Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnvelrels Structured version   Visualization version   GIF version

Theorem cnvelrels 38479
Description: The converse of a set is an element of the class of relations. (Contributed by Peter Mazsa, 18-Aug-2019.)
Assertion
Ref Expression
cnvelrels (𝐴𝑉𝐴 ∈ Rels )

Proof of Theorem cnvelrels
StepHypRef Expression
1 relcnv 6064 . 2 Rel 𝐴
2 cnvexg 7880 . . 3 (𝐴𝑉𝐴 ∈ V)
3 elrelsrel 38471 . . 3 (𝐴 ∈ V → (𝐴 ∈ Rels ↔ Rel 𝐴))
42, 3syl 17 . 2 (𝐴𝑉 → (𝐴 ∈ Rels ↔ Rel 𝐴))
51, 4mpbiri 258 1 (𝐴𝑉𝐴 ∈ Rels )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2109  Vcvv 3444  ccnv 5630  Rel wrel 5636   Rels crels 38164
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-xp 5637  df-rel 5638  df-cnv 5639  df-dm 5641  df-rn 5642  df-rels 38469
This theorem is referenced by:  cosscnvelrels  38481
  Copyright terms: Public domain W3C validator