![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > eldisjs5 | Structured version Visualization version GIF version |
Description: Elementhood in the class of disjoints. (Contributed by Peter Mazsa, 5-Sep-2021.) |
Ref | Expression |
---|---|
eldisjs5 | ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ Disjs ↔ (∀𝑢 ∈ dom 𝑅∀𝑣 ∈ dom 𝑅(𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅) ∧ 𝑅 ∈ Rels ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldisjs2 38679 | . 2 ⊢ (𝑅 ∈ Disjs ↔ ( ≀ ◡𝑅 ⊆ I ∧ 𝑅 ∈ Rels )) | |
2 | cosscnvssid5 38434 | . . 3 ⊢ (( ≀ ◡𝑅 ⊆ I ∧ Rel 𝑅) ↔ (∀𝑢 ∈ dom 𝑅∀𝑣 ∈ dom 𝑅(𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅) ∧ Rel 𝑅)) | |
3 | elrelsrel 38443 | . . . . 5 ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ Rels ↔ Rel 𝑅)) | |
4 | 3 | anbi2d 629 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → (( ≀ ◡𝑅 ⊆ I ∧ 𝑅 ∈ Rels ) ↔ ( ≀ ◡𝑅 ⊆ I ∧ Rel 𝑅))) |
5 | 3 | anbi2d 629 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → ((∀𝑢 ∈ dom 𝑅∀𝑣 ∈ dom 𝑅(𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅) ∧ 𝑅 ∈ Rels ) ↔ (∀𝑢 ∈ dom 𝑅∀𝑣 ∈ dom 𝑅(𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅) ∧ Rel 𝑅))) |
6 | 4, 5 | bibi12d 345 | . . 3 ⊢ (𝑅 ∈ 𝑉 → ((( ≀ ◡𝑅 ⊆ I ∧ 𝑅 ∈ Rels ) ↔ (∀𝑢 ∈ dom 𝑅∀𝑣 ∈ dom 𝑅(𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅) ∧ 𝑅 ∈ Rels )) ↔ (( ≀ ◡𝑅 ⊆ I ∧ Rel 𝑅) ↔ (∀𝑢 ∈ dom 𝑅∀𝑣 ∈ dom 𝑅(𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅) ∧ Rel 𝑅)))) |
7 | 2, 6 | mpbiri 258 | . 2 ⊢ (𝑅 ∈ 𝑉 → (( ≀ ◡𝑅 ⊆ I ∧ 𝑅 ∈ Rels ) ↔ (∀𝑢 ∈ dom 𝑅∀𝑣 ∈ dom 𝑅(𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅) ∧ 𝑅 ∈ Rels ))) |
8 | 1, 7 | bitrid 283 | 1 ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ Disjs ↔ (∀𝑢 ∈ dom 𝑅∀𝑣 ∈ dom 𝑅(𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅) ∧ 𝑅 ∈ Rels ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 846 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ∩ cin 3975 ⊆ wss 3976 ∅c0 4352 I cid 5592 ◡ccnv 5699 dom cdm 5700 Rel wrel 5705 [cec 8761 ≀ ccoss 38135 Rels crels 38137 Disjs cdisjs 38168 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rmo 3388 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-ec 8765 df-coss 38367 df-rels 38441 df-ssr 38454 df-cnvrefs 38481 df-cnvrefrels 38482 df-disjss 38659 df-disjs 38660 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |