Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limcresiooub Structured version   Visualization version   GIF version

Theorem limcresiooub 45657
Description: The left limit doesn't change if the function is restricted to a smaller open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
limcresiooub.f (𝜑𝐹:𝐴⟶ℂ)
limcresiooub.b (𝜑𝐵 ∈ ℝ*)
limcresiooub.c (𝜑𝐶 ∈ ℝ)
limcresiooub.bltc (𝜑𝐵 < 𝐶)
limcresiooub.bcss (𝜑 → (𝐵(,)𝐶) ⊆ 𝐴)
limcresiooub.d (𝜑𝐷 ∈ ℝ*)
limcresiooub.cled (𝜑𝐷𝐵)
Assertion
Ref Expression
limcresiooub (𝜑 → ((𝐹 ↾ (𝐵(,)𝐶)) lim 𝐶) = ((𝐹 ↾ (𝐷(,)𝐶)) lim 𝐶))

Proof of Theorem limcresiooub
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 limcresiooub.d . . . . . 6 (𝜑𝐷 ∈ ℝ*)
2 limcresiooub.cled . . . . . 6 (𝜑𝐷𝐵)
3 iooss1 13422 . . . . . 6 ((𝐷 ∈ ℝ*𝐷𝐵) → (𝐵(,)𝐶) ⊆ (𝐷(,)𝐶))
41, 2, 3syl2anc 584 . . . . 5 (𝜑 → (𝐵(,)𝐶) ⊆ (𝐷(,)𝐶))
54resabs1d 6026 . . . 4 (𝜑 → ((𝐹 ↾ (𝐷(,)𝐶)) ↾ (𝐵(,)𝐶)) = (𝐹 ↾ (𝐵(,)𝐶)))
65eqcomd 2743 . . 3 (𝜑 → (𝐹 ↾ (𝐵(,)𝐶)) = ((𝐹 ↾ (𝐷(,)𝐶)) ↾ (𝐵(,)𝐶)))
76oveq1d 7446 . 2 (𝜑 → ((𝐹 ↾ (𝐵(,)𝐶)) lim 𝐶) = (((𝐹 ↾ (𝐷(,)𝐶)) ↾ (𝐵(,)𝐶)) lim 𝐶))
8 limcresiooub.f . . . 4 (𝜑𝐹:𝐴⟶ℂ)
9 fresin 6777 . . . 4 (𝐹:𝐴⟶ℂ → (𝐹 ↾ (𝐷(,)𝐶)):(𝐴 ∩ (𝐷(,)𝐶))⟶ℂ)
108, 9syl 17 . . 3 (𝜑 → (𝐹 ↾ (𝐷(,)𝐶)):(𝐴 ∩ (𝐷(,)𝐶))⟶ℂ)
11 limcresiooub.bcss . . . 4 (𝜑 → (𝐵(,)𝐶) ⊆ 𝐴)
1211, 4ssind 4241 . . 3 (𝜑 → (𝐵(,)𝐶) ⊆ (𝐴 ∩ (𝐷(,)𝐶)))
13 inss2 4238 . . . . 5 (𝐴 ∩ (𝐷(,)𝐶)) ⊆ (𝐷(,)𝐶)
14 ioosscn 13449 . . . . 5 (𝐷(,)𝐶) ⊆ ℂ
1513, 14sstri 3993 . . . 4 (𝐴 ∩ (𝐷(,)𝐶)) ⊆ ℂ
1615a1i 11 . . 3 (𝜑 → (𝐴 ∩ (𝐷(,)𝐶)) ⊆ ℂ)
17 eqid 2737 . . 3 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
18 eqid 2737 . . 3 ((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})) = ((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))
19 limcresiooub.b . . . . 5 (𝜑𝐵 ∈ ℝ*)
20 limcresiooub.c . . . . . 6 (𝜑𝐶 ∈ ℝ)
2120rexrd 11311 . . . . 5 (𝜑𝐶 ∈ ℝ*)
22 limcresiooub.bltc . . . . 5 (𝜑𝐵 < 𝐶)
23 ubioc1 13440 . . . . 5 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*𝐵 < 𝐶) → 𝐶 ∈ (𝐵(,]𝐶))
2419, 21, 22, 23syl3anc 1373 . . . 4 (𝜑𝐶 ∈ (𝐵(,]𝐶))
25 ioounsn 13517 . . . . . . 7 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*𝐵 < 𝐶) → ((𝐵(,)𝐶) ∪ {𝐶}) = (𝐵(,]𝐶))
2619, 21, 22, 25syl3anc 1373 . . . . . 6 (𝜑 → ((𝐵(,)𝐶) ∪ {𝐶}) = (𝐵(,]𝐶))
2726fveq2d 6910 . . . . 5 (𝜑 → ((int‘((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})))‘((𝐵(,)𝐶) ∪ {𝐶})) = ((int‘((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})))‘(𝐵(,]𝐶)))
2817cnfldtop 24804 . . . . . . . 8 (TopOpen‘ℂfld) ∈ Top
29 ovex 7464 . . . . . . . . . 10 (𝐷(,)𝐶) ∈ V
3029inex2 5318 . . . . . . . . 9 (𝐴 ∩ (𝐷(,)𝐶)) ∈ V
31 snex 5436 . . . . . . . . 9 {𝐶} ∈ V
3230, 31unex 7764 . . . . . . . 8 ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}) ∈ V
33 resttop 23168 . . . . . . . 8 (((TopOpen‘ℂfld) ∈ Top ∧ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}) ∈ V) → ((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})) ∈ Top)
3428, 32, 33mp2an 692 . . . . . . 7 ((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})) ∈ Top
3534a1i 11 . . . . . 6 (𝜑 → ((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})) ∈ Top)
36 pnfxr 11315 . . . . . . . . . . . . . 14 +∞ ∈ ℝ*
3736a1i 11 . . . . . . . . . . . . 13 (𝜑 → +∞ ∈ ℝ*)
3819xrleidd 13194 . . . . . . . . . . . . 13 (𝜑𝐵𝐵)
3920ltpnfd 13163 . . . . . . . . . . . . 13 (𝜑𝐶 < +∞)
40 iocssioo 13479 . . . . . . . . . . . . 13 (((𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (𝐵𝐵𝐶 < +∞)) → (𝐵(,]𝐶) ⊆ (𝐵(,)+∞))
4119, 37, 38, 39, 40syl22anc 839 . . . . . . . . . . . 12 (𝜑 → (𝐵(,]𝐶) ⊆ (𝐵(,)+∞))
42 simpr 484 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 = 𝐶) → 𝑥 = 𝐶)
43 snidg 4660 . . . . . . . . . . . . . . . . . . 19 (𝐶 ∈ ℝ → 𝐶 ∈ {𝐶})
44 elun2 4183 . . . . . . . . . . . . . . . . . . 19 (𝐶 ∈ {𝐶} → 𝐶 ∈ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))
4520, 43, 443syl 18 . . . . . . . . . . . . . . . . . 18 (𝜑𝐶 ∈ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))
4645adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 = 𝐶) → 𝐶 ∈ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))
4742, 46eqeltrd 2841 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 = 𝐶) → 𝑥 ∈ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))
4847adantlr 715 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (𝐵(,]𝐶)) ∧ 𝑥 = 𝐶) → 𝑥 ∈ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))
49 simpll 767 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (𝐵(,]𝐶)) ∧ ¬ 𝑥 = 𝐶) → 𝜑)
5019adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (𝐵(,]𝐶)) → 𝐵 ∈ ℝ*)
5150adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (𝐵(,]𝐶)) ∧ ¬ 𝑥 = 𝐶) → 𝐵 ∈ ℝ*)
5221adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (𝐵(,]𝐶)) → 𝐶 ∈ ℝ*)
5352adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (𝐵(,]𝐶)) ∧ ¬ 𝑥 = 𝐶) → 𝐶 ∈ ℝ*)
54 iocssre 13467 . . . . . . . . . . . . . . . . . . . 20 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ) → (𝐵(,]𝐶) ⊆ ℝ)
5519, 20, 54syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐵(,]𝐶) ⊆ ℝ)
5655sselda 3983 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (𝐵(,]𝐶)) → 𝑥 ∈ ℝ)
5756adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (𝐵(,]𝐶)) ∧ ¬ 𝑥 = 𝐶) → 𝑥 ∈ ℝ)
58 simpr 484 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (𝐵(,]𝐶)) → 𝑥 ∈ (𝐵(,]𝐶))
59 iocgtlb 45515 . . . . . . . . . . . . . . . . . . 19 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*𝑥 ∈ (𝐵(,]𝐶)) → 𝐵 < 𝑥)
6050, 52, 58, 59syl3anc 1373 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (𝐵(,]𝐶)) → 𝐵 < 𝑥)
6160adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (𝐵(,]𝐶)) ∧ ¬ 𝑥 = 𝐶) → 𝐵 < 𝑥)
6220ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (𝐵(,]𝐶)) ∧ ¬ 𝑥 = 𝐶) → 𝐶 ∈ ℝ)
63 iocleub 45516 . . . . . . . . . . . . . . . . . . . 20 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*𝑥 ∈ (𝐵(,]𝐶)) → 𝑥𝐶)
6450, 52, 58, 63syl3anc 1373 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (𝐵(,]𝐶)) → 𝑥𝐶)
6564adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (𝐵(,]𝐶)) ∧ ¬ 𝑥 = 𝐶) → 𝑥𝐶)
66 neqne 2948 . . . . . . . . . . . . . . . . . . . 20 𝑥 = 𝐶𝑥𝐶)
6766adantl 481 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ (𝐵(,]𝐶)) ∧ ¬ 𝑥 = 𝐶) → 𝑥𝐶)
6867necomd 2996 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (𝐵(,]𝐶)) ∧ ¬ 𝑥 = 𝐶) → 𝐶𝑥)
6957, 62, 65, 68leneltd 11415 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (𝐵(,]𝐶)) ∧ ¬ 𝑥 = 𝐶) → 𝑥 < 𝐶)
7051, 53, 57, 61, 69eliood 45511 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (𝐵(,]𝐶)) ∧ ¬ 𝑥 = 𝐶) → 𝑥 ∈ (𝐵(,)𝐶))
7112sselda 3983 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝐵(,)𝐶)) → 𝑥 ∈ (𝐴 ∩ (𝐷(,)𝐶)))
72 elun1 4182 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (𝐴 ∩ (𝐷(,)𝐶)) → 𝑥 ∈ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))
7371, 72syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐵(,)𝐶)) → 𝑥 ∈ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))
7449, 70, 73syl2anc 584 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (𝐵(,]𝐶)) ∧ ¬ 𝑥 = 𝐶) → 𝑥 ∈ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))
7548, 74pm2.61dan 813 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐵(,]𝐶)) → 𝑥 ∈ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))
7675ralrimiva 3146 . . . . . . . . . . . . 13 (𝜑 → ∀𝑥 ∈ (𝐵(,]𝐶)𝑥 ∈ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))
77 dfss3 3972 . . . . . . . . . . . . 13 ((𝐵(,]𝐶) ⊆ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}) ↔ ∀𝑥 ∈ (𝐵(,]𝐶)𝑥 ∈ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))
7876, 77sylibr 234 . . . . . . . . . . . 12 (𝜑 → (𝐵(,]𝐶) ⊆ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))
7941, 78ssind 4241 . . . . . . . . . . 11 (𝜑 → (𝐵(,]𝐶) ⊆ ((𝐵(,)+∞) ∩ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})))
8079sseld 3982 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (𝐵(,]𝐶) → 𝑥 ∈ ((𝐵(,)+∞) ∩ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))))
8124adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑥 = 𝐶) → 𝐶 ∈ (𝐵(,]𝐶))
8242, 81eqeltrd 2841 . . . . . . . . . . . . 13 ((𝜑𝑥 = 𝐶) → 𝑥 ∈ (𝐵(,]𝐶))
8382adantlr 715 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ((𝐵(,)+∞) ∩ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))) ∧ 𝑥 = 𝐶) → 𝑥 ∈ (𝐵(,]𝐶))
84 ioossioc 45505 . . . . . . . . . . . . 13 (𝐵(,)𝐶) ⊆ (𝐵(,]𝐶)
8519ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ((𝐵(,)+∞) ∩ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))) ∧ ¬ 𝑥 = 𝐶) → 𝐵 ∈ ℝ*)
8621ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ((𝐵(,)+∞) ∩ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))) ∧ ¬ 𝑥 = 𝐶) → 𝐶 ∈ ℝ*)
87 elinel1 4201 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ((𝐵(,)+∞) ∩ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})) → 𝑥 ∈ (𝐵(,)+∞))
8887elioored 45562 . . . . . . . . . . . . . . 15 (𝑥 ∈ ((𝐵(,)+∞) ∩ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})) → 𝑥 ∈ ℝ)
8988ad2antlr 727 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ((𝐵(,)+∞) ∩ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))) ∧ ¬ 𝑥 = 𝐶) → 𝑥 ∈ ℝ)
9036a1i 11 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ((𝐵(,)+∞) ∩ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))) ∧ ¬ 𝑥 = 𝐶) → +∞ ∈ ℝ*)
9187ad2antlr 727 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ((𝐵(,)+∞) ∩ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))) ∧ ¬ 𝑥 = 𝐶) → 𝑥 ∈ (𝐵(,)+∞))
92 ioogtlb 45508 . . . . . . . . . . . . . . 15 ((𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑥 ∈ (𝐵(,)+∞)) → 𝐵 < 𝑥)
9385, 90, 91, 92syl3anc 1373 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ((𝐵(,)+∞) ∩ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))) ∧ ¬ 𝑥 = 𝐶) → 𝐵 < 𝑥)
941ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ((𝐵(,)+∞) ∩ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))) ∧ ¬ 𝑥 = 𝐶) → 𝐷 ∈ ℝ*)
95 elinel2 4202 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ((𝐵(,)+∞) ∩ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})) → 𝑥 ∈ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))
96 id 22 . . . . . . . . . . . . . . . . . . 19 𝑥 = 𝐶 → ¬ 𝑥 = 𝐶)
97 velsn 4642 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ {𝐶} ↔ 𝑥 = 𝐶)
9896, 97sylnibr 329 . . . . . . . . . . . . . . . . . 18 𝑥 = 𝐶 → ¬ 𝑥 ∈ {𝐶})
99 elunnel2 4155 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}) ∧ ¬ 𝑥 ∈ {𝐶}) → 𝑥 ∈ (𝐴 ∩ (𝐷(,)𝐶)))
10095, 98, 99syl2an 596 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ((𝐵(,)+∞) ∩ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})) ∧ ¬ 𝑥 = 𝐶) → 𝑥 ∈ (𝐴 ∩ (𝐷(,)𝐶)))
10113, 100sselid 3981 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ((𝐵(,)+∞) ∩ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})) ∧ ¬ 𝑥 = 𝐶) → 𝑥 ∈ (𝐷(,)𝐶))
102101adantll 714 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ((𝐵(,)+∞) ∩ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))) ∧ ¬ 𝑥 = 𝐶) → 𝑥 ∈ (𝐷(,)𝐶))
103 iooltub 45523 . . . . . . . . . . . . . . 15 ((𝐷 ∈ ℝ*𝐶 ∈ ℝ*𝑥 ∈ (𝐷(,)𝐶)) → 𝑥 < 𝐶)
10494, 86, 102, 103syl3anc 1373 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ((𝐵(,)+∞) ∩ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))) ∧ ¬ 𝑥 = 𝐶) → 𝑥 < 𝐶)
10585, 86, 89, 93, 104eliood 45511 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ((𝐵(,)+∞) ∩ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))) ∧ ¬ 𝑥 = 𝐶) → 𝑥 ∈ (𝐵(,)𝐶))
10684, 105sselid 3981 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ((𝐵(,)+∞) ∩ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))) ∧ ¬ 𝑥 = 𝐶) → 𝑥 ∈ (𝐵(,]𝐶))
10783, 106pm2.61dan 813 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ((𝐵(,)+∞) ∩ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))) → 𝑥 ∈ (𝐵(,]𝐶))
108107ex 412 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ ((𝐵(,)+∞) ∩ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})) → 𝑥 ∈ (𝐵(,]𝐶)))
10980, 108impbid 212 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (𝐵(,]𝐶) ↔ 𝑥 ∈ ((𝐵(,)+∞) ∩ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))))
110109eqrdv 2735 . . . . . . . 8 (𝜑 → (𝐵(,]𝐶) = ((𝐵(,)+∞) ∩ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})))
111 retop 24782 . . . . . . . . . 10 (topGen‘ran (,)) ∈ Top
112111a1i 11 . . . . . . . . 9 (𝜑 → (topGen‘ran (,)) ∈ Top)
11332a1i 11 . . . . . . . . 9 (𝜑 → ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}) ∈ V)
114 iooretop 24786 . . . . . . . . . 10 (𝐵(,)+∞) ∈ (topGen‘ran (,))
115114a1i 11 . . . . . . . . 9 (𝜑 → (𝐵(,)+∞) ∈ (topGen‘ran (,)))
116 elrestr 17473 . . . . . . . . 9 (((topGen‘ran (,)) ∈ Top ∧ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}) ∈ V ∧ (𝐵(,)+∞) ∈ (topGen‘ran (,))) → ((𝐵(,)+∞) ∩ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})) ∈ ((topGen‘ran (,)) ↾t ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})))
117112, 113, 115, 116syl3anc 1373 . . . . . . . 8 (𝜑 → ((𝐵(,)+∞) ∩ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})) ∈ ((topGen‘ran (,)) ↾t ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})))
118110, 117eqeltrd 2841 . . . . . . 7 (𝜑 → (𝐵(,]𝐶) ∈ ((topGen‘ran (,)) ↾t ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})))
119 tgioo4 24826 . . . . . . . . 9 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
120119oveq1i 7441 . . . . . . . 8 ((topGen‘ran (,)) ↾t ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})) = (((TopOpen‘ℂfld) ↾t ℝ) ↾t ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))
12128a1i 11 . . . . . . . . 9 (𝜑 → (TopOpen‘ℂfld) ∈ Top)
122 ioossre 13448 . . . . . . . . . . . 12 (𝐷(,)𝐶) ⊆ ℝ
12313, 122sstri 3993 . . . . . . . . . . 11 (𝐴 ∩ (𝐷(,)𝐶)) ⊆ ℝ
124123a1i 11 . . . . . . . . . 10 (𝜑 → (𝐴 ∩ (𝐷(,)𝐶)) ⊆ ℝ)
12520snssd 4809 . . . . . . . . . 10 (𝜑 → {𝐶} ⊆ ℝ)
126124, 125unssd 4192 . . . . . . . . 9 (𝜑 → ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}) ⊆ ℝ)
127 reex 11246 . . . . . . . . . 10 ℝ ∈ V
128127a1i 11 . . . . . . . . 9 (𝜑 → ℝ ∈ V)
129 restabs 23173 . . . . . . . . 9 (((TopOpen‘ℂfld) ∈ Top ∧ ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}) ⊆ ℝ ∧ ℝ ∈ V) → (((TopOpen‘ℂfld) ↾t ℝ) ↾t ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})) = ((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})))
130121, 126, 128, 129syl3anc 1373 . . . . . . . 8 (𝜑 → (((TopOpen‘ℂfld) ↾t ℝ) ↾t ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})) = ((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})))
131120, 130eqtrid 2789 . . . . . . 7 (𝜑 → ((topGen‘ran (,)) ↾t ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})) = ((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})))
132118, 131eleqtrd 2843 . . . . . 6 (𝜑 → (𝐵(,]𝐶) ∈ ((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})))
133 isopn3i 23090 . . . . . 6 ((((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})) ∈ Top ∧ (𝐵(,]𝐶) ∈ ((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶}))) → ((int‘((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})))‘(𝐵(,]𝐶)) = (𝐵(,]𝐶))
13435, 132, 133syl2anc 584 . . . . 5 (𝜑 → ((int‘((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})))‘(𝐵(,]𝐶)) = (𝐵(,]𝐶))
13527, 134eqtr2d 2778 . . . 4 (𝜑 → (𝐵(,]𝐶) = ((int‘((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})))‘((𝐵(,)𝐶) ∪ {𝐶})))
13624, 135eleqtrd 2843 . . 3 (𝜑𝐶 ∈ ((int‘((TopOpen‘ℂfld) ↾t ((𝐴 ∩ (𝐷(,)𝐶)) ∪ {𝐶})))‘((𝐵(,)𝐶) ∪ {𝐶})))
13710, 12, 16, 17, 18, 136limcres 25921 . 2 (𝜑 → (((𝐹 ↾ (𝐷(,)𝐶)) ↾ (𝐵(,)𝐶)) lim 𝐶) = ((𝐹 ↾ (𝐷(,)𝐶)) lim 𝐶))
1387, 137eqtrd 2777 1 (𝜑 → ((𝐹 ↾ (𝐵(,)𝐶)) lim 𝐶) = ((𝐹 ↾ (𝐷(,)𝐶)) lim 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2108  wne 2940  wral 3061  Vcvv 3480  cun 3949  cin 3950  wss 3951  {csn 4626   class class class wbr 5143  ran crn 5686  cres 5687  wf 6557  cfv 6561  (class class class)co 7431  cc 11153  cr 11154  +∞cpnf 11292  *cxr 11294   < clt 11295  cle 11296  (,)cioo 13387  (,]cioc 13388  t crest 17465  TopOpenctopn 17466  topGenctg 17482  fldccnfld 21364  Topctop 22899  intcnt 23025   lim climc 25897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-map 8868  df-pm 8869  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fi 9451  df-sup 9482  df-inf 9483  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-ioc 13392  df-icc 13394  df-fz 13548  df-seq 14043  df-exp 14103  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-struct 17184  df-slot 17219  df-ndx 17231  df-base 17248  df-plusg 17310  df-mulr 17311  df-starv 17312  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-rest 17467  df-topn 17468  df-topgen 17488  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-cnfld 21365  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-ntr 23028  df-cnp 23236  df-xms 24330  df-ms 24331  df-limc 25901
This theorem is referenced by:  fouriersw  46246
  Copyright terms: Public domain W3C validator