Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > eltrrelsrel | Structured version Visualization version GIF version |
Description: For sets, being an element of the class of transitive relations is equivalent to satisfying the transitive relation predicate. (Contributed by Peter Mazsa, 22-Aug-2021.) |
Ref | Expression |
---|---|
eltrrelsrel | ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ TrRels ↔ TrRel 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrelsrel 36591 | . . 3 ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ Rels ↔ Rel 𝑅)) | |
2 | 1 | anbi2d 629 | . 2 ⊢ (𝑅 ∈ 𝑉 → (((𝑅 ∘ 𝑅) ⊆ 𝑅 ∧ 𝑅 ∈ Rels ) ↔ ((𝑅 ∘ 𝑅) ⊆ 𝑅 ∧ Rel 𝑅))) |
3 | eltrrels2 36679 | . 2 ⊢ (𝑅 ∈ TrRels ↔ ((𝑅 ∘ 𝑅) ⊆ 𝑅 ∧ 𝑅 ∈ Rels )) | |
4 | dftrrel2 36677 | . 2 ⊢ ( TrRel 𝑅 ↔ ((𝑅 ∘ 𝑅) ⊆ 𝑅 ∧ Rel 𝑅)) | |
5 | 2, 3, 4 | 3bitr4g 314 | 1 ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ TrRels ↔ TrRel 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∈ wcel 2106 ⊆ wss 3887 ∘ ccom 5589 Rel wrel 5590 Rels crels 36321 TrRels ctrrels 36333 TrRel wtrrel 36334 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-12 2171 ax-ext 2709 ax-sep 5222 ax-nul 5229 ax-pr 5351 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3432 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-op 4569 df-br 5075 df-opab 5137 df-xp 5591 df-rel 5592 df-cnv 5593 df-co 5594 df-dm 5595 df-rn 5596 df-res 5597 df-rels 36589 df-ssr 36602 df-trs 36672 df-trrels 36673 df-trrel 36674 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |