| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cosselrels | Structured version Visualization version GIF version | ||
| Description: Cosets of sets are elements of the relations class. Implies ⊢ (𝑅 ∈ Rels → ≀ 𝑅 ∈ Rels ). (Contributed by Peter Mazsa, 25-Aug-2021.) |
| Ref | Expression |
|---|---|
| cosselrels | ⊢ (𝐴 ∈ 𝑉 → ≀ 𝐴 ∈ Rels ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cossex 38464 | . 2 ⊢ (𝐴 ∈ 𝑉 → ≀ 𝐴 ∈ V) | |
| 2 | relcoss 38468 | . . 3 ⊢ Rel ≀ 𝐴 | |
| 3 | elrelsrel 38532 | . . 3 ⊢ ( ≀ 𝐴 ∈ V → ( ≀ 𝐴 ∈ Rels ↔ Rel ≀ 𝐴)) | |
| 4 | 2, 3 | mpbiri 258 | . 2 ⊢ ( ≀ 𝐴 ∈ V → ≀ 𝐴 ∈ Rels ) |
| 5 | 1, 4 | syl 17 | 1 ⊢ (𝐴 ∈ 𝑉 → ≀ 𝐴 ∈ Rels ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 Vcvv 3436 Rel wrel 5619 ≀ ccoss 38223 Rels crels 38225 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-coss 38456 df-rels 38530 |
| This theorem is referenced by: cosscnvelrels 38542 dffunsALTV2 38730 dffunsALTV3 38731 dffunsALTV4 38732 elfunsALTV2 38739 elfunsALTV3 38740 elfunsALTV4 38741 elfunsALTV5 38742 |
| Copyright terms: Public domain | W3C validator |