| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eldisjs5 | Structured version Visualization version GIF version | ||
| Description: Elementhood in the class of disjoints. (Contributed by Peter Mazsa, 5-Sep-2021.) |
| Ref | Expression |
|---|---|
| eldisjs5 | ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ Disjs ↔ (∀𝑢 ∈ dom 𝑅∀𝑣 ∈ dom 𝑅(𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅) ∧ 𝑅 ∈ Rels ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldisjs2 38831 | . 2 ⊢ (𝑅 ∈ Disjs ↔ ( ≀ ◡𝑅 ⊆ I ∧ 𝑅 ∈ Rels )) | |
| 2 | cosscnvssid5 38590 | . . 3 ⊢ (( ≀ ◡𝑅 ⊆ I ∧ Rel 𝑅) ↔ (∀𝑢 ∈ dom 𝑅∀𝑣 ∈ dom 𝑅(𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅) ∧ Rel 𝑅)) | |
| 3 | elrelsrel 38476 | . . . . 5 ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ Rels ↔ Rel 𝑅)) | |
| 4 | 3 | anbi2d 630 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → (( ≀ ◡𝑅 ⊆ I ∧ 𝑅 ∈ Rels ) ↔ ( ≀ ◡𝑅 ⊆ I ∧ Rel 𝑅))) |
| 5 | 3 | anbi2d 630 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → ((∀𝑢 ∈ dom 𝑅∀𝑣 ∈ dom 𝑅(𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅) ∧ 𝑅 ∈ Rels ) ↔ (∀𝑢 ∈ dom 𝑅∀𝑣 ∈ dom 𝑅(𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅) ∧ Rel 𝑅))) |
| 6 | 4, 5 | bibi12d 345 | . . 3 ⊢ (𝑅 ∈ 𝑉 → ((( ≀ ◡𝑅 ⊆ I ∧ 𝑅 ∈ Rels ) ↔ (∀𝑢 ∈ dom 𝑅∀𝑣 ∈ dom 𝑅(𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅) ∧ 𝑅 ∈ Rels )) ↔ (( ≀ ◡𝑅 ⊆ I ∧ Rel 𝑅) ↔ (∀𝑢 ∈ dom 𝑅∀𝑣 ∈ dom 𝑅(𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅) ∧ Rel 𝑅)))) |
| 7 | 2, 6 | mpbiri 258 | . 2 ⊢ (𝑅 ∈ 𝑉 → (( ≀ ◡𝑅 ⊆ I ∧ 𝑅 ∈ Rels ) ↔ (∀𝑢 ∈ dom 𝑅∀𝑣 ∈ dom 𝑅(𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅) ∧ 𝑅 ∈ Rels ))) |
| 8 | 1, 7 | bitrid 283 | 1 ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ Disjs ↔ (∀𝑢 ∈ dom 𝑅∀𝑣 ∈ dom 𝑅(𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅) ∧ 𝑅 ∈ Rels ))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ∩ cin 3896 ⊆ wss 3897 ∅c0 4280 I cid 5508 ◡ccnv 5613 dom cdm 5614 Rel wrel 5619 [cec 8620 ≀ ccoss 38232 Rels crels 38234 Disjs cdisjs 38265 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rmo 3346 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-ec 8624 df-rels 38474 df-coss 38523 df-ssr 38600 df-cnvrefs 38627 df-cnvrefrels 38628 df-disjss 38811 df-disjs 38812 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |