![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cosselrels | Structured version Visualization version GIF version |
Description: Cosets of sets are elements of the relations class. Implies ⊢ (𝑅 ∈ Rels → ≀ 𝑅 ∈ Rels ). (Contributed by Peter Mazsa, 25-Aug-2021.) |
Ref | Expression |
---|---|
cosselrels | ⊢ (𝐴 ∈ 𝑉 → ≀ 𝐴 ∈ Rels ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cossex 38375 | . 2 ⊢ (𝐴 ∈ 𝑉 → ≀ 𝐴 ∈ V) | |
2 | relcoss 38379 | . . 3 ⊢ Rel ≀ 𝐴 | |
3 | elrelsrel 38443 | . . 3 ⊢ ( ≀ 𝐴 ∈ V → ( ≀ 𝐴 ∈ Rels ↔ Rel ≀ 𝐴)) | |
4 | 2, 3 | mpbiri 258 | . 2 ⊢ ( ≀ 𝐴 ∈ V → ≀ 𝐴 ∈ Rels ) |
5 | 1, 4 | syl 17 | 1 ⊢ (𝐴 ∈ 𝑉 → ≀ 𝐴 ∈ Rels ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 Vcvv 3488 Rel wrel 5705 ≀ ccoss 38135 Rels crels 38137 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-coss 38367 df-rels 38441 |
This theorem is referenced by: cosscnvelrels 38453 dffunsALTV2 38640 dffunsALTV3 38641 dffunsALTV4 38642 elfunsALTV2 38649 elfunsALTV3 38650 elfunsALTV4 38651 elfunsALTV5 38652 |
Copyright terms: Public domain | W3C validator |