| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cosselrels | Structured version Visualization version GIF version | ||
| Description: Cosets of sets are elements of the relations class. Implies ⊢ (𝑅 ∈ Rels → ≀ 𝑅 ∈ Rels ). (Contributed by Peter Mazsa, 25-Aug-2021.) |
| Ref | Expression |
|---|---|
| cosselrels | ⊢ (𝐴 ∈ 𝑉 → ≀ 𝐴 ∈ Rels ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cossex 38398 | . 2 ⊢ (𝐴 ∈ 𝑉 → ≀ 𝐴 ∈ V) | |
| 2 | relcoss 38402 | . . 3 ⊢ Rel ≀ 𝐴 | |
| 3 | elrelsrel 38466 | . . 3 ⊢ ( ≀ 𝐴 ∈ V → ( ≀ 𝐴 ∈ Rels ↔ Rel ≀ 𝐴)) | |
| 4 | 2, 3 | mpbiri 258 | . 2 ⊢ ( ≀ 𝐴 ∈ V → ≀ 𝐴 ∈ Rels ) |
| 5 | 1, 4 | syl 17 | 1 ⊢ (𝐴 ∈ 𝑉 → ≀ 𝐴 ∈ Rels ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3438 Rel wrel 5628 ≀ ccoss 38157 Rels crels 38159 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-coss 38390 df-rels 38464 |
| This theorem is referenced by: cosscnvelrels 38476 dffunsALTV2 38664 dffunsALTV3 38665 dffunsALTV4 38666 elfunsALTV2 38673 elfunsALTV3 38674 elfunsALTV4 38675 elfunsALTV5 38676 |
| Copyright terms: Public domain | W3C validator |