Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qsdrnglem2 Structured version   Visualization version   GIF version

Theorem qsdrnglem2 33525
Description: Lemma for qsdrng 33526. (Contributed by Thierry Arnoux, 13-Mar-2025.)
Hypotheses
Ref Expression
qsdrng.0 𝑂 = (oppr𝑅)
qsdrng.q 𝑄 = (𝑅 /s (𝑅 ~QG 𝑀))
qsdrng.r (𝜑𝑅 ∈ NzRing)
qsdrng.2 (𝜑𝑀 ∈ (2Ideal‘𝑅))
qsdrnglem2.1 𝐵 = (Base‘𝑅)
qsdrnglem2.q (𝜑𝑄 ∈ DivRing)
qsdrnglem2.j (𝜑𝐽 ∈ (LIdeal‘𝑅))
qsdrnglem2.m (𝜑𝑀𝐽)
qsdrnglem2.x (𝜑𝑋 ∈ (𝐽𝑀))
Assertion
Ref Expression
qsdrnglem2 (𝜑𝐽 = 𝐵)

Proof of Theorem qsdrnglem2
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 qsdrng.r . . . . 5 (𝜑𝑅 ∈ NzRing)
2 nzrring 20517 . . . . 5 (𝑅 ∈ NzRing → 𝑅 ∈ Ring)
31, 2syl 17 . . . 4 (𝜑𝑅 ∈ Ring)
43ad2antrr 726 . . 3 (((𝜑𝑠𝐵) ∧ ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → 𝑅 ∈ Ring)
5 qsdrnglem2.j . . . 4 (𝜑𝐽 ∈ (LIdeal‘𝑅))
65ad2antrr 726 . . 3 (((𝜑𝑠𝐵) ∧ ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → 𝐽 ∈ (LIdeal‘𝑅))
74ringgrpd 20240 . . . . 5 (((𝜑𝑠𝐵) ∧ ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → 𝑅 ∈ Grp)
8 qsdrnglem2.1 . . . . . . . 8 𝐵 = (Base‘𝑅)
9 eqid 2736 . . . . . . . 8 (LIdeal‘𝑅) = (LIdeal‘𝑅)
108, 9lidlss 21223 . . . . . . 7 (𝐽 ∈ (LIdeal‘𝑅) → 𝐽𝐵)
116, 10syl 17 . . . . . 6 (((𝜑𝑠𝐵) ∧ ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → 𝐽𝐵)
12 simplr 768 . . . . . . 7 (((𝜑𝑠𝐵) ∧ ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → 𝑠𝐵)
13 qsdrnglem2.x . . . . . . . . 9 (𝜑𝑋 ∈ (𝐽𝑀))
1413eldifad 3962 . . . . . . . 8 (𝜑𝑋𝐽)
1514ad2antrr 726 . . . . . . 7 (((𝜑𝑠𝐵) ∧ ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → 𝑋𝐽)
16 eqid 2736 . . . . . . . 8 (.r𝑅) = (.r𝑅)
179, 8, 16lidlmcl 21236 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐽 ∈ (LIdeal‘𝑅)) ∧ (𝑠𝐵𝑋𝐽)) → (𝑠(.r𝑅)𝑋) ∈ 𝐽)
184, 6, 12, 15, 17syl22anc 838 . . . . . 6 (((𝜑𝑠𝐵) ∧ ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → (𝑠(.r𝑅)𝑋) ∈ 𝐽)
1911, 18sseldd 3983 . . . . 5 (((𝜑𝑠𝐵) ∧ ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → (𝑠(.r𝑅)𝑋) ∈ 𝐵)
20 eqid 2736 . . . . . . 7 (1r𝑅) = (1r𝑅)
218, 20ringidcl 20263 . . . . . 6 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝐵)
224, 21syl 17 . . . . 5 (((𝜑𝑠𝐵) ∧ ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → (1r𝑅) ∈ 𝐵)
23 eqid 2736 . . . . . 6 (+g𝑅) = (+g𝑅)
24 eqid 2736 . . . . . 6 (invg𝑅) = (invg𝑅)
258, 23, 24grpasscan1 19020 . . . . 5 ((𝑅 ∈ Grp ∧ (𝑠(.r𝑅)𝑋) ∈ 𝐵 ∧ (1r𝑅) ∈ 𝐵) → ((𝑠(.r𝑅)𝑋)(+g𝑅)(((invg𝑅)‘(𝑠(.r𝑅)𝑋))(+g𝑅)(1r𝑅))) = (1r𝑅))
267, 19, 22, 25syl3anc 1372 . . . 4 (((𝜑𝑠𝐵) ∧ ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → ((𝑠(.r𝑅)𝑋)(+g𝑅)(((invg𝑅)‘(𝑠(.r𝑅)𝑋))(+g𝑅)(1r𝑅))) = (1r𝑅))
27 qsdrnglem2.m . . . . . . 7 (𝜑𝑀𝐽)
2827ad2antrr 726 . . . . . 6 (((𝜑𝑠𝐵) ∧ ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → 𝑀𝐽)
295, 10syl 17 . . . . . . . . 9 (𝜑𝐽𝐵)
3027, 29sstrd 3993 . . . . . . . 8 (𝜑𝑀𝐵)
3130ad2antrr 726 . . . . . . 7 (((𝜑𝑠𝐵) ∧ ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → 𝑀𝐵)
32 simpr 484 . . . . . . . . . . 11 (((𝜑𝑠𝐵) ∧ ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀))
3332oveq1d 7447 . . . . . . . . . 10 (((𝜑𝑠𝐵) ∧ ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → (((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀))(.r𝑄)[𝑋](𝑅 ~QG 𝑀)) = ([𝑠](𝑅 ~QG 𝑀)(.r𝑄)[𝑋](𝑅 ~QG 𝑀)))
34 eqid 2736 . . . . . . . . . . 11 (Base‘𝑄) = (Base‘𝑄)
35 eqid 2736 . . . . . . . . . . 11 (0g𝑄) = (0g𝑄)
36 eqid 2736 . . . . . . . . . . 11 (.r𝑄) = (.r𝑄)
37 eqid 2736 . . . . . . . . . . 11 (1r𝑄) = (1r𝑄)
38 eqid 2736 . . . . . . . . . . 11 (invr𝑄) = (invr𝑄)
39 qsdrnglem2.q . . . . . . . . . . . 12 (𝜑𝑄 ∈ DivRing)
4039ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑠𝐵) ∧ ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → 𝑄 ∈ DivRing)
4129, 14sseldd 3983 . . . . . . . . . . . . . 14 (𝜑𝑋𝐵)
42 ovex 7465 . . . . . . . . . . . . . . 15 (𝑅 ~QG 𝑀) ∈ V
4342ecelqsi 8814 . . . . . . . . . . . . . 14 (𝑋𝐵 → [𝑋](𝑅 ~QG 𝑀) ∈ (𝐵 / (𝑅 ~QG 𝑀)))
4441, 43syl 17 . . . . . . . . . . . . 13 (𝜑 → [𝑋](𝑅 ~QG 𝑀) ∈ (𝐵 / (𝑅 ~QG 𝑀)))
45 qsdrng.q . . . . . . . . . . . . . . 15 𝑄 = (𝑅 /s (𝑅 ~QG 𝑀))
4645a1i 11 . . . . . . . . . . . . . 14 (𝜑𝑄 = (𝑅 /s (𝑅 ~QG 𝑀)))
478a1i 11 . . . . . . . . . . . . . 14 (𝜑𝐵 = (Base‘𝑅))
4842a1i 11 . . . . . . . . . . . . . 14 (𝜑 → (𝑅 ~QG 𝑀) ∈ V)
4946, 47, 48, 1qusbas 17591 . . . . . . . . . . . . 13 (𝜑 → (𝐵 / (𝑅 ~QG 𝑀)) = (Base‘𝑄))
5044, 49eleqtrd 2842 . . . . . . . . . . . 12 (𝜑 → [𝑋](𝑅 ~QG 𝑀) ∈ (Base‘𝑄))
5150ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑠𝐵) ∧ ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → [𝑋](𝑅 ~QG 𝑀) ∈ (Base‘𝑄))
52 qsdrng.2 . . . . . . . . . . . . . . . . . 18 (𝜑𝑀 ∈ (2Ideal‘𝑅))
53522idllidld 21265 . . . . . . . . . . . . . . . . 17 (𝜑𝑀 ∈ (LIdeal‘𝑅))
549lidlsubg 21234 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ Ring ∧ 𝑀 ∈ (LIdeal‘𝑅)) → 𝑀 ∈ (SubGrp‘𝑅))
553, 53, 54syl2anc 584 . . . . . . . . . . . . . . . 16 (𝜑𝑀 ∈ (SubGrp‘𝑅))
56 eqid 2736 . . . . . . . . . . . . . . . . 17 (𝑅 ~QG 𝑀) = (𝑅 ~QG 𝑀)
578, 56eqger 19197 . . . . . . . . . . . . . . . 16 (𝑀 ∈ (SubGrp‘𝑅) → (𝑅 ~QG 𝑀) Er 𝐵)
5855, 57syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝑅 ~QG 𝑀) Er 𝐵)
59 ecref 8791 . . . . . . . . . . . . . . 15 (((𝑅 ~QG 𝑀) Er 𝐵𝑋𝐵) → 𝑋 ∈ [𝑋](𝑅 ~QG 𝑀))
6058, 41, 59syl2anc 584 . . . . . . . . . . . . . 14 (𝜑𝑋 ∈ [𝑋](𝑅 ~QG 𝑀))
6113eldifbd 3963 . . . . . . . . . . . . . 14 (𝜑 → ¬ 𝑋𝑀)
62 nelne1 3038 . . . . . . . . . . . . . 14 ((𝑋 ∈ [𝑋](𝑅 ~QG 𝑀) ∧ ¬ 𝑋𝑀) → [𝑋](𝑅 ~QG 𝑀) ≠ 𝑀)
6360, 61, 62syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → [𝑋](𝑅 ~QG 𝑀) ≠ 𝑀)
64 lidlnsg 21259 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ 𝑀 ∈ (LIdeal‘𝑅)) → 𝑀 ∈ (NrmSGrp‘𝑅))
653, 53, 64syl2anc 584 . . . . . . . . . . . . . 14 (𝜑𝑀 ∈ (NrmSGrp‘𝑅))
6645qus0g 33436 . . . . . . . . . . . . . 14 (𝑀 ∈ (NrmSGrp‘𝑅) → (0g𝑄) = 𝑀)
6765, 66syl 17 . . . . . . . . . . . . 13 (𝜑 → (0g𝑄) = 𝑀)
6863, 67neeqtrrd 3014 . . . . . . . . . . . 12 (𝜑 → [𝑋](𝑅 ~QG 𝑀) ≠ (0g𝑄))
6968ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑠𝐵) ∧ ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → [𝑋](𝑅 ~QG 𝑀) ≠ (0g𝑄))
7034, 35, 36, 37, 38, 40, 51, 69drnginvrld 20759 . . . . . . . . . 10 (((𝜑𝑠𝐵) ∧ ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → (((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀))(.r𝑄)[𝑋](𝑅 ~QG 𝑀)) = (1r𝑄))
7152ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑠𝐵) ∧ ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → 𝑀 ∈ (2Ideal‘𝑅))
7241ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑠𝐵) ∧ ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → 𝑋𝐵)
7345, 8, 16, 36, 4, 71, 12, 72qusmul2idl 21290 . . . . . . . . . 10 (((𝜑𝑠𝐵) ∧ ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → ([𝑠](𝑅 ~QG 𝑀)(.r𝑄)[𝑋](𝑅 ~QG 𝑀)) = [(𝑠(.r𝑅)𝑋)](𝑅 ~QG 𝑀))
7433, 70, 733eqtr3rd 2785 . . . . . . . . 9 (((𝜑𝑠𝐵) ∧ ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → [(𝑠(.r𝑅)𝑋)](𝑅 ~QG 𝑀) = (1r𝑄))
75 eqid 2736 . . . . . . . . . . . 12 (2Ideal‘𝑅) = (2Ideal‘𝑅)
7645, 75, 20qus1 21285 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝑀 ∈ (2Ideal‘𝑅)) → (𝑄 ∈ Ring ∧ [(1r𝑅)](𝑅 ~QG 𝑀) = (1r𝑄)))
7776simprd 495 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑀 ∈ (2Ideal‘𝑅)) → [(1r𝑅)](𝑅 ~QG 𝑀) = (1r𝑄))
784, 71, 77syl2anc 584 . . . . . . . . 9 (((𝜑𝑠𝐵) ∧ ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → [(1r𝑅)](𝑅 ~QG 𝑀) = (1r𝑄))
7974, 78eqtr4d 2779 . . . . . . . 8 (((𝜑𝑠𝐵) ∧ ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → [(𝑠(.r𝑅)𝑋)](𝑅 ~QG 𝑀) = [(1r𝑅)](𝑅 ~QG 𝑀))
8055ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑠𝐵) ∧ ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → 𝑀 ∈ (SubGrp‘𝑅))
8180, 57syl 17 . . . . . . . . 9 (((𝜑𝑠𝐵) ∧ ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → (𝑅 ~QG 𝑀) Er 𝐵)
8281, 22erth2 8798 . . . . . . . 8 (((𝜑𝑠𝐵) ∧ ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → ((𝑠(.r𝑅)𝑋)(𝑅 ~QG 𝑀)(1r𝑅) ↔ [(𝑠(.r𝑅)𝑋)](𝑅 ~QG 𝑀) = [(1r𝑅)](𝑅 ~QG 𝑀)))
8379, 82mpbird 257 . . . . . . 7 (((𝜑𝑠𝐵) ∧ ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → (𝑠(.r𝑅)𝑋)(𝑅 ~QG 𝑀)(1r𝑅))
848, 24, 23, 56eqgval 19196 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → ((𝑠(.r𝑅)𝑋)(𝑅 ~QG 𝑀)(1r𝑅) ↔ ((𝑠(.r𝑅)𝑋) ∈ 𝐵 ∧ (1r𝑅) ∈ 𝐵 ∧ (((invg𝑅)‘(𝑠(.r𝑅)𝑋))(+g𝑅)(1r𝑅)) ∈ 𝑀)))
8584biimpa 476 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠(.r𝑅)𝑋)(𝑅 ~QG 𝑀)(1r𝑅)) → ((𝑠(.r𝑅)𝑋) ∈ 𝐵 ∧ (1r𝑅) ∈ 𝐵 ∧ (((invg𝑅)‘(𝑠(.r𝑅)𝑋))(+g𝑅)(1r𝑅)) ∈ 𝑀))
8685simp3d 1144 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠(.r𝑅)𝑋)(𝑅 ~QG 𝑀)(1r𝑅)) → (((invg𝑅)‘(𝑠(.r𝑅)𝑋))(+g𝑅)(1r𝑅)) ∈ 𝑀)
874, 31, 83, 86syl21anc 837 . . . . . 6 (((𝜑𝑠𝐵) ∧ ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → (((invg𝑅)‘(𝑠(.r𝑅)𝑋))(+g𝑅)(1r𝑅)) ∈ 𝑀)
8828, 87sseldd 3983 . . . . 5 (((𝜑𝑠𝐵) ∧ ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → (((invg𝑅)‘(𝑠(.r𝑅)𝑋))(+g𝑅)(1r𝑅)) ∈ 𝐽)
899, 23lidlacl 21232 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐽 ∈ (LIdeal‘𝑅)) ∧ ((𝑠(.r𝑅)𝑋) ∈ 𝐽 ∧ (((invg𝑅)‘(𝑠(.r𝑅)𝑋))(+g𝑅)(1r𝑅)) ∈ 𝐽)) → ((𝑠(.r𝑅)𝑋)(+g𝑅)(((invg𝑅)‘(𝑠(.r𝑅)𝑋))(+g𝑅)(1r𝑅))) ∈ 𝐽)
904, 6, 18, 88, 89syl22anc 838 . . . 4 (((𝜑𝑠𝐵) ∧ ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → ((𝑠(.r𝑅)𝑋)(+g𝑅)(((invg𝑅)‘(𝑠(.r𝑅)𝑋))(+g𝑅)(1r𝑅))) ∈ 𝐽)
9126, 90eqeltrrd 2841 . . 3 (((𝜑𝑠𝐵) ∧ ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → (1r𝑅) ∈ 𝐽)
929, 8, 20lidl1el 21237 . . . 4 ((𝑅 ∈ Ring ∧ 𝐽 ∈ (LIdeal‘𝑅)) → ((1r𝑅) ∈ 𝐽𝐽 = 𝐵))
9392biimpa 476 . . 3 (((𝑅 ∈ Ring ∧ 𝐽 ∈ (LIdeal‘𝑅)) ∧ (1r𝑅) ∈ 𝐽) → 𝐽 = 𝐵)
944, 6, 91, 93syl21anc 837 . 2 (((𝜑𝑠𝐵) ∧ ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → 𝐽 = 𝐵)
9534, 35, 38, 39, 50, 68drnginvrcld 20756 . . . 4 (𝜑 → ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) ∈ (Base‘𝑄))
9695, 49eleqtrrd 2843 . . 3 (𝜑 → ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) ∈ (𝐵 / (𝑅 ~QG 𝑀)))
97 elqsi 8811 . . 3 (((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) ∈ (𝐵 / (𝑅 ~QG 𝑀)) → ∃𝑠𝐵 ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀))
9896, 97syl 17 . 2 (𝜑 → ∃𝑠𝐵 ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀))
9994, 98r19.29a 3161 1 (𝜑𝐽 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1539  wcel 2107  wne 2939  wrex 3069  Vcvv 3479  cdif 3947  wss 3950   class class class wbr 5142  cfv 6560  (class class class)co 7432   Er wer 8743  [cec 8744   / cqs 8745  Basecbs 17248  +gcplusg 17298  .rcmulr 17299  0gc0g 17485   /s cqus 17551  Grpcgrp 18952  invgcminusg 18953  SubGrpcsubg 19139  NrmSGrpcnsg 19140   ~QG cqg 19141  1rcur 20179  Ringcrg 20231  opprcoppr 20334  invrcinvr 20388  NzRingcnzr 20513  DivRingcdr 20730  LIdealclidl 21217  2Idealc2idl 21260
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-tpos 8252  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-er 8746  df-ec 8748  df-qs 8752  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-sup 9483  df-inf 9484  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-2 12330  df-3 12331  df-4 12332  df-5 12333  df-6 12334  df-7 12335  df-8 12336  df-9 12337  df-n0 12529  df-z 12616  df-dec 12736  df-uz 12880  df-fz 13549  df-struct 17185  df-sets 17202  df-slot 17220  df-ndx 17232  df-base 17249  df-ress 17276  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-0g 17487  df-imas 17554  df-qus 17555  df-mgm 18654  df-sgrp 18733  df-mnd 18749  df-submnd 18798  df-grp 18955  df-minusg 18956  df-sbg 18957  df-subg 19142  df-nsg 19143  df-eqg 19144  df-oppg 19365  df-lsm 19655  df-cmn 19801  df-abl 19802  df-mgp 20139  df-rng 20151  df-ur 20180  df-ring 20233  df-oppr 20335  df-dvdsr 20358  df-unit 20359  df-invr 20389  df-nzr 20514  df-subrg 20571  df-drng 20732  df-lmod 20861  df-lss 20931  df-sra 21173  df-rgmod 21174  df-lidl 21219  df-2idl 21261
This theorem is referenced by:  qsdrng  33526
  Copyright terms: Public domain W3C validator