Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cosselrels | Structured version Visualization version GIF version |
Description: Cosets of sets are elements of the relations class. Implies ⊢ (𝑅 ∈ Rels → ≀ 𝑅 ∈ Rels ). (Contributed by Peter Mazsa, 25-Aug-2021.) |
Ref | Expression |
---|---|
cosselrels | ⊢ (𝐴 ∈ 𝑉 → ≀ 𝐴 ∈ Rels ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cossex 36469 | . 2 ⊢ (𝐴 ∈ 𝑉 → ≀ 𝐴 ∈ V) | |
2 | relcoss 36473 | . . 3 ⊢ Rel ≀ 𝐴 | |
3 | elrelsrel 36532 | . . 3 ⊢ ( ≀ 𝐴 ∈ V → ( ≀ 𝐴 ∈ Rels ↔ Rel ≀ 𝐴)) | |
4 | 2, 3 | mpbiri 257 | . 2 ⊢ ( ≀ 𝐴 ∈ V → ≀ 𝐴 ∈ Rels ) |
5 | 1, 4 | syl 17 | 1 ⊢ (𝐴 ∈ 𝑉 → ≀ 𝐴 ∈ Rels ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 Vcvv 3422 Rel wrel 5585 ≀ ccoss 36260 Rels crels 36262 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-coss 36464 df-rels 36530 |
This theorem is referenced by: cosscnvelrels 36542 dffunsALTV2 36722 dffunsALTV3 36723 dffunsALTV4 36724 elfunsALTV2 36731 elfunsALTV3 36732 elfunsALTV4 36733 elfunsALTV5 36734 |
Copyright terms: Public domain | W3C validator |