Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eldisjs5 Structured version   Visualization version   GIF version

Theorem eldisjs5 37596
Description: Elementhood in the class of disjoints. (Contributed by Peter Mazsa, 5-Sep-2021.)
Assertion
Ref Expression
eldisjs5 (𝑅𝑉 → (𝑅 ∈ Disjs ↔ (∀𝑢 ∈ dom 𝑅𝑣 ∈ dom 𝑅(𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅) ∧ 𝑅 ∈ Rels )))
Distinct variable group:   𝑢,𝑅,𝑣
Allowed substitution hints:   𝑉(𝑣,𝑢)

Proof of Theorem eldisjs5
StepHypRef Expression
1 eldisjs2 37593 . 2 (𝑅 ∈ Disjs ↔ ( ≀ 𝑅 ⊆ I ∧ 𝑅 ∈ Rels ))
2 cosscnvssid5 37348 . . 3 (( ≀ 𝑅 ⊆ I ∧ Rel 𝑅) ↔ (∀𝑢 ∈ dom 𝑅𝑣 ∈ dom 𝑅(𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅) ∧ Rel 𝑅))
3 elrelsrel 37357 . . . . 5 (𝑅𝑉 → (𝑅 ∈ Rels ↔ Rel 𝑅))
43anbi2d 630 . . . 4 (𝑅𝑉 → (( ≀ 𝑅 ⊆ I ∧ 𝑅 ∈ Rels ) ↔ ( ≀ 𝑅 ⊆ I ∧ Rel 𝑅)))
53anbi2d 630 . . . 4 (𝑅𝑉 → ((∀𝑢 ∈ dom 𝑅𝑣 ∈ dom 𝑅(𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅) ∧ 𝑅 ∈ Rels ) ↔ (∀𝑢 ∈ dom 𝑅𝑣 ∈ dom 𝑅(𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅) ∧ Rel 𝑅)))
64, 5bibi12d 346 . . 3 (𝑅𝑉 → ((( ≀ 𝑅 ⊆ I ∧ 𝑅 ∈ Rels ) ↔ (∀𝑢 ∈ dom 𝑅𝑣 ∈ dom 𝑅(𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅) ∧ 𝑅 ∈ Rels )) ↔ (( ≀ 𝑅 ⊆ I ∧ Rel 𝑅) ↔ (∀𝑢 ∈ dom 𝑅𝑣 ∈ dom 𝑅(𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅) ∧ Rel 𝑅))))
72, 6mpbiri 258 . 2 (𝑅𝑉 → (( ≀ 𝑅 ⊆ I ∧ 𝑅 ∈ Rels ) ↔ (∀𝑢 ∈ dom 𝑅𝑣 ∈ dom 𝑅(𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅) ∧ 𝑅 ∈ Rels )))
81, 7bitrid 283 1 (𝑅𝑉 → (𝑅 ∈ Disjs ↔ (∀𝑢 ∈ dom 𝑅𝑣 ∈ dom 𝑅(𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅) ∧ 𝑅 ∈ Rels )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  wo 846   = wceq 1542  wcel 2107  wral 3062  cin 3948  wss 3949  c0 4323   I cid 5574  ccnv 5676  dom cdm 5677  Rel wrel 5682  [cec 8701  ccoss 37043   Rels crels 37045   Disjs cdisjs 37076
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ral 3063  df-rex 3072  df-rmo 3377  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-ec 8705  df-coss 37281  df-rels 37355  df-ssr 37368  df-cnvrefs 37395  df-cnvrefrels 37396  df-disjss 37573  df-disjs 37574
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator