(𝑅 ~QG 𝑀)(1r‘𝑅)) → ((𝑠(.r‘𝑅)𝑋) ∈ 𝐵 ∧ (1r‘𝑅) ∈ 𝐵 ∧ (((invg‘𝑅)‘(𝑠(.r‘𝑅)𝑋))(+g‘𝑅)(1r‘𝑅)) ∈ 𝑀)) |
86 | 85 | simp3d 1141 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝑀 ⊆ 𝐵) ∧ (𝑠(.r‘𝑅)𝑋)(𝑅 ~QG 𝑀)(1r‘𝑅)) → (((invg‘𝑅)‘(𝑠(.r‘𝑅)𝑋))(+g‘𝑅)(1r‘𝑅)) ∈ 𝑀) |
87 | 4, 31, 83, 86 | syl21anc 836 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑠 ∈ 𝐵) ∧ ((invr‘𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → (((invg‘𝑅)‘(𝑠(.r‘𝑅)𝑋))(+g‘𝑅)(1r‘𝑅)) ∈ 𝑀) |
88 | 28, 87 | sseldd 3980 |
. . . . 5
⊢ (((𝜑 ∧ 𝑠 ∈ 𝐵) ∧ ((invr‘𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → (((invg‘𝑅)‘(𝑠(.r‘𝑅)𝑋))(+g‘𝑅)(1r‘𝑅)) ∈ 𝐽) |
89 | 9, 23 | lidlacl 21210 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝐽 ∈ (LIdeal‘𝑅)) ∧ ((𝑠(.r‘𝑅)𝑋) ∈ 𝐽 ∧ (((invg‘𝑅)‘(𝑠(.r‘𝑅)𝑋))(+g‘𝑅)(1r‘𝑅)) ∈ 𝐽)) → ((𝑠(.r‘𝑅)𝑋)(+g‘𝑅)(((invg‘𝑅)‘(𝑠(.r‘𝑅)𝑋))(+g‘𝑅)(1r‘𝑅))) ∈ 𝐽) |
90 | 4, 6, 18, 88, 89 | syl22anc 837 |
. . . 4
⊢ (((𝜑 ∧ 𝑠 ∈ 𝐵) ∧ ((invr‘𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → ((𝑠(.r‘𝑅)𝑋)(+g‘𝑅)(((invg‘𝑅)‘(𝑠(.r‘𝑅)𝑋))(+g‘𝑅)(1r‘𝑅))) ∈ 𝐽) |
91 | 26, 90 | eqeltrrd 2827 |
. . 3
⊢ (((𝜑 ∧ 𝑠 ∈ 𝐵) ∧ ((invr‘𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → (1r‘𝑅) ∈ 𝐽) |
92 | 9, 8, 20 | lidl1el 21215 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐽 ∈ (LIdeal‘𝑅)) →
((1r‘𝑅)
∈ 𝐽 ↔ 𝐽 = 𝐵)) |
93 | 92 | biimpa 475 |
. . 3
⊢ (((𝑅 ∈ Ring ∧ 𝐽 ∈ (LIdeal‘𝑅)) ∧
(1r‘𝑅)
∈ 𝐽) → 𝐽 = 𝐵) |
94 | 4, 6, 91, 93 | syl21anc 836 |
. 2
⊢ (((𝜑 ∧ 𝑠 ∈ 𝐵) ∧ ((invr‘𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → 𝐽 = 𝐵) |
95 | 34, 35, 38, 39, 50, 68 | drnginvrcld 20733 |
. . . 4
⊢ (𝜑 →
((invr‘𝑄)‘[𝑋](𝑅 ~QG 𝑀)) ∈ (Base‘𝑄)) |
96 | 95, 49 | eleqtrrd 2829 |
. . 3
⊢ (𝜑 →
((invr‘𝑄)‘[𝑋](𝑅 ~QG 𝑀)) ∈ (𝐵 / (𝑅 ~QG 𝑀))) |
97 | | elqsi 8799 |
. . 3
⊢
(((invr‘𝑄)‘[𝑋](𝑅 ~QG 𝑀)) ∈ (𝐵 / (𝑅 ~QG 𝑀)) → ∃𝑠 ∈ 𝐵 ((invr‘𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) |
98 | 96, 97 | syl 17 |
. 2
⊢ (𝜑 → ∃𝑠 ∈ 𝐵 ((invr‘𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) |
99 | 94, 98 | r19.29a 3152 |
1
⊢ (𝜑 → 𝐽 = 𝐵) |