Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limcresiooub Structured version   Visualization version   GIF version

Theorem limcresiooub 45613
Description: The left limit doesn't change if the function is restricted to a smaller open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
limcresiooub.f (𝜑𝐹:𝐴⟶ℂ)
limcresiooub.b (𝜑𝐵 ∈ ℝ*)
limcresiooub.c (𝜑𝐶 ∈ ℝ)
limcresiooub.bltc (𝜑𝐵 < 𝐶)
limcresiooub.bcss (𝜑 → (𝐵(,)𝐶) ⊆ 𝐴)
limcresiooub.d (𝜑𝐷 ∈ ℝ*)
limcresiooub.cled (𝜑𝐷𝐵)
Assertion
Ref Expression
limcresiooub (𝜑 → ((𝐹 ↾ (𝐵(,)𝐶)) lim 𝐶) = ((𝐹 ↾ (𝐷(,)𝐶)) lim 𝐶))

Proof of Theorem limcresiooub
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 limcresiooub.d . . . . . 6 (𝜑𝐷 ∈ ℝ*)
2 limcresiooub.cled . . . . . 6 (𝜑𝐷𝐵)
3 iooss1 13317 . . . . . 6 ((𝐷 ∈ ℝ*𝐷𝐵) → (𝐵(,)𝐶) ⊆ (𝐷(,)𝐶))
41, 2, 3syl2anc 584 . . . . 5 (𝜑 → (𝐵(,)𝐶) ⊆ (𝐷(,)𝐶))
54resabs1d 5968 . . . 4 (𝜑 → ((𝐹 ↾ (𝐷(,)𝐶)) ↾ (𝐵(,)𝐶)) = (𝐹 ↾ (𝐵(,)𝐶)))
65eqcomd 2735 . . 3 (𝜑 → (𝐹 ↾ (𝐵(,)𝐶)) = ((𝐹 ↾ (𝐷(,)𝐶)) ↾ (𝐵(,)𝐶)))
76oveq1d 7384 . 2 (𝜑 → ((𝐹 ↾ (𝐵(,)𝐶)) lim 𝐶) = (((𝐹 ↾ (𝐷(,)𝐶)) ↾ (𝐵(,)𝐶)) lim 𝐶))
8 limcresiooub.f . . . 4 (𝜑𝐹:𝐴⟶ℂ)
9 fresin 6711 . . . 4 (𝐹:𝐴⟶ℂ → (𝐹 ↾ (𝐷(,)𝐶)):(𝐴 ∩ (𝐷(,)𝐶))⟶ℂ)
108, 9syl 17 . . 3 (𝜑 → (𝐹 ↾ (𝐷(,)𝐶)):(𝐴 ∩ (𝐷(,)𝐶))⟶ℂ)
11 limcresiooub.bcss . . . 4 (𝜑 → (𝐵(,)𝐶) ⊆ 𝐴)
1211, 4ssind 4200 . . 3 (𝜑 → (𝐵(,)𝐶) ⊆ (𝐴 ∩ (𝐷(,)𝐶)))
13 inss2 4197 . . . . 5 (𝐴 ∩ (𝐷(,)𝐶)) ⊆ (𝐷(,)𝐶)
14 ioosscn 13345 . . . . 5 (𝐷(,)𝐶) ⊆ ℂ
1513, 14sstri 3953 . . . 4 (𝐴 ∩ (𝐷(,)𝐶)) ⊆ ℂ
1615a1i 11 . . 3 (𝜑 → (𝐴 ∩ (𝐷(,)𝐶)) ⊆ ℂ)
17 eqid 2729 . . 3 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
18 eqid 2729 . . 3 ((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})) = ((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))
19 limcresiooub.b . . . . 5 (𝜑𝐵 ∈ ℝ*)
20 limcresiooub.c . . . . . 6 (𝜑𝐶 ∈ ℝ)
2120rexrd 11200 . . . . 5 (𝜑𝐶 ∈ ℝ*)
22 limcresiooub.bltc . . . . 5 (𝜑𝐵 < 𝐶)
23 ubioc1 13336 . . . . 5 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*𝐵 < 𝐶) → 𝐶 ∈ (𝐵(,]𝐶))
2419, 21, 22, 23syl3anc 1373 . . . 4 (𝜑𝐶 ∈ (𝐵(,]𝐶))
25 ioounsn 13414 . . . . . . 7 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*𝐵 < 𝐶) → ((𝐵(,)𝐶) ∪ {𝐶}) = (𝐵(,]𝐶))
2619, 21, 22, 25syl3anc 1373 . . . . . 6 (𝜑 → ((𝐵(,)𝐶) ∪ {𝐶}) = (𝐵(,]𝐶))
2726fveq2d 6844 . . . . 5 (𝜑 → ((int‘((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})))‘((𝐵(,)𝐶) ∪ {𝐶})) = ((int‘((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})))‘(𝐵(,]𝐶)))
2817cnfldtop 24647 . . . . . . . 8 (TopOpen‘ℂfld) ∈ Top
29 ovex 7402 . . . . . . . . . 10 (𝐷(,)𝐶) ∈ V
3029inex2 5268 . . . . . . . . 9 (𝐴 ∩ (𝐷(,)𝐶)) ∈ V
31 snex 5386 . . . . . . . . 9 {𝐶} ∈ V
3230, 31unex 7700 . . . . . . . 8 ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}) ∈ V
33 resttop 23023 . . . . . . . 8 (((TopOpen‘ℂfld) ∈ Top ∧ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}) ∈ V) → ((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})) ∈ Top)
3428, 32, 33mp2an 692 . . . . . . 7 ((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})) ∈ Top
3534a1i 11 . . . . . 6 (𝜑 → ((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})) ∈ Top)
36 pnfxr 11204 . . . . . . . . . . . . . 14 +∞ ∈ ℝ*
3736a1i 11 . . . . . . . . . . . . 13 (𝜑 → +∞ ∈ ℝ*)
3819xrleidd 13088 . . . . . . . . . . . . 13 (𝜑𝐵𝐵)
3920ltpnfd 13057 . . . . . . . . . . . . 13 (𝜑𝐶 < +∞)
40 iocssioo 13376 . . . . . . . . . . . . 13 (((𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (𝐵𝐵𝐶 < +∞)) → (𝐵(,]𝐶) ⊆ (𝐵(,)+∞))
4119, 37, 38, 39, 40syl22anc 838 . . . . . . . . . . . 12 (𝜑 → (𝐵(,]𝐶) ⊆ (𝐵(,)+∞))
42 simpr 484 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 = 𝐶) → 𝑥 = 𝐶)
43 snidg 4620 . . . . . . . . . . . . . . . . . . 19 (𝐶 ∈ ℝ → 𝐶 ∈ {𝐶})
44 elun2 4142 . . . . . . . . . . . . . . . . . . 19 (𝐶 ∈ {𝐶} → 𝐶 ∈ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))
4520, 43, 443syl 18 . . . . . . . . . . . . . . . . . 18 (𝜑𝐶 ∈ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))
4645adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 = 𝐶) → 𝐶 ∈ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))
4742, 46eqeltrd 2828 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 = 𝐶) → 𝑥 ∈ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))
4847adantlr 715 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (𝐵(,]𝐶)) ∧ 𝑥 = 𝐶) → 𝑥 ∈ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))
49 simpll 766 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (𝐵(,]𝐶)) ∧ ¬ 𝑥 = 𝐶) → 𝜑)
5019adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (𝐵(,]𝐶)) → 𝐵 ∈ ℝ*)
5150adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (𝐵(,]𝐶)) ∧ ¬ 𝑥 = 𝐶) → 𝐵 ∈ ℝ*)
5221adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (𝐵(,]𝐶)) → 𝐶 ∈ ℝ*)
5352adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (𝐵(,]𝐶)) ∧ ¬ 𝑥 = 𝐶) → 𝐶 ∈ ℝ*)
54 iocssre 13364 . . . . . . . . . . . . . . . . . . . 20 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ) → (𝐵(,]𝐶) ⊆ ℝ)
5519, 20, 54syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐵(,]𝐶) ⊆ ℝ)
5655sselda 3943 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (𝐵(,]𝐶)) → 𝑥 ∈ ℝ)
5756adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (𝐵(,]𝐶)) ∧ ¬ 𝑥 = 𝐶) → 𝑥 ∈ ℝ)
58 simpr 484 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (𝐵(,]𝐶)) → 𝑥 ∈ (𝐵(,]𝐶))
59 iocgtlb 45473 . . . . . . . . . . . . . . . . . . 19 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*𝑥 ∈ (𝐵(,]𝐶)) → 𝐵 < 𝑥)
6050, 52, 58, 59syl3anc 1373 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (𝐵(,]𝐶)) → 𝐵 < 𝑥)
6160adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (𝐵(,]𝐶)) ∧ ¬ 𝑥 = 𝐶) → 𝐵 < 𝑥)
6220ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (𝐵(,]𝐶)) ∧ ¬ 𝑥 = 𝐶) → 𝐶 ∈ ℝ)
63 iocleub 45474 . . . . . . . . . . . . . . . . . . . 20 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*𝑥 ∈ (𝐵(,]𝐶)) → 𝑥𝐶)
6450, 52, 58, 63syl3anc 1373 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (𝐵(,]𝐶)) → 𝑥𝐶)
6564adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (𝐵(,]𝐶)) ∧ ¬ 𝑥 = 𝐶) → 𝑥𝐶)
66 neqne 2933 . . . . . . . . . . . . . . . . . . . 20 𝑥 = 𝐶𝑥𝐶)
6766adantl 481 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ (𝐵(,]𝐶)) ∧ ¬ 𝑥 = 𝐶) → 𝑥𝐶)
6867necomd 2980 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (𝐵(,]𝐶)) ∧ ¬ 𝑥 = 𝐶) → 𝐶𝑥)
6957, 62, 65, 68leneltd 11304 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (𝐵(,]𝐶)) ∧ ¬ 𝑥 = 𝐶) → 𝑥 < 𝐶)
7051, 53, 57, 61, 69eliood 45469 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (𝐵(,]𝐶)) ∧ ¬ 𝑥 = 𝐶) → 𝑥 ∈ (𝐵(,)𝐶))
7112sselda 3943 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝐵(,)𝐶)) → 𝑥 ∈ (𝐴 ∩ (𝐷(,)𝐶)))
72 elun1 4141 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (𝐴 ∩ (𝐷(,)𝐶)) → 𝑥 ∈ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))
7371, 72syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐵(,)𝐶)) → 𝑥 ∈ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))
7449, 70, 73syl2anc 584 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (𝐵(,]𝐶)) ∧ ¬ 𝑥 = 𝐶) → 𝑥 ∈ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))
7548, 74pm2.61dan 812 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐵(,]𝐶)) → 𝑥 ∈ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))
7675ralrimiva 3125 . . . . . . . . . . . . 13 (𝜑 → ∀𝑥 ∈ (𝐵(,]𝐶)𝑥 ∈ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))
77 dfss3 3932 . . . . . . . . . . . . 13 ((𝐵(,]𝐶) ⊆ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}) ↔ ∀𝑥 ∈ (𝐵(,]𝐶)𝑥 ∈ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))
7876, 77sylibr 234 . . . . . . . . . . . 12 (𝜑 → (𝐵(,]𝐶) ⊆ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))
7941, 78ssind 4200 . . . . . . . . . . 11 (𝜑 → (𝐵(,]𝐶) ⊆ ((𝐵(,)+∞) ∩ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})))
8079sseld 3942 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (𝐵(,]𝐶) → 𝑥 ∈ ((𝐵(,)+∞) ∩ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))))
8124adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑥 = 𝐶) → 𝐶 ∈ (𝐵(,]𝐶))
8242, 81eqeltrd 2828 . . . . . . . . . . . . 13 ((𝜑𝑥 = 𝐶) → 𝑥 ∈ (𝐵(,]𝐶))
8382adantlr 715 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ((𝐵(,)+∞) ∩ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))) ∧ 𝑥 = 𝐶) → 𝑥 ∈ (𝐵(,]𝐶))
84 ioossioc 45463 . . . . . . . . . . . . 13 (𝐵(,)𝐶) ⊆ (𝐵(,]𝐶)
8519ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ((𝐵(,)+∞) ∩ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))) ∧ ¬ 𝑥 = 𝐶) → 𝐵 ∈ ℝ*)
8621ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ((𝐵(,)+∞) ∩ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))) ∧ ¬ 𝑥 = 𝐶) → 𝐶 ∈ ℝ*)
87 elinel1 4160 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ((𝐵(,)+∞) ∩ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})) → 𝑥 ∈ (𝐵(,)+∞))
8887elioored 45520 . . . . . . . . . . . . . . 15 (𝑥 ∈ ((𝐵(,)+∞) ∩ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})) → 𝑥 ∈ ℝ)
8988ad2antlr 727 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ((𝐵(,)+∞) ∩ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))) ∧ ¬ 𝑥 = 𝐶) → 𝑥 ∈ ℝ)
9036a1i 11 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ((𝐵(,)+∞) ∩ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))) ∧ ¬ 𝑥 = 𝐶) → +∞ ∈ ℝ*)
9187ad2antlr 727 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ((𝐵(,)+∞) ∩ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))) ∧ ¬ 𝑥 = 𝐶) → 𝑥 ∈ (𝐵(,)+∞))
92 ioogtlb 45466 . . . . . . . . . . . . . . 15 ((𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑥 ∈ (𝐵(,)+∞)) → 𝐵 < 𝑥)
9385, 90, 91, 92syl3anc 1373 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ((𝐵(,)+∞) ∩ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))) ∧ ¬ 𝑥 = 𝐶) → 𝐵 < 𝑥)
941ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ((𝐵(,)+∞) ∩ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))) ∧ ¬ 𝑥 = 𝐶) → 𝐷 ∈ ℝ*)
95 elinel2 4161 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ((𝐵(,)+∞) ∩ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})) → 𝑥 ∈ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))
96 id 22 . . . . . . . . . . . . . . . . . . 19 𝑥 = 𝐶 → ¬ 𝑥 = 𝐶)
97 velsn 4601 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ {𝐶} ↔ 𝑥 = 𝐶)
9896, 97sylnibr 329 . . . . . . . . . . . . . . . . . 18 𝑥 = 𝐶 → ¬ 𝑥 ∈ {𝐶})
99 elunnel2 4114 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}) ∧ ¬ 𝑥 ∈ {𝐶}) → 𝑥 ∈ (𝐴 ∩ (𝐷(,)𝐶)))
10095, 98, 99syl2an 596 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ((𝐵(,)+∞) ∩ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})) ∧ ¬ 𝑥 = 𝐶) → 𝑥 ∈ (𝐴 ∩ (𝐷(,)𝐶)))
10113, 100sselid 3941 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ((𝐵(,)+∞) ∩ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})) ∧ ¬ 𝑥 = 𝐶) → 𝑥 ∈ (𝐷(,)𝐶))
102101adantll 714 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ((𝐵(,)+∞) ∩ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))) ∧ ¬ 𝑥 = 𝐶) → 𝑥 ∈ (𝐷(,)𝐶))
103 iooltub 45481 . . . . . . . . . . . . . . 15 ((𝐷 ∈ ℝ*𝐶 ∈ ℝ*𝑥 ∈ (𝐷(,)𝐶)) → 𝑥 < 𝐶)
10494, 86, 102, 103syl3anc 1373 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ((𝐵(,)+∞) ∩ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))) ∧ ¬ 𝑥 = 𝐶) → 𝑥 < 𝐶)
10585, 86, 89, 93, 104eliood 45469 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ((𝐵(,)+∞) ∩ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))) ∧ ¬ 𝑥 = 𝐶) → 𝑥 ∈ (𝐵(,)𝐶))
10684, 105sselid 3941 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ((𝐵(,)+∞) ∩ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))) ∧ ¬ 𝑥 = 𝐶) → 𝑥 ∈ (𝐵(,]𝐶))
10783, 106pm2.61dan 812 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ((𝐵(,)+∞) ∩ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))) → 𝑥 ∈ (𝐵(,]𝐶))
108107ex 412 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ ((𝐵(,)+∞) ∩ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})) → 𝑥 ∈ (𝐵(,]𝐶)))
10980, 108impbid 212 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (𝐵(,]𝐶) ↔ 𝑥 ∈ ((𝐵(,)+∞) ∩ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))))
110109eqrdv 2727 . . . . . . . 8 (𝜑 → (𝐵(,]𝐶) = ((𝐵(,)+∞) ∩ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})))
111 retop 24625 . . . . . . . . . 10 (topGen‘ran (,)) ∈ Top
112111a1i 11 . . . . . . . . 9 (𝜑 → (topGen‘ran (,)) ∈ Top)
11332a1i 11 . . . . . . . . 9 (𝜑 → ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}) ∈ V)
114 iooretop 24629 . . . . . . . . . 10 (𝐵(,)+∞) ∈ (topGen‘ran (,))
115114a1i 11 . . . . . . . . 9 (𝜑 → (𝐵(,)+∞) ∈ (topGen‘ran (,)))
116 elrestr 17367 . . . . . . . . 9 (((topGen‘ran (,)) ∈ Top ∧ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}) ∈ V ∧ (𝐵(,)+∞) ∈ (topGen‘ran (,))) → ((𝐵(,)+∞) ∩ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})) ∈ ((topGen‘ran (,)) ↾t ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})))
117112, 113, 115, 116syl3anc 1373 . . . . . . . 8 (𝜑 → ((𝐵(,)+∞) ∩ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})) ∈ ((topGen‘ran (,)) ↾t ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})))
118110, 117eqeltrd 2828 . . . . . . 7 (𝜑 → (𝐵(,]𝐶) ∈ ((topGen‘ran (,)) ↾t ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})))
119 tgioo4 24669 . . . . . . . . 9 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
120119oveq1i 7379 . . . . . . . 8 ((topGen‘ran (,)) ↾t ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})) = (((TopOpen‘ℂfld) ↾t ℝ) ↾t ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))
12128a1i 11 . . . . . . . . 9 (𝜑 → (TopOpen‘ℂfld) ∈ Top)
122 ioossre 13344 . . . . . . . . . . . 12 (𝐷(,)𝐶) ⊆ ℝ
12313, 122sstri 3953 . . . . . . . . . . 11 (𝐴 ∩ (𝐷(,)𝐶)) ⊆ ℝ
124123a1i 11 . . . . . . . . . 10 (𝜑 → (𝐴 ∩ (𝐷(,)𝐶)) ⊆ ℝ)
12520snssd 4769 . . . . . . . . . 10 (𝜑 → {𝐶} ⊆ ℝ)
126124, 125unssd 4151 . . . . . . . . 9 (𝜑 → ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}) ⊆ ℝ)
127 reex 11135 . . . . . . . . . 10 ℝ ∈ V
128127a1i 11 . . . . . . . . 9 (𝜑 → ℝ ∈ V)
129 restabs 23028 . . . . . . . . 9 (((TopOpen‘ℂfld) ∈ Top ∧ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}) ⊆ ℝ ∧ ℝ ∈ V) → (((TopOpen‘ℂfld) ↾t ℝ) ↾t ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})) = ((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})))
130121, 126, 128, 129syl3anc 1373 . . . . . . . 8 (𝜑 → (((TopOpen‘ℂfld) ↾t ℝ) ↾t ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})) = ((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})))
131120, 130eqtrid 2776 . . . . . . 7 (𝜑 → ((topGen‘ran (,)) ↾t ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})) = ((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})))
132118, 131eleqtrd 2830 . . . . . 6 (𝜑 → (𝐵(,]𝐶) ∈ ((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})))
133 isopn3i 22945 . . . . . 6 ((((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})) ∈ Top ∧ (𝐵(,]𝐶) ∈ ((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))) → ((int‘((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})))‘(𝐵(,]𝐶)) = (𝐵(,]𝐶))
13435, 132, 133syl2anc 584 . . . . 5 (𝜑 → ((int‘((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})))‘(𝐵(,]𝐶)) = (𝐵(,]𝐶))
13527, 134eqtr2d 2765 . . . 4 (𝜑 → (𝐵(,]𝐶) = ((int‘((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})))‘((𝐵(,)𝐶) ∪ {𝐶})))
13624, 135eleqtrd 2830 . . 3 (𝜑𝐶 ∈ ((int‘((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})))‘((𝐵(,)𝐶) ∪ {𝐶})))
13710, 12, 16, 17, 18, 136limcres 25763 . 2 (𝜑 → (((𝐹 ↾ (𝐷(,)𝐶)) ↾ (𝐵(,)𝐶)) lim 𝐶) = ((𝐹 ↾ (𝐷(,)𝐶)) lim 𝐶))
1387, 137eqtrd 2764 1 (𝜑 → ((𝐹 ↾ (𝐵(,)𝐶)) lim 𝐶) = ((𝐹 ↾ (𝐷(,)𝐶)) lim 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  Vcvv 3444  cun 3909  cin 3910  wss 3911  {csn 4585   class class class wbr 5102  ran crn 5632  cres 5633  wf 6495  cfv 6499  (class class class)co 7369  cc 11042  cr 11043  +∞cpnf 11181  *cxr 11183   < clt 11184  cle 11185  (,)cioo 13282  (,]cioc 13283  t crest 17359  TopOpenctopn 17360  topGenctg 17376  fldccnfld 21240  Topctop 22756  intcnt 22880   lim climc 25739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-map 8778  df-pm 8779  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fi 9338  df-sup 9369  df-inf 9370  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ioo 13286  df-ioc 13287  df-icc 13289  df-fz 13445  df-seq 13943  df-exp 14003  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-struct 17093  df-slot 17128  df-ndx 17140  df-base 17156  df-plusg 17209  df-mulr 17210  df-starv 17211  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-rest 17361  df-topn 17362  df-topgen 17382  df-psmet 21232  df-xmet 21233  df-met 21234  df-bl 21235  df-mopn 21236  df-cnfld 21241  df-top 22757  df-topon 22774  df-topsp 22796  df-bases 22809  df-ntr 22883  df-cnp 23091  df-xms 24184  df-ms 24185  df-limc 25743
This theorem is referenced by:  fouriersw  46202
  Copyright terms: Public domain W3C validator