Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnvelrels Structured version   Visualization version   GIF version

Theorem cnvelrels 36762
Description: The converse of a set is an element of the class of relations. (Contributed by Peter Mazsa, 18-Aug-2019.)
Assertion
Ref Expression
cnvelrels (𝐴𝑉𝐴 ∈ Rels )

Proof of Theorem cnvelrels
StepHypRef Expression
1 relcnv 6042 . 2 Rel 𝐴
2 cnvexg 7839 . . 3 (𝐴𝑉𝐴 ∈ V)
3 elrelsrel 36754 . . 3 (𝐴 ∈ V → (𝐴 ∈ Rels ↔ Rel 𝐴))
42, 3syl 17 . 2 (𝐴𝑉 → (𝐴 ∈ Rels ↔ Rel 𝐴))
51, 4mpbiri 257 1 (𝐴𝑉𝐴 ∈ Rels )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wcel 2105  Vcvv 3441  ccnv 5619  Rel wrel 5625   Rels crels 36440
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2707  ax-sep 5243  ax-nul 5250  ax-pow 5308  ax-pr 5372  ax-un 7650
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2714  df-cleq 2728  df-clel 2814  df-ral 3062  df-rex 3071  df-rab 3404  df-v 3443  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4270  df-if 4474  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4853  df-br 5093  df-opab 5155  df-xp 5626  df-rel 5627  df-cnv 5628  df-dm 5630  df-rn 5631  df-rels 36752
This theorem is referenced by:  cosscnvelrels  36764
  Copyright terms: Public domain W3C validator