Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eltrrelsrel Structured version   Visualization version   GIF version

Theorem eltrrelsrel 38541
Description: For sets, being an element of the class of transitive relations is equivalent to satisfying the transitive relation predicate. (Contributed by Peter Mazsa, 22-Aug-2021.)
Assertion
Ref Expression
eltrrelsrel (𝑅𝑉 → (𝑅 ∈ TrRels ↔ TrRel 𝑅))

Proof of Theorem eltrrelsrel
StepHypRef Expression
1 elrelsrel 38447 . . 3 (𝑅𝑉 → (𝑅 ∈ Rels ↔ Rel 𝑅))
21anbi2d 630 . 2 (𝑅𝑉 → (((𝑅𝑅) ⊆ 𝑅𝑅 ∈ Rels ) ↔ ((𝑅𝑅) ⊆ 𝑅 ∧ Rel 𝑅)))
3 eltrrels2 38539 . 2 (𝑅 ∈ TrRels ↔ ((𝑅𝑅) ⊆ 𝑅𝑅 ∈ Rels ))
4 dftrrel2 38537 . 2 ( TrRel 𝑅 ↔ ((𝑅𝑅) ⊆ 𝑅 ∧ Rel 𝑅))
52, 3, 43bitr4g 314 1 (𝑅𝑉 → (𝑅 ∈ TrRels ↔ TrRel 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2107  wss 3931  ccom 5669  Rel wrel 5670   Rels crels 38143   TrRels ctrrels 38155   TrRel wtrrel 38156
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-br 5124  df-opab 5186  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-rels 38445  df-ssr 38458  df-trs 38532  df-trrels 38533  df-trrel 38534
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator