Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cosselrels Structured version   Visualization version   GIF version

Theorem cosselrels 38452
Description: Cosets of sets are elements of the relations class. Implies (𝑅 ∈ Rels → ≀ 𝑅 ∈ Rels ). (Contributed by Peter Mazsa, 25-Aug-2021.)
Assertion
Ref Expression
cosselrels (𝐴𝑉 → ≀ 𝐴 ∈ Rels )

Proof of Theorem cosselrels
StepHypRef Expression
1 cossex 38375 . 2 (𝐴𝑉 → ≀ 𝐴 ∈ V)
2 relcoss 38379 . . 3 Rel ≀ 𝐴
3 elrelsrel 38443 . . 3 ( ≀ 𝐴 ∈ V → ( ≀ 𝐴 ∈ Rels ↔ Rel ≀ 𝐴))
42, 3mpbiri 258 . 2 ( ≀ 𝐴 ∈ V → ≀ 𝐴 ∈ Rels )
51, 4syl 17 1 (𝐴𝑉 → ≀ 𝐴 ∈ Rels )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  Vcvv 3488  Rel wrel 5705  ccoss 38135   Rels crels 38137
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-coss 38367  df-rels 38441
This theorem is referenced by:  cosscnvelrels  38453  dffunsALTV2  38640  dffunsALTV3  38641  dffunsALTV4  38642  elfunsALTV2  38649  elfunsALTV3  38650  elfunsALTV4  38651  elfunsALTV5  38652
  Copyright terms: Public domain W3C validator