Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qsdrnglem2 Structured version   Visualization version   GIF version

Theorem qsdrnglem2 33371
Description: Lemma for qsdrng 33372. (Contributed by Thierry Arnoux, 13-Mar-2025.)
Hypotheses
Ref Expression
qsdrng.0 𝑂 = (oppr𝑅)
qsdrng.q 𝑄 = (𝑅 /s (𝑅 ~QG 𝑀))
qsdrng.r (𝜑𝑅 ∈ NzRing)
qsdrng.2 (𝜑𝑀 ∈ (2Ideal‘𝑅))
qsdrnglem2.1 𝐵 = (Base‘𝑅)
qsdrnglem2.q (𝜑𝑄 ∈ DivRing)
qsdrnglem2.j (𝜑𝐽 ∈ (LIdeal‘𝑅))
qsdrnglem2.m (𝜑𝑀𝐽)
qsdrnglem2.x (𝜑𝑋 ∈ (𝐽𝑀))
Assertion
Ref Expression
qsdrnglem2 (𝜑𝐽 = 𝐵)

Proof of Theorem qsdrnglem2
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 qsdrng.r . . . . 5 (𝜑𝑅 ∈ NzRing)
2 nzrring 20498 . . . . 5 (𝑅 ∈ NzRing → 𝑅 ∈ Ring)
31, 2syl 17 . . . 4 (𝜑𝑅 ∈ Ring)
43ad2antrr 724 . . 3 (((𝜑𝑠𝐵) ∧ ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → 𝑅 ∈ Ring)
5 qsdrnglem2.j . . . 4 (𝜑𝐽 ∈ (LIdeal‘𝑅))
65ad2antrr 724 . . 3 (((𝜑𝑠𝐵) ∧ ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → 𝐽 ∈ (LIdeal‘𝑅))
74ringgrpd 20225 . . . . 5 (((𝜑𝑠𝐵) ∧ ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → 𝑅 ∈ Grp)
8 qsdrnglem2.1 . . . . . . . 8 𝐵 = (Base‘𝑅)
9 eqid 2726 . . . . . . . 8 (LIdeal‘𝑅) = (LIdeal‘𝑅)
108, 9lidlss 21201 . . . . . . 7 (𝐽 ∈ (LIdeal‘𝑅) → 𝐽𝐵)
116, 10syl 17 . . . . . 6 (((𝜑𝑠𝐵) ∧ ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → 𝐽𝐵)
12 simplr 767 . . . . . . 7 (((𝜑𝑠𝐵) ∧ ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → 𝑠𝐵)
13 qsdrnglem2.x . . . . . . . . 9 (𝜑𝑋 ∈ (𝐽𝑀))
1413eldifad 3959 . . . . . . . 8 (𝜑𝑋𝐽)
1514ad2antrr 724 . . . . . . 7 (((𝜑𝑠𝐵) ∧ ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → 𝑋𝐽)
16 eqid 2726 . . . . . . . 8 (.r𝑅) = (.r𝑅)
179, 8, 16lidlmcl 21214 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐽 ∈ (LIdeal‘𝑅)) ∧ (𝑠𝐵𝑋𝐽)) → (𝑠(.r𝑅)𝑋) ∈ 𝐽)
184, 6, 12, 15, 17syl22anc 837 . . . . . 6 (((𝜑𝑠𝐵) ∧ ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → (𝑠(.r𝑅)𝑋) ∈ 𝐽)
1911, 18sseldd 3980 . . . . 5 (((𝜑𝑠𝐵) ∧ ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → (𝑠(.r𝑅)𝑋) ∈ 𝐵)
20 eqid 2726 . . . . . . 7 (1r𝑅) = (1r𝑅)
218, 20ringidcl 20245 . . . . . 6 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝐵)
224, 21syl 17 . . . . 5 (((𝜑𝑠𝐵) ∧ ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → (1r𝑅) ∈ 𝐵)
23 eqid 2726 . . . . . 6 (+g𝑅) = (+g𝑅)
24 eqid 2726 . . . . . 6 (invg𝑅) = (invg𝑅)
258, 23, 24grpasscan1 18996 . . . . 5 ((𝑅 ∈ Grp ∧ (𝑠(.r𝑅)𝑋) ∈ 𝐵 ∧ (1r𝑅) ∈ 𝐵) → ((𝑠(.r𝑅)𝑋)(+g𝑅)(((invg𝑅)‘(𝑠(.r𝑅)𝑋))(+g𝑅)(1r𝑅))) = (1r𝑅))
267, 19, 22, 25syl3anc 1368 . . . 4 (((𝜑𝑠𝐵) ∧ ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → ((𝑠(.r𝑅)𝑋)(+g𝑅)(((invg𝑅)‘(𝑠(.r𝑅)𝑋))(+g𝑅)(1r𝑅))) = (1r𝑅))
27 qsdrnglem2.m . . . . . . 7 (𝜑𝑀𝐽)
2827ad2antrr 724 . . . . . 6 (((𝜑𝑠𝐵) ∧ ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → 𝑀𝐽)
295, 10syl 17 . . . . . . . . 9 (𝜑𝐽𝐵)
3027, 29sstrd 3990 . . . . . . . 8 (𝜑𝑀𝐵)
3130ad2antrr 724 . . . . . . 7 (((𝜑𝑠𝐵) ∧ ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → 𝑀𝐵)
32 simpr 483 . . . . . . . . . . 11 (((𝜑𝑠𝐵) ∧ ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀))
3332oveq1d 7439 . . . . . . . . . 10 (((𝜑𝑠𝐵) ∧ ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → (((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀))(.r𝑄)[𝑋](𝑅 ~QG 𝑀)) = ([𝑠](𝑅 ~QG 𝑀)(.r𝑄)[𝑋](𝑅 ~QG 𝑀)))
34 eqid 2726 . . . . . . . . . . 11 (Base‘𝑄) = (Base‘𝑄)
35 eqid 2726 . . . . . . . . . . 11 (0g𝑄) = (0g𝑄)
36 eqid 2726 . . . . . . . . . . 11 (.r𝑄) = (.r𝑄)
37 eqid 2726 . . . . . . . . . . 11 (1r𝑄) = (1r𝑄)
38 eqid 2726 . . . . . . . . . . 11 (invr𝑄) = (invr𝑄)
39 qsdrnglem2.q . . . . . . . . . . . 12 (𝜑𝑄 ∈ DivRing)
4039ad2antrr 724 . . . . . . . . . . 11 (((𝜑𝑠𝐵) ∧ ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → 𝑄 ∈ DivRing)
4129, 14sseldd 3980 . . . . . . . . . . . . . 14 (𝜑𝑋𝐵)
42 ovex 7457 . . . . . . . . . . . . . . 15 (𝑅 ~QG 𝑀) ∈ V
4342ecelqsi 8802 . . . . . . . . . . . . . 14 (𝑋𝐵 → [𝑋](𝑅 ~QG 𝑀) ∈ (𝐵 / (𝑅 ~QG 𝑀)))
4441, 43syl 17 . . . . . . . . . . . . 13 (𝜑 → [𝑋](𝑅 ~QG 𝑀) ∈ (𝐵 / (𝑅 ~QG 𝑀)))
45 qsdrng.q . . . . . . . . . . . . . . 15 𝑄 = (𝑅 /s (𝑅 ~QG 𝑀))
4645a1i 11 . . . . . . . . . . . . . 14 (𝜑𝑄 = (𝑅 /s (𝑅 ~QG 𝑀)))
478a1i 11 . . . . . . . . . . . . . 14 (𝜑𝐵 = (Base‘𝑅))
4842a1i 11 . . . . . . . . . . . . . 14 (𝜑 → (𝑅 ~QG 𝑀) ∈ V)
4946, 47, 48, 1qusbas 17560 . . . . . . . . . . . . 13 (𝜑 → (𝐵 / (𝑅 ~QG 𝑀)) = (Base‘𝑄))
5044, 49eleqtrd 2828 . . . . . . . . . . . 12 (𝜑 → [𝑋](𝑅 ~QG 𝑀) ∈ (Base‘𝑄))
5150ad2antrr 724 . . . . . . . . . . 11 (((𝜑𝑠𝐵) ∧ ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → [𝑋](𝑅 ~QG 𝑀) ∈ (Base‘𝑄))
52 qsdrng.2 . . . . . . . . . . . . . . . . . 18 (𝜑𝑀 ∈ (2Ideal‘𝑅))
53522idllidld 21243 . . . . . . . . . . . . . . . . 17 (𝜑𝑀 ∈ (LIdeal‘𝑅))
549lidlsubg 21212 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ Ring ∧ 𝑀 ∈ (LIdeal‘𝑅)) → 𝑀 ∈ (SubGrp‘𝑅))
553, 53, 54syl2anc 582 . . . . . . . . . . . . . . . 16 (𝜑𝑀 ∈ (SubGrp‘𝑅))
56 eqid 2726 . . . . . . . . . . . . . . . . 17 (𝑅 ~QG 𝑀) = (𝑅 ~QG 𝑀)
578, 56eqger 19172 . . . . . . . . . . . . . . . 16 (𝑀 ∈ (SubGrp‘𝑅) → (𝑅 ~QG 𝑀) Er 𝐵)
5855, 57syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝑅 ~QG 𝑀) Er 𝐵)
59 ecref 8779 . . . . . . . . . . . . . . 15 (((𝑅 ~QG 𝑀) Er 𝐵𝑋𝐵) → 𝑋 ∈ [𝑋](𝑅 ~QG 𝑀))
6058, 41, 59syl2anc 582 . . . . . . . . . . . . . 14 (𝜑𝑋 ∈ [𝑋](𝑅 ~QG 𝑀))
6113eldifbd 3960 . . . . . . . . . . . . . 14 (𝜑 → ¬ 𝑋𝑀)
62 nelne1 3029 . . . . . . . . . . . . . 14 ((𝑋 ∈ [𝑋](𝑅 ~QG 𝑀) ∧ ¬ 𝑋𝑀) → [𝑋](𝑅 ~QG 𝑀) ≠ 𝑀)
6360, 61, 62syl2anc 582 . . . . . . . . . . . . 13 (𝜑 → [𝑋](𝑅 ~QG 𝑀) ≠ 𝑀)
64 lidlnsg 21237 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ 𝑀 ∈ (LIdeal‘𝑅)) → 𝑀 ∈ (NrmSGrp‘𝑅))
653, 53, 64syl2anc 582 . . . . . . . . . . . . . 14 (𝜑𝑀 ∈ (NrmSGrp‘𝑅))
6645qus0g 33282 . . . . . . . . . . . . . 14 (𝑀 ∈ (NrmSGrp‘𝑅) → (0g𝑄) = 𝑀)
6765, 66syl 17 . . . . . . . . . . . . 13 (𝜑 → (0g𝑄) = 𝑀)
6863, 67neeqtrrd 3005 . . . . . . . . . . . 12 (𝜑 → [𝑋](𝑅 ~QG 𝑀) ≠ (0g𝑄))
6968ad2antrr 724 . . . . . . . . . . 11 (((𝜑𝑠𝐵) ∧ ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → [𝑋](𝑅 ~QG 𝑀) ≠ (0g𝑄))
7034, 35, 36, 37, 38, 40, 51, 69drnginvrld 20736 . . . . . . . . . 10 (((𝜑𝑠𝐵) ∧ ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → (((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀))(.r𝑄)[𝑋](𝑅 ~QG 𝑀)) = (1r𝑄))
7152ad2antrr 724 . . . . . . . . . . 11 (((𝜑𝑠𝐵) ∧ ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → 𝑀 ∈ (2Ideal‘𝑅))
7241ad2antrr 724 . . . . . . . . . . 11 (((𝜑𝑠𝐵) ∧ ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → 𝑋𝐵)
7345, 8, 16, 36, 4, 71, 12, 72qusmul2idl 21268 . . . . . . . . . 10 (((𝜑𝑠𝐵) ∧ ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → ([𝑠](𝑅 ~QG 𝑀)(.r𝑄)[𝑋](𝑅 ~QG 𝑀)) = [(𝑠(.r𝑅)𝑋)](𝑅 ~QG 𝑀))
7433, 70, 733eqtr3rd 2775 . . . . . . . . 9 (((𝜑𝑠𝐵) ∧ ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → [(𝑠(.r𝑅)𝑋)](𝑅 ~QG 𝑀) = (1r𝑄))
75 eqid 2726 . . . . . . . . . . . 12 (2Ideal‘𝑅) = (2Ideal‘𝑅)
7645, 75, 20qus1 21263 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝑀 ∈ (2Ideal‘𝑅)) → (𝑄 ∈ Ring ∧ [(1r𝑅)](𝑅 ~QG 𝑀) = (1r𝑄)))
7776simprd 494 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑀 ∈ (2Ideal‘𝑅)) → [(1r𝑅)](𝑅 ~QG 𝑀) = (1r𝑄))
784, 71, 77syl2anc 582 . . . . . . . . 9 (((𝜑𝑠𝐵) ∧ ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → [(1r𝑅)](𝑅 ~QG 𝑀) = (1r𝑄))
7974, 78eqtr4d 2769 . . . . . . . 8 (((𝜑𝑠𝐵) ∧ ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → [(𝑠(.r𝑅)𝑋)](𝑅 ~QG 𝑀) = [(1r𝑅)](𝑅 ~QG 𝑀))
8055ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑠𝐵) ∧ ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → 𝑀 ∈ (SubGrp‘𝑅))
8180, 57syl 17 . . . . . . . . 9 (((𝜑𝑠𝐵) ∧ ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → (𝑅 ~QG 𝑀) Er 𝐵)
8281, 22erth2 8786 . . . . . . . 8 (((𝜑𝑠𝐵) ∧ ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → ((𝑠(.r𝑅)𝑋)(𝑅 ~QG 𝑀)(1r𝑅) ↔ [(𝑠(.r𝑅)𝑋)](𝑅 ~QG 𝑀) = [(1r𝑅)](𝑅 ~QG 𝑀)))
8379, 82mpbird 256 . . . . . . 7 (((𝜑𝑠𝐵) ∧ ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → (𝑠(.r𝑅)𝑋)(𝑅 ~QG 𝑀)(1r𝑅))
848, 24, 23, 56eqgval 19171 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → ((𝑠(.r𝑅)𝑋)(𝑅 ~QG 𝑀)(1r𝑅) ↔ ((𝑠(.r𝑅)𝑋) ∈ 𝐵 ∧ (1r𝑅) ∈ 𝐵 ∧ (((invg𝑅)‘(𝑠(.r𝑅)𝑋))(+g𝑅)(1r𝑅)) ∈ 𝑀)))
8584biimpa 475 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠(.r𝑅)𝑋)(𝑅 ~QG 𝑀)(1r𝑅)) → ((𝑠(.r𝑅)𝑋) ∈ 𝐵 ∧ (1r𝑅) ∈ 𝐵 ∧ (((invg𝑅)‘(𝑠(.r𝑅)𝑋))(+g𝑅)(1r𝑅)) ∈ 𝑀))
8685simp3d 1141 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠(.r𝑅)𝑋)(𝑅 ~QG 𝑀)(1r𝑅)) → (((invg𝑅)‘(𝑠(.r𝑅)𝑋))(+g𝑅)(1r𝑅)) ∈ 𝑀)
874, 31, 83, 86syl21anc 836 . . . . . 6 (((𝜑𝑠𝐵) ∧ ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → (((invg𝑅)‘(𝑠(.r𝑅)𝑋))(+g𝑅)(1r𝑅)) ∈ 𝑀)
8828, 87sseldd 3980 . . . . 5 (((𝜑𝑠𝐵) ∧ ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → (((invg𝑅)‘(𝑠(.r𝑅)𝑋))(+g𝑅)(1r𝑅)) ∈ 𝐽)
899, 23lidlacl 21210 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐽 ∈ (LIdeal‘𝑅)) ∧ ((𝑠(.r𝑅)𝑋) ∈ 𝐽 ∧ (((invg𝑅)‘(𝑠(.r𝑅)𝑋))(+g𝑅)(1r𝑅)) ∈ 𝐽)) → ((𝑠(.r𝑅)𝑋)(+g𝑅)(((invg𝑅)‘(𝑠(.r𝑅)𝑋))(+g𝑅)(1r𝑅))) ∈ 𝐽)
904, 6, 18, 88, 89syl22anc 837 . . . 4 (((𝜑𝑠𝐵) ∧ ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → ((𝑠(.r𝑅)𝑋)(+g𝑅)(((invg𝑅)‘(𝑠(.r𝑅)𝑋))(+g𝑅)(1r𝑅))) ∈ 𝐽)
9126, 90eqeltrrd 2827 . . 3 (((𝜑𝑠𝐵) ∧ ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → (1r𝑅) ∈ 𝐽)
929, 8, 20lidl1el 21215 . . . 4 ((𝑅 ∈ Ring ∧ 𝐽 ∈ (LIdeal‘𝑅)) → ((1r𝑅) ∈ 𝐽𝐽 = 𝐵))
9392biimpa 475 . . 3 (((𝑅 ∈ Ring ∧ 𝐽 ∈ (LIdeal‘𝑅)) ∧ (1r𝑅) ∈ 𝐽) → 𝐽 = 𝐵)
944, 6, 91, 93syl21anc 836 . 2 (((𝜑𝑠𝐵) ∧ ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀)) → 𝐽 = 𝐵)
9534, 35, 38, 39, 50, 68drnginvrcld 20733 . . . 4 (𝜑 → ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) ∈ (Base‘𝑄))
9695, 49eleqtrrd 2829 . . 3 (𝜑 → ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) ∈ (𝐵 / (𝑅 ~QG 𝑀)))
97 elqsi 8799 . . 3 (((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) ∈ (𝐵 / (𝑅 ~QG 𝑀)) → ∃𝑠𝐵 ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀))
9896, 97syl 17 . 2 (𝜑 → ∃𝑠𝐵 ((invr𝑄)‘[𝑋](𝑅 ~QG 𝑀)) = [𝑠](𝑅 ~QG 𝑀))
9994, 98r19.29a 3152 1 (𝜑𝐽 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394  w3a 1084   = wceq 1534  wcel 2099  wne 2930  wrex 3060  Vcvv 3462  cdif 3944  wss 3947   class class class wbr 5153  cfv 6554  (class class class)co 7424   Er wer 8731  [cec 8732   / cqs 8733  Basecbs 17213  +gcplusg 17266  .rcmulr 17267  0gc0g 17454   /s cqus 17520  Grpcgrp 18928  invgcminusg 18929  SubGrpcsubg 19114  NrmSGrpcnsg 19115   ~QG cqg 19116  1rcur 20164  Ringcrg 20216  opprcoppr 20315  invrcinvr 20369  NzRingcnzr 20494  DivRingcdr 20707  LIdealclidl 21195  2Idealc2idl 21238
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-tp 4638  df-op 4640  df-uni 4914  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7877  df-1st 8003  df-2nd 8004  df-tpos 8241  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-1o 8496  df-er 8734  df-ec 8736  df-qs 8740  df-en 8975  df-dom 8976  df-sdom 8977  df-fin 8978  df-sup 9485  df-inf 9486  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12611  df-dec 12730  df-uz 12875  df-fz 13539  df-struct 17149  df-sets 17166  df-slot 17184  df-ndx 17196  df-base 17214  df-ress 17243  df-plusg 17279  df-mulr 17280  df-sca 17282  df-vsca 17283  df-ip 17284  df-tset 17285  df-ple 17286  df-ds 17288  df-0g 17456  df-imas 17523  df-qus 17524  df-mgm 18633  df-sgrp 18712  df-mnd 18728  df-submnd 18774  df-grp 18931  df-minusg 18932  df-sbg 18933  df-subg 19117  df-nsg 19118  df-eqg 19119  df-oppg 19340  df-lsm 19634  df-cmn 19780  df-abl 19781  df-mgp 20118  df-rng 20136  df-ur 20165  df-ring 20218  df-oppr 20316  df-dvdsr 20339  df-unit 20340  df-invr 20370  df-nzr 20495  df-subrg 20553  df-drng 20709  df-lmod 20838  df-lss 20909  df-sra 21151  df-rgmod 21152  df-lidl 21197  df-2idl 21239
This theorem is referenced by:  qsdrng  33372
  Copyright terms: Public domain W3C validator