Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cosselrels Structured version   Visualization version   GIF version

Theorem cosselrels 38519
Description: Cosets of sets are elements of the relations class. Implies (𝑅 ∈ Rels → ≀ 𝑅 ∈ Rels ). (Contributed by Peter Mazsa, 25-Aug-2021.)
Assertion
Ref Expression
cosselrels (𝐴𝑉 → ≀ 𝐴 ∈ Rels )

Proof of Theorem cosselrels
StepHypRef Expression
1 cossex 38442 . 2 (𝐴𝑉 → ≀ 𝐴 ∈ V)
2 relcoss 38446 . . 3 Rel ≀ 𝐴
3 elrelsrel 38510 . . 3 ( ≀ 𝐴 ∈ V → ( ≀ 𝐴 ∈ Rels ↔ Rel ≀ 𝐴))
42, 3mpbiri 258 . 2 ( ≀ 𝐴 ∈ V → ≀ 𝐴 ∈ Rels )
51, 4syl 17 1 (𝐴𝑉 → ≀ 𝐴 ∈ Rels )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  Vcvv 3464  Rel wrel 5664  ccoss 38204   Rels crels 38206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-coss 38434  df-rels 38508
This theorem is referenced by:  cosscnvelrels  38520  dffunsALTV2  38707  dffunsALTV3  38708  dffunsALTV4  38709  elfunsALTV2  38716  elfunsALTV3  38717  elfunsALTV4  38718  elfunsALTV5  38719
  Copyright terms: Public domain W3C validator