| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cnvelrels | Structured version Visualization version GIF version | ||
| Description: The converse of a set is an element of the class of relations. (Contributed by Peter Mazsa, 18-Aug-2019.) |
| Ref | Expression |
|---|---|
| cnvelrels | ⊢ (𝐴 ∈ 𝑉 → ◡𝐴 ∈ Rels ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relcnv 6091 | . 2 ⊢ Rel ◡𝐴 | |
| 2 | cnvexg 7920 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ◡𝐴 ∈ V) | |
| 3 | elrelsrel 38505 | . . 3 ⊢ (◡𝐴 ∈ V → (◡𝐴 ∈ Rels ↔ Rel ◡𝐴)) | |
| 4 | 2, 3 | syl 17 | . 2 ⊢ (𝐴 ∈ 𝑉 → (◡𝐴 ∈ Rels ↔ Rel ◡𝐴)) |
| 5 | 1, 4 | mpbiri 258 | 1 ⊢ (𝐴 ∈ 𝑉 → ◡𝐴 ∈ Rels ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2108 Vcvv 3459 ◡ccnv 5653 Rel wrel 5659 Rels crels 38201 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-xp 5660 df-rel 5661 df-cnv 5662 df-dm 5664 df-rn 5665 df-rels 38503 |
| This theorem is referenced by: cosscnvelrels 38515 |
| Copyright terms: Public domain | W3C validator |