Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eltrrelsrel Structured version   Visualization version   GIF version

Theorem eltrrelsrel 38108
Description: For sets, being an element of the class of transitive relations is equivalent to satisfying the transitive relation predicate. (Contributed by Peter Mazsa, 22-Aug-2021.)
Assertion
Ref Expression
eltrrelsrel (𝑅𝑉 → (𝑅 ∈ TrRels ↔ TrRel 𝑅))

Proof of Theorem eltrrelsrel
StepHypRef Expression
1 elrelsrel 38014 . . 3 (𝑅𝑉 → (𝑅 ∈ Rels ↔ Rel 𝑅))
21anbi2d 628 . 2 (𝑅𝑉 → (((𝑅𝑅) ⊆ 𝑅𝑅 ∈ Rels ) ↔ ((𝑅𝑅) ⊆ 𝑅 ∧ Rel 𝑅)))
3 eltrrels2 38106 . 2 (𝑅 ∈ TrRels ↔ ((𝑅𝑅) ⊆ 𝑅𝑅 ∈ Rels ))
4 dftrrel2 38104 . 2 ( TrRel 𝑅 ↔ ((𝑅𝑅) ⊆ 𝑅 ∧ Rel 𝑅))
52, 3, 43bitr4g 313 1 (𝑅𝑉 → (𝑅 ∈ TrRels ↔ TrRel 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  wcel 2098  wss 3940  ccom 5676  Rel wrel 5677   Rels crels 37706   TrRels ctrrels 37718   TrRel wtrrel 37719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2696  ax-sep 5294  ax-nul 5301  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3465  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-br 5144  df-opab 5206  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-rels 38012  df-ssr 38025  df-trs 38099  df-trrels 38100  df-trrel 38101
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator