| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cosselrels | Structured version Visualization version GIF version | ||
| Description: Cosets of sets are elements of the relations class. Implies ⊢ (𝑅 ∈ Rels → ≀ 𝑅 ∈ Rels ). (Contributed by Peter Mazsa, 25-Aug-2021.) |
| Ref | Expression |
|---|---|
| cosselrels | ⊢ (𝐴 ∈ 𝑉 → ≀ 𝐴 ∈ Rels ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cossex 38442 | . 2 ⊢ (𝐴 ∈ 𝑉 → ≀ 𝐴 ∈ V) | |
| 2 | relcoss 38446 | . . 3 ⊢ Rel ≀ 𝐴 | |
| 3 | elrelsrel 38510 | . . 3 ⊢ ( ≀ 𝐴 ∈ V → ( ≀ 𝐴 ∈ Rels ↔ Rel ≀ 𝐴)) | |
| 4 | 2, 3 | mpbiri 258 | . 2 ⊢ ( ≀ 𝐴 ∈ V → ≀ 𝐴 ∈ Rels ) |
| 5 | 1, 4 | syl 17 | 1 ⊢ (𝐴 ∈ 𝑉 → ≀ 𝐴 ∈ Rels ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3464 Rel wrel 5664 ≀ ccoss 38204 Rels crels 38206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-coss 38434 df-rels 38508 |
| This theorem is referenced by: cosscnvelrels 38520 dffunsALTV2 38707 dffunsALTV3 38708 dffunsALTV4 38709 elfunsALTV2 38716 elfunsALTV3 38717 elfunsALTV4 38718 elfunsALTV5 38719 |
| Copyright terms: Public domain | W3C validator |