Step | Hyp | Ref
| Expression |
1 | | fourierdlem49.a |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ ℝ) |
2 | | fourierdlem49.b |
. . . . . 6
⊢ (𝜑 → 𝐵 ∈ ℝ) |
3 | | fourierdlem49.altb |
. . . . . 6
⊢ (𝜑 → 𝐴 < 𝐵) |
4 | | fourierdlem49.t |
. . . . . 6
⊢ 𝑇 = (𝐵 − 𝐴) |
5 | | fourierdlem49.e |
. . . . . . 7
⊢ 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + (𝑍‘𝑥))) |
6 | | ovex 7197 |
. . . . . . . . . 10
⊢
((⌊‘((𝐵
− 𝑥) / 𝑇)) · 𝑇) ∈ V |
7 | | fourierdlem49.z |
. . . . . . . . . . 11
⊢ 𝑍 = (𝑥 ∈ ℝ ↦
((⌊‘((𝐵 −
𝑥) / 𝑇)) · 𝑇)) |
8 | 7 | fvmpt2 6780 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℝ ∧
((⌊‘((𝐵 −
𝑥) / 𝑇)) · 𝑇) ∈ V) → (𝑍‘𝑥) = ((⌊‘((𝐵 − 𝑥) / 𝑇)) · 𝑇)) |
9 | 6, 8 | mpan2 691 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℝ → (𝑍‘𝑥) = ((⌊‘((𝐵 − 𝑥) / 𝑇)) · 𝑇)) |
10 | 9 | oveq2d 7180 |
. . . . . . . 8
⊢ (𝑥 ∈ ℝ → (𝑥 + (𝑍‘𝑥)) = (𝑥 + ((⌊‘((𝐵 − 𝑥) / 𝑇)) · 𝑇))) |
11 | 10 | mpteq2ia 5118 |
. . . . . . 7
⊢ (𝑥 ∈ ℝ ↦ (𝑥 + (𝑍‘𝑥))) = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵 − 𝑥) / 𝑇)) · 𝑇))) |
12 | 5, 11 | eqtri 2761 |
. . . . . 6
⊢ 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵 − 𝑥) / 𝑇)) · 𝑇))) |
13 | 1, 2, 3, 4, 12 | fourierdlem4 43178 |
. . . . 5
⊢ (𝜑 → 𝐸:ℝ⟶(𝐴(,]𝐵)) |
14 | | fourierdlem49.x |
. . . . 5
⊢ (𝜑 → 𝑋 ∈ ℝ) |
15 | 13, 14 | ffvelrnd 6856 |
. . . 4
⊢ (𝜑 → (𝐸‘𝑋) ∈ (𝐴(,]𝐵)) |
16 | | simpr 488 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝐸‘𝑋) ∈ (𝐴(,]𝐵)) ∧ (𝐸‘𝑋) ∈ ran 𝑄) → (𝐸‘𝑋) ∈ ran 𝑄) |
17 | | fourierdlem49.q |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑄 ∈ (𝑃‘𝑀)) |
18 | | fourierdlem49.m |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑀 ∈ ℕ) |
19 | | fourierdlem49.p |
. . . . . . . . . . . . . . 15
⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m
(0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝‘𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) |
20 | 19 | fourierdlem2 43176 |
. . . . . . . . . . . . . 14
⊢ (𝑀 ∈ ℕ → (𝑄 ∈ (𝑃‘𝑀) ↔ (𝑄 ∈ (ℝ ↑m
(0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄‘𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1)))))) |
21 | 18, 20 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑄 ∈ (𝑃‘𝑀) ↔ (𝑄 ∈ (ℝ ↑m
(0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄‘𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1)))))) |
22 | 17, 21 | mpbid 235 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑄 ∈ (ℝ ↑m
(0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄‘𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1))))) |
23 | 22 | simpld 498 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑄 ∈ (ℝ ↑m
(0...𝑀))) |
24 | | elmapi 8452 |
. . . . . . . . . . 11
⊢ (𝑄 ∈ (ℝ
↑m (0...𝑀))
→ 𝑄:(0...𝑀)⟶ℝ) |
25 | 23, 24 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑄:(0...𝑀)⟶ℝ) |
26 | | ffn 6498 |
. . . . . . . . . 10
⊢ (𝑄:(0...𝑀)⟶ℝ → 𝑄 Fn (0...𝑀)) |
27 | 25, 26 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑄 Fn (0...𝑀)) |
28 | 27 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝐸‘𝑋) ∈ (𝐴(,]𝐵)) ∧ (𝐸‘𝑋) ∈ ran 𝑄) → 𝑄 Fn (0...𝑀)) |
29 | | fvelrnb 6724 |
. . . . . . . 8
⊢ (𝑄 Fn (0...𝑀) → ((𝐸‘𝑋) ∈ ran 𝑄 ↔ ∃𝑗 ∈ (0...𝑀)(𝑄‘𝑗) = (𝐸‘𝑋))) |
30 | 28, 29 | syl 17 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝐸‘𝑋) ∈ (𝐴(,]𝐵)) ∧ (𝐸‘𝑋) ∈ ran 𝑄) → ((𝐸‘𝑋) ∈ ran 𝑄 ↔ ∃𝑗 ∈ (0...𝑀)(𝑄‘𝑗) = (𝐸‘𝑋))) |
31 | 16, 30 | mpbid 235 |
. . . . . 6
⊢ (((𝜑 ∧ (𝐸‘𝑋) ∈ (𝐴(,]𝐵)) ∧ (𝐸‘𝑋) ∈ ran 𝑄) → ∃𝑗 ∈ (0...𝑀)(𝑄‘𝑗) = (𝐸‘𝑋)) |
32 | | 1zzd 12087 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝐸‘𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → 1 ∈ ℤ) |
33 | | elfzelz 12991 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℤ) |
34 | 33 | ad2antlr 727 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝐸‘𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → 𝑗 ∈ ℤ) |
35 | | 1e0p1 12214 |
. . . . . . . . . . . . . . . . 17
⊢ 1 = (0 +
1) |
36 | 35 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ (𝐸‘𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → 1 = (0 + 1)) |
37 | 34 | zred 12161 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ (𝐸‘𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → 𝑗 ∈ ℝ) |
38 | | elfzle1 12994 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 ∈ (0...𝑀) → 0 ≤ 𝑗) |
39 | 38 | ad2antlr 727 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ (𝐸‘𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → 0 ≤ 𝑗) |
40 | | id 22 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑄‘𝑗) = (𝐸‘𝑋) → (𝑄‘𝑗) = (𝐸‘𝑋)) |
41 | 40 | eqcomd 2744 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑄‘𝑗) = (𝐸‘𝑋) → (𝐸‘𝑋) = (𝑄‘𝑗)) |
42 | 41 | ad2antlr 727 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) ∧ 𝑗 = 0) → (𝐸‘𝑋) = (𝑄‘𝑗)) |
43 | | fveq2 6668 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑗 = 0 → (𝑄‘𝑗) = (𝑄‘0)) |
44 | 43 | adantl 485 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) ∧ 𝑗 = 0) → (𝑄‘𝑗) = (𝑄‘0)) |
45 | 22 | simprld 772 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → ((𝑄‘0) = 𝐴 ∧ (𝑄‘𝑀) = 𝐵)) |
46 | 45 | simpld 498 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → (𝑄‘0) = 𝐴) |
47 | 46 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) ∧ 𝑗 = 0) → (𝑄‘0) = 𝐴) |
48 | 42, 44, 47 | 3eqtrd 2777 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) ∧ 𝑗 = 0) → (𝐸‘𝑋) = 𝐴) |
49 | 48 | adantllr 719 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ (𝐸‘𝑋) ∈ (𝐴(,]𝐵)) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) ∧ 𝑗 = 0) → (𝐸‘𝑋) = 𝐴) |
50 | 49 | adantllr 719 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ (𝐸‘𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) ∧ 𝑗 = 0) → (𝐸‘𝑋) = 𝐴) |
51 | 1 | adantr 484 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ (𝐸‘𝑋) ∈ (𝐴(,]𝐵)) → 𝐴 ∈ ℝ) |
52 | 1 | rexrd 10762 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → 𝐴 ∈
ℝ*) |
53 | 52 | adantr 484 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ (𝐸‘𝑋) ∈ (𝐴(,]𝐵)) → 𝐴 ∈
ℝ*) |
54 | 2 | rexrd 10762 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → 𝐵 ∈
ℝ*) |
55 | 54 | adantr 484 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ (𝐸‘𝑋) ∈ (𝐴(,]𝐵)) → 𝐵 ∈
ℝ*) |
56 | | simpr 488 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ (𝐸‘𝑋) ∈ (𝐴(,]𝐵)) → (𝐸‘𝑋) ∈ (𝐴(,]𝐵)) |
57 | | iocgtlb 42564 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ (𝐸‘𝑋) ∈ (𝐴(,]𝐵)) → 𝐴 < (𝐸‘𝑋)) |
58 | 53, 55, 56, 57 | syl3anc 1372 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ (𝐸‘𝑋) ∈ (𝐴(,]𝐵)) → 𝐴 < (𝐸‘𝑋)) |
59 | 51, 58 | gtned 10846 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ (𝐸‘𝑋) ∈ (𝐴(,]𝐵)) → (𝐸‘𝑋) ≠ 𝐴) |
60 | 59 | neneqd 2939 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (𝐸‘𝑋) ∈ (𝐴(,]𝐵)) → ¬ (𝐸‘𝑋) = 𝐴) |
61 | 60 | ad3antrrr 730 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ (𝐸‘𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) ∧ 𝑗 = 0) → ¬ (𝐸‘𝑋) = 𝐴) |
62 | 50, 61 | pm2.65da 817 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ (𝐸‘𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → ¬ 𝑗 = 0) |
63 | 62 | neqned 2941 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ (𝐸‘𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → 𝑗 ≠ 0) |
64 | 37, 39, 63 | ne0gt0d 10848 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ (𝐸‘𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → 0 < 𝑗) |
65 | | 0zd 12067 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ (𝐸‘𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → 0 ∈ ℤ) |
66 | | zltp1le 12106 |
. . . . . . . . . . . . . . . . . 18
⊢ ((0
∈ ℤ ∧ 𝑗
∈ ℤ) → (0 < 𝑗 ↔ (0 + 1) ≤ 𝑗)) |
67 | 65, 34, 66 | syl2anc 587 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ (𝐸‘𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (0 < 𝑗 ↔ (0 + 1) ≤ 𝑗)) |
68 | 64, 67 | mpbid 235 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ (𝐸‘𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (0 + 1) ≤ 𝑗) |
69 | 36, 68 | eqbrtrd 5049 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝐸‘𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → 1 ≤ 𝑗) |
70 | | eluz2 12323 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 ∈
(ℤ≥‘1) ↔ (1 ∈ ℤ ∧ 𝑗 ∈ ℤ ∧ 1 ≤
𝑗)) |
71 | 32, 34, 69, 70 | syl3anbrc 1344 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝐸‘𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → 𝑗 ∈
(ℤ≥‘1)) |
72 | | nnuz 12356 |
. . . . . . . . . . . . . 14
⊢ ℕ =
(ℤ≥‘1) |
73 | 71, 72 | eleqtrrdi 2844 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝐸‘𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → 𝑗 ∈ ℕ) |
74 | | nnm1nn0 12010 |
. . . . . . . . . . . . 13
⊢ (𝑗 ∈ ℕ → (𝑗 − 1) ∈
ℕ0) |
75 | 73, 74 | syl 17 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝐸‘𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (𝑗 − 1) ∈
ℕ0) |
76 | | nn0uz 12355 |
. . . . . . . . . . . . 13
⊢
ℕ0 = (ℤ≥‘0) |
77 | 76 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝐸‘𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → ℕ0 =
(ℤ≥‘0)) |
78 | 75, 77 | eleqtrd 2835 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝐸‘𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (𝑗 − 1) ∈
(ℤ≥‘0)) |
79 | 18 | nnzd 12160 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑀 ∈ ℤ) |
80 | 79 | ad3antrrr 730 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝐸‘𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → 𝑀 ∈ ℤ) |
81 | | peano2zm 12099 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 ∈ ℤ → (𝑗 − 1) ∈
ℤ) |
82 | 33, 81 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈ (0...𝑀) → (𝑗 − 1) ∈ ℤ) |
83 | 82 | zred 12161 |
. . . . . . . . . . . . 13
⊢ (𝑗 ∈ (0...𝑀) → (𝑗 − 1) ∈ ℝ) |
84 | 33 | zred 12161 |
. . . . . . . . . . . . 13
⊢ (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℝ) |
85 | | elfzel2 12989 |
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈ (0...𝑀) → 𝑀 ∈ ℤ) |
86 | 85 | zred 12161 |
. . . . . . . . . . . . 13
⊢ (𝑗 ∈ (0...𝑀) → 𝑀 ∈ ℝ) |
87 | 84 | ltm1d 11643 |
. . . . . . . . . . . . 13
⊢ (𝑗 ∈ (0...𝑀) → (𝑗 − 1) < 𝑗) |
88 | | elfzle2 12995 |
. . . . . . . . . . . . 13
⊢ (𝑗 ∈ (0...𝑀) → 𝑗 ≤ 𝑀) |
89 | 83, 84, 86, 87, 88 | ltletrd 10871 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ (0...𝑀) → (𝑗 − 1) < 𝑀) |
90 | 89 | ad2antlr 727 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝐸‘𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (𝑗 − 1) < 𝑀) |
91 | | elfzo2 13125 |
. . . . . . . . . . 11
⊢ ((𝑗 − 1) ∈ (0..^𝑀) ↔ ((𝑗 − 1) ∈
(ℤ≥‘0) ∧ 𝑀 ∈ ℤ ∧ (𝑗 − 1) < 𝑀)) |
92 | 78, 80, 90, 91 | syl3anbrc 1344 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝐸‘𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (𝑗 − 1) ∈ (0..^𝑀)) |
93 | 25 | ad3antrrr 730 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝐸‘𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → 𝑄:(0...𝑀)⟶ℝ) |
94 | 34, 81 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝐸‘𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (𝑗 − 1) ∈ ℤ) |
95 | 75 | nn0ge0d 12032 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝐸‘𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → 0 ≤ (𝑗 − 1)) |
96 | 83, 86, 89 | ltled 10859 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 ∈ (0...𝑀) → (𝑗 − 1) ≤ 𝑀) |
97 | 96 | ad2antlr 727 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝐸‘𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (𝑗 − 1) ≤ 𝑀) |
98 | 65, 80, 94, 95, 97 | elfzd 12982 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝐸‘𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (𝑗 − 1) ∈ (0...𝑀)) |
99 | 93, 98 | ffvelrnd 6856 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝐸‘𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (𝑄‘(𝑗 − 1)) ∈ ℝ) |
100 | 99 | rexrd 10762 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝐸‘𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (𝑄‘(𝑗 − 1)) ∈
ℝ*) |
101 | 25 | ffvelrnda 6855 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → (𝑄‘𝑗) ∈ ℝ) |
102 | 101 | rexrd 10762 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → (𝑄‘𝑗) ∈
ℝ*) |
103 | 102 | adantlr 715 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝐸‘𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) → (𝑄‘𝑗) ∈
ℝ*) |
104 | 103 | adantr 484 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝐸‘𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (𝑄‘𝑗) ∈
ℝ*) |
105 | | iocssre 12894 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈ ℝ)
→ (𝐴(,]𝐵) ⊆
ℝ) |
106 | 52, 2, 105 | syl2anc 587 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐴(,]𝐵) ⊆ ℝ) |
107 | 106 | sselda 3875 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝐸‘𝑋) ∈ (𝐴(,]𝐵)) → (𝐸‘𝑋) ∈ ℝ) |
108 | 107 | rexrd 10762 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝐸‘𝑋) ∈ (𝐴(,]𝐵)) → (𝐸‘𝑋) ∈
ℝ*) |
109 | 108 | ad2antrr 726 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝐸‘𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (𝐸‘𝑋) ∈
ℝ*) |
110 | | simplll 775 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝐸‘𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → 𝜑) |
111 | | ovex 7197 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 − 1) ∈
V |
112 | | eleq1 2820 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 = (𝑗 − 1) → (𝑖 ∈ (0..^𝑀) ↔ (𝑗 − 1) ∈ (0..^𝑀))) |
113 | 112 | anbi2d 632 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 = (𝑗 − 1) → ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ↔ (𝜑 ∧ (𝑗 − 1) ∈ (0..^𝑀)))) |
114 | | fveq2 6668 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 = (𝑗 − 1) → (𝑄‘𝑖) = (𝑄‘(𝑗 − 1))) |
115 | | oveq1 7171 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑖 = (𝑗 − 1) → (𝑖 + 1) = ((𝑗 − 1) + 1)) |
116 | 115 | fveq2d 6672 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 = (𝑗 − 1) → (𝑄‘(𝑖 + 1)) = (𝑄‘((𝑗 − 1) + 1))) |
117 | 114, 116 | breq12d 5040 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 = (𝑗 − 1) → ((𝑄‘𝑖) < (𝑄‘(𝑖 + 1)) ↔ (𝑄‘(𝑗 − 1)) < (𝑄‘((𝑗 − 1) + 1)))) |
118 | 113, 117 | imbi12d 348 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 = (𝑗 − 1) → (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) < (𝑄‘(𝑖 + 1))) ↔ ((𝜑 ∧ (𝑗 − 1) ∈ (0..^𝑀)) → (𝑄‘(𝑗 − 1)) < (𝑄‘((𝑗 − 1) + 1))))) |
119 | 22 | simprrd 774 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1))) |
120 | 119 | r19.21bi 3120 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) < (𝑄‘(𝑖 + 1))) |
121 | 111, 118,
120 | vtocl 3463 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑗 − 1) ∈ (0..^𝑀)) → (𝑄‘(𝑗 − 1)) < (𝑄‘((𝑗 − 1) + 1))) |
122 | 110, 92, 121 | syl2anc 587 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝐸‘𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (𝑄‘(𝑗 − 1)) < (𝑄‘((𝑗 − 1) + 1))) |
123 | 33 | zcnd 12162 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℂ) |
124 | | 1cnd 10707 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 ∈ (0...𝑀) → 1 ∈ ℂ) |
125 | 123, 124 | npcand 11072 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 ∈ (0...𝑀) → ((𝑗 − 1) + 1) = 𝑗) |
126 | 125 | eqcomd 2744 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 ∈ (0...𝑀) → 𝑗 = ((𝑗 − 1) + 1)) |
127 | 126 | fveq2d 6672 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 ∈ (0...𝑀) → (𝑄‘𝑗) = (𝑄‘((𝑗 − 1) + 1))) |
128 | 127 | eqcomd 2744 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 ∈ (0...𝑀) → (𝑄‘((𝑗 − 1) + 1)) = (𝑄‘𝑗)) |
129 | 128 | ad2antlr 727 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝐸‘𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (𝑄‘((𝑗 − 1) + 1)) = (𝑄‘𝑗)) |
130 | 122, 129 | breqtrd 5053 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝐸‘𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (𝑄‘(𝑗 − 1)) < (𝑄‘𝑗)) |
131 | | simpr 488 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝐸‘𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (𝑄‘𝑗) = (𝐸‘𝑋)) |
132 | 130, 131 | breqtrd 5053 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝐸‘𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (𝑄‘(𝑗 − 1)) < (𝐸‘𝑋)) |
133 | 106, 15 | sseldd 3876 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝐸‘𝑋) ∈ ℝ) |
134 | 133 | leidd 11277 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐸‘𝑋) ≤ (𝐸‘𝑋)) |
135 | 134 | ad2antrr 726 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (𝐸‘𝑋) ≤ (𝐸‘𝑋)) |
136 | 41 | adantl 485 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (𝐸‘𝑋) = (𝑄‘𝑗)) |
137 | 135, 136 | breqtrd 5053 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (𝐸‘𝑋) ≤ (𝑄‘𝑗)) |
138 | 137 | adantllr 719 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝐸‘𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (𝐸‘𝑋) ≤ (𝑄‘𝑗)) |
139 | 100, 104,
109, 132, 138 | eliocd 42569 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝐸‘𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (𝐸‘𝑋) ∈ ((𝑄‘(𝑗 − 1))(,](𝑄‘𝑗))) |
140 | 127 | oveq2d 7180 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ (0...𝑀) → ((𝑄‘(𝑗 − 1))(,](𝑄‘𝑗)) = ((𝑄‘(𝑗 − 1))(,](𝑄‘((𝑗 − 1) + 1)))) |
141 | 140 | ad2antlr 727 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝐸‘𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → ((𝑄‘(𝑗 − 1))(,](𝑄‘𝑗)) = ((𝑄‘(𝑗 − 1))(,](𝑄‘((𝑗 − 1) + 1)))) |
142 | 139, 141 | eleqtrd 2835 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝐸‘𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (𝐸‘𝑋) ∈ ((𝑄‘(𝑗 − 1))(,](𝑄‘((𝑗 − 1) + 1)))) |
143 | 114, 116 | oveq12d 7182 |
. . . . . . . . . . . 12
⊢ (𝑖 = (𝑗 − 1) → ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1))) = ((𝑄‘(𝑗 − 1))(,](𝑄‘((𝑗 − 1) + 1)))) |
144 | 143 | eleq2d 2818 |
. . . . . . . . . . 11
⊢ (𝑖 = (𝑗 − 1) → ((𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1))) ↔ (𝐸‘𝑋) ∈ ((𝑄‘(𝑗 − 1))(,](𝑄‘((𝑗 − 1) + 1))))) |
145 | 144 | rspcev 3524 |
. . . . . . . . . 10
⊢ (((𝑗 − 1) ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘(𝑗 − 1))(,](𝑄‘((𝑗 − 1) + 1)))) → ∃𝑖 ∈ (0..^𝑀)(𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) |
146 | 92, 142, 145 | syl2anc 587 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝐸‘𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → ∃𝑖 ∈ (0..^𝑀)(𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) |
147 | 146 | ex 416 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝐸‘𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) → ((𝑄‘𝑗) = (𝐸‘𝑋) → ∃𝑖 ∈ (0..^𝑀)(𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1))))) |
148 | 147 | adantlr 715 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝐸‘𝑋) ∈ (𝐴(,]𝐵)) ∧ (𝐸‘𝑋) ∈ ran 𝑄) ∧ 𝑗 ∈ (0...𝑀)) → ((𝑄‘𝑗) = (𝐸‘𝑋) → ∃𝑖 ∈ (0..^𝑀)(𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1))))) |
149 | 148 | rexlimdva 3193 |
. . . . . 6
⊢ (((𝜑 ∧ (𝐸‘𝑋) ∈ (𝐴(,]𝐵)) ∧ (𝐸‘𝑋) ∈ ran 𝑄) → (∃𝑗 ∈ (0...𝑀)(𝑄‘𝑗) = (𝐸‘𝑋) → ∃𝑖 ∈ (0..^𝑀)(𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1))))) |
150 | 31, 149 | mpd 15 |
. . . . 5
⊢ (((𝜑 ∧ (𝐸‘𝑋) ∈ (𝐴(,]𝐵)) ∧ (𝐸‘𝑋) ∈ ran 𝑄) → ∃𝑖 ∈ (0..^𝑀)(𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) |
151 | 18 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝐸‘𝑋) ∈ (𝐴(,]𝐵)) ∧ ¬ (𝐸‘𝑋) ∈ ran 𝑄) → 𝑀 ∈ ℕ) |
152 | 25 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝐸‘𝑋) ∈ (𝐴(,]𝐵)) ∧ ¬ (𝐸‘𝑋) ∈ ran 𝑄) → 𝑄:(0...𝑀)⟶ℝ) |
153 | | iocssicc 12904 |
. . . . . . . . . 10
⊢ (𝐴(,]𝐵) ⊆ (𝐴[,]𝐵) |
154 | 46 | eqcomd 2744 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴 = (𝑄‘0)) |
155 | 45 | simprd 499 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑄‘𝑀) = 𝐵) |
156 | 155 | eqcomd 2744 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐵 = (𝑄‘𝑀)) |
157 | 154, 156 | oveq12d 7182 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐴[,]𝐵) = ((𝑄‘0)[,](𝑄‘𝑀))) |
158 | 153, 157 | sseqtrid 3927 |
. . . . . . . . 9
⊢ (𝜑 → (𝐴(,]𝐵) ⊆ ((𝑄‘0)[,](𝑄‘𝑀))) |
159 | 158 | sselda 3875 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝐸‘𝑋) ∈ (𝐴(,]𝐵)) → (𝐸‘𝑋) ∈ ((𝑄‘0)[,](𝑄‘𝑀))) |
160 | 159 | adantr 484 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝐸‘𝑋) ∈ (𝐴(,]𝐵)) ∧ ¬ (𝐸‘𝑋) ∈ ran 𝑄) → (𝐸‘𝑋) ∈ ((𝑄‘0)[,](𝑄‘𝑀))) |
161 | | simpr 488 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝐸‘𝑋) ∈ (𝐴(,]𝐵)) ∧ ¬ (𝐸‘𝑋) ∈ ran 𝑄) → ¬ (𝐸‘𝑋) ∈ ran 𝑄) |
162 | | fveq2 6668 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑗 → (𝑄‘𝑘) = (𝑄‘𝑗)) |
163 | 162 | breq1d 5037 |
. . . . . . . . 9
⊢ (𝑘 = 𝑗 → ((𝑄‘𝑘) < (𝐸‘𝑋) ↔ (𝑄‘𝑗) < (𝐸‘𝑋))) |
164 | 163 | cbvrabv 3392 |
. . . . . . . 8
⊢ {𝑘 ∈ (0..^𝑀) ∣ (𝑄‘𝑘) < (𝐸‘𝑋)} = {𝑗 ∈ (0..^𝑀) ∣ (𝑄‘𝑗) < (𝐸‘𝑋)} |
165 | 164 | supeq1i 8977 |
. . . . . . 7
⊢
sup({𝑘 ∈
(0..^𝑀) ∣ (𝑄‘𝑘) < (𝐸‘𝑋)}, ℝ, < ) = sup({𝑗 ∈ (0..^𝑀) ∣ (𝑄‘𝑗) < (𝐸‘𝑋)}, ℝ, < ) |
166 | 151, 152,
160, 161, 165 | fourierdlem25 43199 |
. . . . . 6
⊢ (((𝜑 ∧ (𝐸‘𝑋) ∈ (𝐴(,]𝐵)) ∧ ¬ (𝐸‘𝑋) ∈ ran 𝑄) → ∃𝑖 ∈ (0..^𝑀)(𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |
167 | | ioossioc 42554 |
. . . . . . . . 9
⊢ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1))) |
168 | 167 | sseli 3871 |
. . . . . . . 8
⊢ ((𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) → (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) |
169 | 168 | a1i 11 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝐸‘𝑋) ∈ (𝐴(,]𝐵)) ∧ ¬ (𝐸‘𝑋) ∈ ran 𝑄) ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) → (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1))))) |
170 | 169 | reximdva 3183 |
. . . . . 6
⊢ (((𝜑 ∧ (𝐸‘𝑋) ∈ (𝐴(,]𝐵)) ∧ ¬ (𝐸‘𝑋) ∈ ran 𝑄) → (∃𝑖 ∈ (0..^𝑀)(𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) → ∃𝑖 ∈ (0..^𝑀)(𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1))))) |
171 | 166, 170 | mpd 15 |
. . . . 5
⊢ (((𝜑 ∧ (𝐸‘𝑋) ∈ (𝐴(,]𝐵)) ∧ ¬ (𝐸‘𝑋) ∈ ran 𝑄) → ∃𝑖 ∈ (0..^𝑀)(𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) |
172 | 150, 171 | pm2.61dan 813 |
. . . 4
⊢ ((𝜑 ∧ (𝐸‘𝑋) ∈ (𝐴(,]𝐵)) → ∃𝑖 ∈ (0..^𝑀)(𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) |
173 | 15, 172 | mpdan 687 |
. . 3
⊢ (𝜑 → ∃𝑖 ∈ (0..^𝑀)(𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) |
174 | | fourierdlem49.f |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹:𝐷⟶ℝ) |
175 | | frel 6503 |
. . . . . . . . . . 11
⊢ (𝐹:𝐷⟶ℝ → Rel 𝐹) |
176 | 174, 175 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → Rel 𝐹) |
177 | | resindm 5868 |
. . . . . . . . . . 11
⊢ (Rel
𝐹 → (𝐹 ↾ ((-∞(,)(𝐸‘𝑋)) ∩ dom 𝐹)) = (𝐹 ↾ (-∞(,)(𝐸‘𝑋)))) |
178 | 177 | eqcomd 2744 |
. . . . . . . . . 10
⊢ (Rel
𝐹 → (𝐹 ↾ (-∞(,)(𝐸‘𝑋))) = (𝐹 ↾ ((-∞(,)(𝐸‘𝑋)) ∩ dom 𝐹))) |
179 | 176, 178 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (𝐹 ↾ (-∞(,)(𝐸‘𝑋))) = (𝐹 ↾ ((-∞(,)(𝐸‘𝑋)) ∩ dom 𝐹))) |
180 | | fdm 6507 |
. . . . . . . . . . . 12
⊢ (𝐹:𝐷⟶ℝ → dom 𝐹 = 𝐷) |
181 | 174, 180 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → dom 𝐹 = 𝐷) |
182 | 181 | ineq2d 4101 |
. . . . . . . . . 10
⊢ (𝜑 → ((-∞(,)(𝐸‘𝑋)) ∩ dom 𝐹) = ((-∞(,)(𝐸‘𝑋)) ∩ 𝐷)) |
183 | 182 | reseq2d 5819 |
. . . . . . . . 9
⊢ (𝜑 → (𝐹 ↾ ((-∞(,)(𝐸‘𝑋)) ∩ dom 𝐹)) = (𝐹 ↾ ((-∞(,)(𝐸‘𝑋)) ∩ 𝐷))) |
184 | 179, 183 | eqtrd 2773 |
. . . . . . . 8
⊢ (𝜑 → (𝐹 ↾ (-∞(,)(𝐸‘𝑋))) = (𝐹 ↾ ((-∞(,)(𝐸‘𝑋)) ∩ 𝐷))) |
185 | 184 | 3ad2ant1 1134 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝐹 ↾ (-∞(,)(𝐸‘𝑋))) = (𝐹 ↾ ((-∞(,)(𝐸‘𝑋)) ∩ 𝐷))) |
186 | 185 | oveq1d 7179 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝐹 ↾ (-∞(,)(𝐸‘𝑋))) limℂ (𝐸‘𝑋)) = ((𝐹 ↾ ((-∞(,)(𝐸‘𝑋)) ∩ 𝐷)) limℂ (𝐸‘𝑋))) |
187 | | ax-resscn 10665 |
. . . . . . . . . . 11
⊢ ℝ
⊆ ℂ |
188 | 187 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → ℝ ⊆
ℂ) |
189 | 174, 188 | fssd 6516 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹:𝐷⟶ℂ) |
190 | 189 | 3ad2ant1 1134 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → 𝐹:𝐷⟶ℂ) |
191 | | inss2 4118 |
. . . . . . . . 9
⊢
((-∞(,)(𝐸‘𝑋)) ∩ 𝐷) ⊆ 𝐷 |
192 | 191 | a1i 11 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → ((-∞(,)(𝐸‘𝑋)) ∩ 𝐷) ⊆ 𝐷) |
193 | 190, 192 | fssresd 6539 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝐹 ↾ ((-∞(,)(𝐸‘𝑋)) ∩ 𝐷)):((-∞(,)(𝐸‘𝑋)) ∩ 𝐷)⟶ℂ) |
194 | | mnfxr 10769 |
. . . . . . . . . 10
⊢ -∞
∈ ℝ* |
195 | 194 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → -∞ ∈
ℝ*) |
196 | 25 | adantr 484 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶ℝ) |
197 | | elfzofz 13137 |
. . . . . . . . . . . . . 14
⊢ (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ (0...𝑀)) |
198 | 197 | adantl 485 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0...𝑀)) |
199 | 196, 198 | ffvelrnd 6856 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) ∈ ℝ) |
200 | 199 | rexrd 10762 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) ∈
ℝ*) |
201 | 199 | mnfltd 12595 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → -∞ < (𝑄‘𝑖)) |
202 | 195, 200,
201 | xrltled 12619 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → -∞ ≤ (𝑄‘𝑖)) |
203 | | iooss1 12849 |
. . . . . . . . . 10
⊢
((-∞ ∈ ℝ* ∧ -∞ ≤ (𝑄‘𝑖)) → ((𝑄‘𝑖)(,)(𝐸‘𝑋)) ⊆ (-∞(,)(𝐸‘𝑋))) |
204 | 194, 202,
203 | sylancr 590 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘𝑖)(,)(𝐸‘𝑋)) ⊆ (-∞(,)(𝐸‘𝑋))) |
205 | 204 | 3adant3 1133 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝑄‘𝑖)(,)(𝐸‘𝑋)) ⊆ (-∞(,)(𝐸‘𝑋))) |
206 | | fzofzp1 13218 |
. . . . . . . . . . . . . 14
⊢ (𝑖 ∈ (0..^𝑀) → (𝑖 + 1) ∈ (0...𝑀)) |
207 | 206 | adantl 485 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑖 + 1) ∈ (0...𝑀)) |
208 | 196, 207 | ffvelrnd 6856 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ℝ) |
209 | 208 | 3adant3 1133 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝑄‘(𝑖 + 1)) ∈ ℝ) |
210 | 209 | rexrd 10762 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝑄‘(𝑖 + 1)) ∈
ℝ*) |
211 | 199 | 3adant3 1133 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝑄‘𝑖) ∈ ℝ) |
212 | 211 | rexrd 10762 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝑄‘𝑖) ∈
ℝ*) |
213 | | simp3 1139 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) |
214 | | iocleub 42565 |
. . . . . . . . . . 11
⊢ (((𝑄‘𝑖) ∈ ℝ* ∧ (𝑄‘(𝑖 + 1)) ∈ ℝ* ∧
(𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝐸‘𝑋) ≤ (𝑄‘(𝑖 + 1))) |
215 | 212, 210,
213, 214 | syl3anc 1372 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝐸‘𝑋) ≤ (𝑄‘(𝑖 + 1))) |
216 | | iooss2 12850 |
. . . . . . . . . 10
⊢ (((𝑄‘(𝑖 + 1)) ∈ ℝ* ∧
(𝐸‘𝑋) ≤ (𝑄‘(𝑖 + 1))) → ((𝑄‘𝑖)(,)(𝐸‘𝑋)) ⊆ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |
217 | 210, 215,
216 | syl2anc 587 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝑄‘𝑖)(,)(𝐸‘𝑋)) ⊆ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |
218 | | fourierdlem49.cn |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) |
219 | | cncff 23638 |
. . . . . . . . . . . . 13
⊢ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ) |
220 | | fdm 6507 |
. . . . . . . . . . . . 13
⊢ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ → dom (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |
221 | 218, 219,
220 | 3syl 18 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → dom (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |
222 | | ssdmres 5842 |
. . . . . . . . . . . 12
⊢ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ dom 𝐹 ↔ dom (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |
223 | 221, 222 | sylibr 237 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ dom 𝐹) |
224 | 181 | adantr 484 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → dom 𝐹 = 𝐷) |
225 | 223, 224 | sseqtrd 3915 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ 𝐷) |
226 | 225 | 3adant3 1133 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ 𝐷) |
227 | 217, 226 | sstrd 3885 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝑄‘𝑖)(,)(𝐸‘𝑋)) ⊆ 𝐷) |
228 | 205, 227 | ssind 4121 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝑄‘𝑖)(,)(𝐸‘𝑋)) ⊆ ((-∞(,)(𝐸‘𝑋)) ∩ 𝐷)) |
229 | | fourierdlem49.d |
. . . . . . . . . 10
⊢ (𝜑 → 𝐷 ⊆ ℝ) |
230 | 229, 188 | sstrd 3885 |
. . . . . . . . 9
⊢ (𝜑 → 𝐷 ⊆ ℂ) |
231 | 230 | 3ad2ant1 1134 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → 𝐷 ⊆ ℂ) |
232 | 191, 231 | sstrid 3886 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → ((-∞(,)(𝐸‘𝑋)) ∩ 𝐷) ⊆ ℂ) |
233 | | eqid 2738 |
. . . . . . 7
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) |
234 | | eqid 2738 |
. . . . . . 7
⊢
((TopOpen‘ℂfld) ↾t
(((-∞(,)(𝐸‘𝑋)) ∩ 𝐷) ∪ {(𝐸‘𝑋)})) =
((TopOpen‘ℂfld) ↾t (((-∞(,)(𝐸‘𝑋)) ∩ 𝐷) ∪ {(𝐸‘𝑋)})) |
235 | 133 | 3ad2ant1 1134 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝐸‘𝑋) ∈ ℝ) |
236 | 235 | rexrd 10762 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝐸‘𝑋) ∈
ℝ*) |
237 | | iocgtlb 42564 |
. . . . . . . . . 10
⊢ (((𝑄‘𝑖) ∈ ℝ* ∧ (𝑄‘(𝑖 + 1)) ∈ ℝ* ∧
(𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝑄‘𝑖) < (𝐸‘𝑋)) |
238 | 212, 210,
213, 237 | syl3anc 1372 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝑄‘𝑖) < (𝐸‘𝑋)) |
239 | 235 | leidd 11277 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝐸‘𝑋) ≤ (𝐸‘𝑋)) |
240 | 212, 236,
236, 238, 239 | eliocd 42569 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝐸‘𝑋))) |
241 | | ioounsn 12944 |
. . . . . . . . . . 11
⊢ (((𝑄‘𝑖) ∈ ℝ* ∧ (𝐸‘𝑋) ∈ ℝ* ∧ (𝑄‘𝑖) < (𝐸‘𝑋)) → (((𝑄‘𝑖)(,)(𝐸‘𝑋)) ∪ {(𝐸‘𝑋)}) = ((𝑄‘𝑖)(,](𝐸‘𝑋))) |
242 | 212, 236,
238, 241 | syl3anc 1372 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → (((𝑄‘𝑖)(,)(𝐸‘𝑋)) ∪ {(𝐸‘𝑋)}) = ((𝑄‘𝑖)(,](𝐸‘𝑋))) |
243 | 242 | fveq2d 6672 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) →
((int‘((TopOpen‘ℂfld) ↾t
(((-∞(,)(𝐸‘𝑋)) ∩ 𝐷) ∪ {(𝐸‘𝑋)})))‘(((𝑄‘𝑖)(,)(𝐸‘𝑋)) ∪ {(𝐸‘𝑋)})) =
((int‘((TopOpen‘ℂfld) ↾t
(((-∞(,)(𝐸‘𝑋)) ∩ 𝐷) ∪ {(𝐸‘𝑋)})))‘((𝑄‘𝑖)(,](𝐸‘𝑋)))) |
244 | 233 | cnfldtop 23529 |
. . . . . . . . . . 11
⊢
(TopOpen‘ℂfld) ∈ Top |
245 | | ovex 7197 |
. . . . . . . . . . . . 13
⊢
(-∞(,)(𝐸‘𝑋)) ∈ V |
246 | 245 | inex1 5182 |
. . . . . . . . . . . 12
⊢
((-∞(,)(𝐸‘𝑋)) ∩ 𝐷) ∈ V |
247 | | snex 5295 |
. . . . . . . . . . . 12
⊢ {(𝐸‘𝑋)} ∈ V |
248 | 246, 247 | unex 7481 |
. . . . . . . . . . 11
⊢
(((-∞(,)(𝐸‘𝑋)) ∩ 𝐷) ∪ {(𝐸‘𝑋)}) ∈ V |
249 | | resttop 21904 |
. . . . . . . . . . 11
⊢
(((TopOpen‘ℂfld) ∈ Top ∧
(((-∞(,)(𝐸‘𝑋)) ∩ 𝐷) ∪ {(𝐸‘𝑋)}) ∈ V) →
((TopOpen‘ℂfld) ↾t (((-∞(,)(𝐸‘𝑋)) ∩ 𝐷) ∪ {(𝐸‘𝑋)})) ∈ Top) |
250 | 244, 248,
249 | mp2an 692 |
. . . . . . . . . 10
⊢
((TopOpen‘ℂfld) ↾t
(((-∞(,)(𝐸‘𝑋)) ∩ 𝐷) ∪ {(𝐸‘𝑋)})) ∈ Top |
251 | | retop 23507 |
. . . . . . . . . . . . 13
⊢
(topGen‘ran (,)) ∈ Top |
252 | 251 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → (topGen‘ran (,)) ∈
Top) |
253 | 248 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → (((-∞(,)(𝐸‘𝑋)) ∩ 𝐷) ∪ {(𝐸‘𝑋)}) ∈ V) |
254 | | iooretop 23511 |
. . . . . . . . . . . . 13
⊢ ((𝑄‘𝑖)(,)+∞) ∈ (topGen‘ran
(,)) |
255 | 254 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝑄‘𝑖)(,)+∞) ∈ (topGen‘ran
(,))) |
256 | | elrestr 16798 |
. . . . . . . . . . . 12
⊢
(((topGen‘ran (,)) ∈ Top ∧ (((-∞(,)(𝐸‘𝑋)) ∩ 𝐷) ∪ {(𝐸‘𝑋)}) ∈ V ∧ ((𝑄‘𝑖)(,)+∞) ∈ (topGen‘ran (,)))
→ (((𝑄‘𝑖)(,)+∞) ∩
(((-∞(,)(𝐸‘𝑋)) ∩ 𝐷) ∪ {(𝐸‘𝑋)})) ∈ ((topGen‘ran (,))
↾t (((-∞(,)(𝐸‘𝑋)) ∩ 𝐷) ∪ {(𝐸‘𝑋)}))) |
257 | 252, 253,
255, 256 | syl3anc 1372 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → (((𝑄‘𝑖)(,)+∞) ∩ (((-∞(,)(𝐸‘𝑋)) ∩ 𝐷) ∪ {(𝐸‘𝑋)})) ∈ ((topGen‘ran (,))
↾t (((-∞(,)(𝐸‘𝑋)) ∩ 𝐷) ∪ {(𝐸‘𝑋)}))) |
258 | | simpr 488 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 = (𝐸‘𝑋)) → 𝑥 = (𝐸‘𝑋)) |
259 | | pnfxr 10766 |
. . . . . . . . . . . . . . . . . . . 20
⊢ +∞
∈ ℝ* |
260 | 259 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → +∞ ∈
ℝ*) |
261 | 235 | ltpnfd 12592 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝐸‘𝑋) < +∞) |
262 | 212, 260,
235, 238, 261 | eliood 42560 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,)+∞)) |
263 | | snidg 4547 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐸‘𝑋) ∈ ℝ → (𝐸‘𝑋) ∈ {(𝐸‘𝑋)}) |
264 | | elun2 4065 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐸‘𝑋) ∈ {(𝐸‘𝑋)} → (𝐸‘𝑋) ∈ (((-∞(,)(𝐸‘𝑋)) ∩ 𝐷) ∪ {(𝐸‘𝑋)})) |
265 | 263, 264 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐸‘𝑋) ∈ ℝ → (𝐸‘𝑋) ∈ (((-∞(,)(𝐸‘𝑋)) ∩ 𝐷) ∪ {(𝐸‘𝑋)})) |
266 | 133, 265 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝐸‘𝑋) ∈ (((-∞(,)(𝐸‘𝑋)) ∩ 𝐷) ∪ {(𝐸‘𝑋)})) |
267 | 266 | 3ad2ant1 1134 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝐸‘𝑋) ∈ (((-∞(,)(𝐸‘𝑋)) ∩ 𝐷) ∪ {(𝐸‘𝑋)})) |
268 | 262, 267 | elind 4082 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝐸‘𝑋) ∈ (((𝑄‘𝑖)(,)+∞) ∩ (((-∞(,)(𝐸‘𝑋)) ∩ 𝐷) ∪ {(𝐸‘𝑋)}))) |
269 | 268 | adantr 484 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 = (𝐸‘𝑋)) → (𝐸‘𝑋) ∈ (((𝑄‘𝑖)(,)+∞) ∩ (((-∞(,)(𝐸‘𝑋)) ∩ 𝐷) ∪ {(𝐸‘𝑋)}))) |
270 | 258, 269 | eqeltrd 2833 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 = (𝐸‘𝑋)) → 𝑥 ∈ (((𝑄‘𝑖)(,)+∞) ∩ (((-∞(,)(𝐸‘𝑋)) ∩ 𝐷) ∪ {(𝐸‘𝑋)}))) |
271 | 270 | adantlr 715 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄‘𝑖)(,](𝐸‘𝑋))) ∧ 𝑥 = (𝐸‘𝑋)) → 𝑥 ∈ (((𝑄‘𝑖)(,)+∞) ∩ (((-∞(,)(𝐸‘𝑋)) ∩ 𝐷) ∪ {(𝐸‘𝑋)}))) |
272 | 212 | adantr 484 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄‘𝑖)(,](𝐸‘𝑋))) → (𝑄‘𝑖) ∈
ℝ*) |
273 | 259 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄‘𝑖)(,](𝐸‘𝑋))) → +∞ ∈
ℝ*) |
274 | 200 | adantr 484 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)(,](𝐸‘𝑋))) → (𝑄‘𝑖) ∈
ℝ*) |
275 | 133 | adantr 484 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐸‘𝑋) ∈ ℝ) |
276 | 275 | adantr 484 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)(,](𝐸‘𝑋))) → (𝐸‘𝑋) ∈ ℝ) |
277 | | iocssre 12894 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑄‘𝑖) ∈ ℝ* ∧ (𝐸‘𝑋) ∈ ℝ) → ((𝑄‘𝑖)(,](𝐸‘𝑋)) ⊆ ℝ) |
278 | 274, 276,
277 | syl2anc 587 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)(,](𝐸‘𝑋))) → ((𝑄‘𝑖)(,](𝐸‘𝑋)) ⊆ ℝ) |
279 | | simpr 488 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)(,](𝐸‘𝑋))) → 𝑥 ∈ ((𝑄‘𝑖)(,](𝐸‘𝑋))) |
280 | 278, 279 | sseldd 3876 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)(,](𝐸‘𝑋))) → 𝑥 ∈ ℝ) |
281 | 280 | 3adantl3 1169 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄‘𝑖)(,](𝐸‘𝑋))) → 𝑥 ∈ ℝ) |
282 | 276 | rexrd 10762 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)(,](𝐸‘𝑋))) → (𝐸‘𝑋) ∈
ℝ*) |
283 | | iocgtlb 42564 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑄‘𝑖) ∈ ℝ* ∧ (𝐸‘𝑋) ∈ ℝ* ∧ 𝑥 ∈ ((𝑄‘𝑖)(,](𝐸‘𝑋))) → (𝑄‘𝑖) < 𝑥) |
284 | 274, 282,
279, 283 | syl3anc 1372 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)(,](𝐸‘𝑋))) → (𝑄‘𝑖) < 𝑥) |
285 | 284 | 3adantl3 1169 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄‘𝑖)(,](𝐸‘𝑋))) → (𝑄‘𝑖) < 𝑥) |
286 | 281 | ltpnfd 12592 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄‘𝑖)(,](𝐸‘𝑋))) → 𝑥 < +∞) |
287 | 272, 273,
281, 285, 286 | eliood 42560 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄‘𝑖)(,](𝐸‘𝑋))) → 𝑥 ∈ ((𝑄‘𝑖)(,)+∞)) |
288 | 287 | adantr 484 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄‘𝑖)(,](𝐸‘𝑋))) ∧ ¬ 𝑥 = (𝐸‘𝑋)) → 𝑥 ∈ ((𝑄‘𝑖)(,)+∞)) |
289 | 194 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)(,](𝐸‘𝑋))) ∧ ¬ 𝑥 = (𝐸‘𝑋)) → -∞ ∈
ℝ*) |
290 | 282 | adantr 484 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)(,](𝐸‘𝑋))) ∧ ¬ 𝑥 = (𝐸‘𝑋)) → (𝐸‘𝑋) ∈
ℝ*) |
291 | 280 | adantr 484 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)(,](𝐸‘𝑋))) ∧ ¬ 𝑥 = (𝐸‘𝑋)) → 𝑥 ∈ ℝ) |
292 | 291 | mnfltd 12595 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)(,](𝐸‘𝑋))) ∧ ¬ 𝑥 = (𝐸‘𝑋)) → -∞ < 𝑥) |
293 | 133 | ad3antrrr 730 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)(,](𝐸‘𝑋))) ∧ ¬ 𝑥 = (𝐸‘𝑋)) → (𝐸‘𝑋) ∈ ℝ) |
294 | | iocleub 42565 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑄‘𝑖) ∈ ℝ* ∧ (𝐸‘𝑋) ∈ ℝ* ∧ 𝑥 ∈ ((𝑄‘𝑖)(,](𝐸‘𝑋))) → 𝑥 ≤ (𝐸‘𝑋)) |
295 | 274, 282,
279, 294 | syl3anc 1372 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)(,](𝐸‘𝑋))) → 𝑥 ≤ (𝐸‘𝑋)) |
296 | 295 | adantr 484 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)(,](𝐸‘𝑋))) ∧ ¬ 𝑥 = (𝐸‘𝑋)) → 𝑥 ≤ (𝐸‘𝑋)) |
297 | | neqne 2942 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (¬
𝑥 = (𝐸‘𝑋) → 𝑥 ≠ (𝐸‘𝑋)) |
298 | 297 | necomd 2989 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (¬
𝑥 = (𝐸‘𝑋) → (𝐸‘𝑋) ≠ 𝑥) |
299 | 298 | adantl 485 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)(,](𝐸‘𝑋))) ∧ ¬ 𝑥 = (𝐸‘𝑋)) → (𝐸‘𝑋) ≠ 𝑥) |
300 | 291, 293,
296, 299 | leneltd 10865 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)(,](𝐸‘𝑋))) ∧ ¬ 𝑥 = (𝐸‘𝑋)) → 𝑥 < (𝐸‘𝑋)) |
301 | 289, 290,
291, 292, 300 | eliood 42560 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)(,](𝐸‘𝑋))) ∧ ¬ 𝑥 = (𝐸‘𝑋)) → 𝑥 ∈ (-∞(,)(𝐸‘𝑋))) |
302 | 301 | 3adantll3 42109 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄‘𝑖)(,](𝐸‘𝑋))) ∧ ¬ 𝑥 = (𝐸‘𝑋)) → 𝑥 ∈ (-∞(,)(𝐸‘𝑋))) |
303 | 226 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄‘𝑖)(,](𝐸‘𝑋))) ∧ ¬ 𝑥 = (𝐸‘𝑋)) → ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ 𝐷) |
304 | 272 | adantr 484 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄‘𝑖)(,](𝐸‘𝑋))) ∧ ¬ 𝑥 = (𝐸‘𝑋)) → (𝑄‘𝑖) ∈
ℝ*) |
305 | 210 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄‘𝑖)(,](𝐸‘𝑋))) ∧ ¬ 𝑥 = (𝐸‘𝑋)) → (𝑄‘(𝑖 + 1)) ∈
ℝ*) |
306 | 281 | adantr 484 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄‘𝑖)(,](𝐸‘𝑋))) ∧ ¬ 𝑥 = (𝐸‘𝑋)) → 𝑥 ∈ ℝ) |
307 | 285 | adantr 484 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄‘𝑖)(,](𝐸‘𝑋))) ∧ ¬ 𝑥 = (𝐸‘𝑋)) → (𝑄‘𝑖) < 𝑥) |
308 | 235 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄‘𝑖)(,](𝐸‘𝑋))) ∧ ¬ 𝑥 = (𝐸‘𝑋)) → (𝐸‘𝑋) ∈ ℝ) |
309 | 209 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄‘𝑖)(,](𝐸‘𝑋))) ∧ ¬ 𝑥 = (𝐸‘𝑋)) → (𝑄‘(𝑖 + 1)) ∈ ℝ) |
310 | 300 | 3adantll3 42109 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄‘𝑖)(,](𝐸‘𝑋))) ∧ ¬ 𝑥 = (𝐸‘𝑋)) → 𝑥 < (𝐸‘𝑋)) |
311 | 215 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄‘𝑖)(,](𝐸‘𝑋))) ∧ ¬ 𝑥 = (𝐸‘𝑋)) → (𝐸‘𝑋) ≤ (𝑄‘(𝑖 + 1))) |
312 | 306, 308,
309, 310, 311 | ltletrd 10871 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄‘𝑖)(,](𝐸‘𝑋))) ∧ ¬ 𝑥 = (𝐸‘𝑋)) → 𝑥 < (𝑄‘(𝑖 + 1))) |
313 | 304, 305,
306, 307, 312 | eliood 42560 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄‘𝑖)(,](𝐸‘𝑋))) ∧ ¬ 𝑥 = (𝐸‘𝑋)) → 𝑥 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |
314 | 303, 313 | sseldd 3876 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄‘𝑖)(,](𝐸‘𝑋))) ∧ ¬ 𝑥 = (𝐸‘𝑋)) → 𝑥 ∈ 𝐷) |
315 | 302, 314 | elind 4082 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄‘𝑖)(,](𝐸‘𝑋))) ∧ ¬ 𝑥 = (𝐸‘𝑋)) → 𝑥 ∈ ((-∞(,)(𝐸‘𝑋)) ∩ 𝐷)) |
316 | | elun1 4064 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ ((-∞(,)(𝐸‘𝑋)) ∩ 𝐷) → 𝑥 ∈ (((-∞(,)(𝐸‘𝑋)) ∩ 𝐷) ∪ {(𝐸‘𝑋)})) |
317 | 315, 316 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄‘𝑖)(,](𝐸‘𝑋))) ∧ ¬ 𝑥 = (𝐸‘𝑋)) → 𝑥 ∈ (((-∞(,)(𝐸‘𝑋)) ∩ 𝐷) ∪ {(𝐸‘𝑋)})) |
318 | 288, 317 | elind 4082 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄‘𝑖)(,](𝐸‘𝑋))) ∧ ¬ 𝑥 = (𝐸‘𝑋)) → 𝑥 ∈ (((𝑄‘𝑖)(,)+∞) ∩ (((-∞(,)(𝐸‘𝑋)) ∩ 𝐷) ∪ {(𝐸‘𝑋)}))) |
319 | 271, 318 | pm2.61dan 813 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄‘𝑖)(,](𝐸‘𝑋))) → 𝑥 ∈ (((𝑄‘𝑖)(,)+∞) ∩ (((-∞(,)(𝐸‘𝑋)) ∩ 𝐷) ∪ {(𝐸‘𝑋)}))) |
320 | 212 | adantr 484 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ (((𝑄‘𝑖)(,)+∞) ∩ (((-∞(,)(𝐸‘𝑋)) ∩ 𝐷) ∪ {(𝐸‘𝑋)}))) → (𝑄‘𝑖) ∈
ℝ*) |
321 | 236 | adantr 484 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ (((𝑄‘𝑖)(,)+∞) ∩ (((-∞(,)(𝐸‘𝑋)) ∩ 𝐷) ∪ {(𝐸‘𝑋)}))) → (𝐸‘𝑋) ∈
ℝ*) |
322 | | elinel1 4083 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ (((𝑄‘𝑖)(,)+∞) ∩ (((-∞(,)(𝐸‘𝑋)) ∩ 𝐷) ∪ {(𝐸‘𝑋)})) → 𝑥 ∈ ((𝑄‘𝑖)(,)+∞)) |
323 | | elioore 12844 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ ((𝑄‘𝑖)(,)+∞) → 𝑥 ∈ ℝ) |
324 | 323 | rexrd 10762 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ ((𝑄‘𝑖)(,)+∞) → 𝑥 ∈ ℝ*) |
325 | 322, 324 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ (((𝑄‘𝑖)(,)+∞) ∩ (((-∞(,)(𝐸‘𝑋)) ∩ 𝐷) ∪ {(𝐸‘𝑋)})) → 𝑥 ∈ ℝ*) |
326 | 325 | adantl 485 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ (((𝑄‘𝑖)(,)+∞) ∩ (((-∞(,)(𝐸‘𝑋)) ∩ 𝐷) ∪ {(𝐸‘𝑋)}))) → 𝑥 ∈ ℝ*) |
327 | 200 | adantr 484 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄‘𝑖)(,)+∞) ∩ (((-∞(,)(𝐸‘𝑋)) ∩ 𝐷) ∪ {(𝐸‘𝑋)}))) → (𝑄‘𝑖) ∈
ℝ*) |
328 | 259 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄‘𝑖)(,)+∞) ∩ (((-∞(,)(𝐸‘𝑋)) ∩ 𝐷) ∪ {(𝐸‘𝑋)}))) → +∞ ∈
ℝ*) |
329 | 322 | adantl 485 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄‘𝑖)(,)+∞) ∩ (((-∞(,)(𝐸‘𝑋)) ∩ 𝐷) ∪ {(𝐸‘𝑋)}))) → 𝑥 ∈ ((𝑄‘𝑖)(,)+∞)) |
330 | | ioogtlb 42557 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑄‘𝑖) ∈ ℝ* ∧ +∞
∈ ℝ* ∧ 𝑥 ∈ ((𝑄‘𝑖)(,)+∞)) → (𝑄‘𝑖) < 𝑥) |
331 | 327, 328,
329, 330 | syl3anc 1372 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄‘𝑖)(,)+∞) ∩ (((-∞(,)(𝐸‘𝑋)) ∩ 𝐷) ∪ {(𝐸‘𝑋)}))) → (𝑄‘𝑖) < 𝑥) |
332 | 331 | 3adantl3 1169 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ (((𝑄‘𝑖)(,)+∞) ∩ (((-∞(,)(𝐸‘𝑋)) ∩ 𝐷) ∪ {(𝐸‘𝑋)}))) → (𝑄‘𝑖) < 𝑥) |
333 | | elinel2 4084 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ (((𝑄‘𝑖)(,)+∞) ∩ (((-∞(,)(𝐸‘𝑋)) ∩ 𝐷) ∪ {(𝐸‘𝑋)})) → 𝑥 ∈ (((-∞(,)(𝐸‘𝑋)) ∩ 𝐷) ∪ {(𝐸‘𝑋)})) |
334 | | elsni 4530 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 ∈ {(𝐸‘𝑋)} → 𝑥 = (𝐸‘𝑋)) |
335 | 334 | adantl 485 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑥 ∈ {(𝐸‘𝑋)}) → 𝑥 = (𝐸‘𝑋)) |
336 | 134 | adantr 484 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑥 ∈ {(𝐸‘𝑋)}) → (𝐸‘𝑋) ≤ (𝐸‘𝑋)) |
337 | 335, 336 | eqbrtrd 5049 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑥 ∈ {(𝐸‘𝑋)}) → 𝑥 ≤ (𝐸‘𝑋)) |
338 | 337 | adantlr 715 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑥 ∈ (((-∞(,)(𝐸‘𝑋)) ∩ 𝐷) ∪ {(𝐸‘𝑋)})) ∧ 𝑥 ∈ {(𝐸‘𝑋)}) → 𝑥 ≤ (𝐸‘𝑋)) |
339 | | simpll 767 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑥 ∈ (((-∞(,)(𝐸‘𝑋)) ∩ 𝐷) ∪ {(𝐸‘𝑋)})) ∧ ¬ 𝑥 ∈ {(𝐸‘𝑋)}) → 𝜑) |
340 | | elunnel2 42104 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑥 ∈ (((-∞(,)(𝐸‘𝑋)) ∩ 𝐷) ∪ {(𝐸‘𝑋)}) ∧ ¬ 𝑥 ∈ {(𝐸‘𝑋)}) → 𝑥 ∈ ((-∞(,)(𝐸‘𝑋)) ∩ 𝐷)) |
341 | 340 | adantll 714 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑥 ∈ (((-∞(,)(𝐸‘𝑋)) ∩ 𝐷) ∪ {(𝐸‘𝑋)})) ∧ ¬ 𝑥 ∈ {(𝐸‘𝑋)}) → 𝑥 ∈ ((-∞(,)(𝐸‘𝑋)) ∩ 𝐷)) |
342 | | elinel1 4083 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 ∈ ((-∞(,)(𝐸‘𝑋)) ∩ 𝐷) → 𝑥 ∈ (-∞(,)(𝐸‘𝑋))) |
343 | | elioore 12844 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥 ∈ (-∞(,)(𝐸‘𝑋)) → 𝑥 ∈ ℝ) |
344 | 343 | adantl 485 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑥 ∈ (-∞(,)(𝐸‘𝑋))) → 𝑥 ∈ ℝ) |
345 | 133 | adantr 484 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑥 ∈ (-∞(,)(𝐸‘𝑋))) → (𝐸‘𝑋) ∈ ℝ) |
346 | 194 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑥 ∈ (-∞(,)(𝐸‘𝑋))) → -∞ ∈
ℝ*) |
347 | 345 | rexrd 10762 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑥 ∈ (-∞(,)(𝐸‘𝑋))) → (𝐸‘𝑋) ∈
ℝ*) |
348 | | simpr 488 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑥 ∈ (-∞(,)(𝐸‘𝑋))) → 𝑥 ∈ (-∞(,)(𝐸‘𝑋))) |
349 | | iooltub 42572 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((-∞ ∈ ℝ* ∧ (𝐸‘𝑋) ∈ ℝ* ∧ 𝑥 ∈ (-∞(,)(𝐸‘𝑋))) → 𝑥 < (𝐸‘𝑋)) |
350 | 346, 347,
348, 349 | syl3anc 1372 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑥 ∈ (-∞(,)(𝐸‘𝑋))) → 𝑥 < (𝐸‘𝑋)) |
351 | 344, 345,
350 | ltled 10859 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑥 ∈ (-∞(,)(𝐸‘𝑋))) → 𝑥 ≤ (𝐸‘𝑋)) |
352 | 342, 351 | sylan2 596 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑥 ∈ ((-∞(,)(𝐸‘𝑋)) ∩ 𝐷)) → 𝑥 ≤ (𝐸‘𝑋)) |
353 | 339, 341,
352 | syl2anc 587 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑥 ∈ (((-∞(,)(𝐸‘𝑋)) ∩ 𝐷) ∪ {(𝐸‘𝑋)})) ∧ ¬ 𝑥 ∈ {(𝐸‘𝑋)}) → 𝑥 ≤ (𝐸‘𝑋)) |
354 | 338, 353 | pm2.61dan 813 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ (((-∞(,)(𝐸‘𝑋)) ∩ 𝐷) ∪ {(𝐸‘𝑋)})) → 𝑥 ≤ (𝐸‘𝑋)) |
355 | 354 | adantlr 715 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((-∞(,)(𝐸‘𝑋)) ∩ 𝐷) ∪ {(𝐸‘𝑋)})) → 𝑥 ≤ (𝐸‘𝑋)) |
356 | 333, 355 | sylan2 596 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄‘𝑖)(,)+∞) ∩ (((-∞(,)(𝐸‘𝑋)) ∩ 𝐷) ∪ {(𝐸‘𝑋)}))) → 𝑥 ≤ (𝐸‘𝑋)) |
357 | 356 | 3adantl3 1169 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ (((𝑄‘𝑖)(,)+∞) ∩ (((-∞(,)(𝐸‘𝑋)) ∩ 𝐷) ∪ {(𝐸‘𝑋)}))) → 𝑥 ≤ (𝐸‘𝑋)) |
358 | 320, 321,
326, 332, 357 | eliocd 42569 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ (((𝑄‘𝑖)(,)+∞) ∩ (((-∞(,)(𝐸‘𝑋)) ∩ 𝐷) ∪ {(𝐸‘𝑋)}))) → 𝑥 ∈ ((𝑄‘𝑖)(,](𝐸‘𝑋))) |
359 | 319, 358 | impbida 801 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝑥 ∈ ((𝑄‘𝑖)(,](𝐸‘𝑋)) ↔ 𝑥 ∈ (((𝑄‘𝑖)(,)+∞) ∩ (((-∞(,)(𝐸‘𝑋)) ∩ 𝐷) ∪ {(𝐸‘𝑋)})))) |
360 | 359 | eqrdv 2736 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝑄‘𝑖)(,](𝐸‘𝑋)) = (((𝑄‘𝑖)(,)+∞) ∩ (((-∞(,)(𝐸‘𝑋)) ∩ 𝐷) ∪ {(𝐸‘𝑋)}))) |
361 | | ioossre 12875 |
. . . . . . . . . . . . . 14
⊢
(-∞(,)(𝐸‘𝑋)) ⊆ ℝ |
362 | | ssinss1 4126 |
. . . . . . . . . . . . . 14
⊢
((-∞(,)(𝐸‘𝑋)) ⊆ ℝ →
((-∞(,)(𝐸‘𝑋)) ∩ 𝐷) ⊆ ℝ) |
363 | 361, 362 | mp1i 13 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → ((-∞(,)(𝐸‘𝑋)) ∩ 𝐷) ⊆ ℝ) |
364 | 235 | snssd 4694 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → {(𝐸‘𝑋)} ⊆ ℝ) |
365 | 363, 364 | unssd 4074 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → (((-∞(,)(𝐸‘𝑋)) ∩ 𝐷) ∪ {(𝐸‘𝑋)}) ⊆ ℝ) |
366 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢
(topGen‘ran (,)) = (topGen‘ran (,)) |
367 | 233, 366 | rerest 23549 |
. . . . . . . . . . . 12
⊢
((((-∞(,)(𝐸‘𝑋)) ∩ 𝐷) ∪ {(𝐸‘𝑋)}) ⊆ ℝ →
((TopOpen‘ℂfld) ↾t (((-∞(,)(𝐸‘𝑋)) ∩ 𝐷) ∪ {(𝐸‘𝑋)})) = ((topGen‘ran (,))
↾t (((-∞(,)(𝐸‘𝑋)) ∩ 𝐷) ∪ {(𝐸‘𝑋)}))) |
368 | 365, 367 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) →
((TopOpen‘ℂfld) ↾t (((-∞(,)(𝐸‘𝑋)) ∩ 𝐷) ∪ {(𝐸‘𝑋)})) = ((topGen‘ran (,))
↾t (((-∞(,)(𝐸‘𝑋)) ∩ 𝐷) ∪ {(𝐸‘𝑋)}))) |
369 | 257, 360,
368 | 3eltr4d 2848 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝑄‘𝑖)(,](𝐸‘𝑋)) ∈
((TopOpen‘ℂfld) ↾t (((-∞(,)(𝐸‘𝑋)) ∩ 𝐷) ∪ {(𝐸‘𝑋)}))) |
370 | | isopn3i 21826 |
. . . . . . . . . 10
⊢
((((TopOpen‘ℂfld) ↾t
(((-∞(,)(𝐸‘𝑋)) ∩ 𝐷) ∪ {(𝐸‘𝑋)})) ∈ Top ∧ ((𝑄‘𝑖)(,](𝐸‘𝑋)) ∈
((TopOpen‘ℂfld) ↾t (((-∞(,)(𝐸‘𝑋)) ∩ 𝐷) ∪ {(𝐸‘𝑋)}))) →
((int‘((TopOpen‘ℂfld) ↾t
(((-∞(,)(𝐸‘𝑋)) ∩ 𝐷) ∪ {(𝐸‘𝑋)})))‘((𝑄‘𝑖)(,](𝐸‘𝑋))) = ((𝑄‘𝑖)(,](𝐸‘𝑋))) |
371 | 250, 369,
370 | sylancr 590 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) →
((int‘((TopOpen‘ℂfld) ↾t
(((-∞(,)(𝐸‘𝑋)) ∩ 𝐷) ∪ {(𝐸‘𝑋)})))‘((𝑄‘𝑖)(,](𝐸‘𝑋))) = ((𝑄‘𝑖)(,](𝐸‘𝑋))) |
372 | 243, 371 | eqtr2d 2774 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝑄‘𝑖)(,](𝐸‘𝑋)) =
((int‘((TopOpen‘ℂfld) ↾t
(((-∞(,)(𝐸‘𝑋)) ∩ 𝐷) ∪ {(𝐸‘𝑋)})))‘(((𝑄‘𝑖)(,)(𝐸‘𝑋)) ∪ {(𝐸‘𝑋)}))) |
373 | 240, 372 | eleqtrd 2835 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝐸‘𝑋) ∈
((int‘((TopOpen‘ℂfld) ↾t
(((-∞(,)(𝐸‘𝑋)) ∩ 𝐷) ∪ {(𝐸‘𝑋)})))‘(((𝑄‘𝑖)(,)(𝐸‘𝑋)) ∪ {(𝐸‘𝑋)}))) |
374 | 193, 228,
232, 233, 234, 373 | limcres 24630 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → (((𝐹 ↾ ((-∞(,)(𝐸‘𝑋)) ∩ 𝐷)) ↾ ((𝑄‘𝑖)(,)(𝐸‘𝑋))) limℂ (𝐸‘𝑋)) = ((𝐹 ↾ ((-∞(,)(𝐸‘𝑋)) ∩ 𝐷)) limℂ (𝐸‘𝑋))) |
375 | 228 | resabs1d 5850 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝐹 ↾ ((-∞(,)(𝐸‘𝑋)) ∩ 𝐷)) ↾ ((𝑄‘𝑖)(,)(𝐸‘𝑋))) = (𝐹 ↾ ((𝑄‘𝑖)(,)(𝐸‘𝑋)))) |
376 | 375 | oveq1d 7179 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → (((𝐹 ↾ ((-∞(,)(𝐸‘𝑋)) ∩ 𝐷)) ↾ ((𝑄‘𝑖)(,)(𝐸‘𝑋))) limℂ (𝐸‘𝑋)) = ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝐸‘𝑋))) limℂ (𝐸‘𝑋))) |
377 | 186, 374,
376 | 3eqtr2d 2779 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝐹 ↾ (-∞(,)(𝐸‘𝑋))) limℂ (𝐸‘𝑋)) = ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝐸‘𝑋))) limℂ (𝐸‘𝑋))) |
378 | 181 | feq2d 6484 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐹:dom 𝐹⟶ℂ ↔ 𝐹:𝐷⟶ℂ)) |
379 | 189, 378 | mpbird 260 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹:dom 𝐹⟶ℂ) |
380 | 379 | adantr 484 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝐸‘𝑋))) limℂ (𝐸‘𝑋))) → 𝐹:dom 𝐹⟶ℂ) |
381 | 380 | 3ad2antl1 1186 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝐸‘𝑋))) limℂ (𝐸‘𝑋))) → 𝐹:dom 𝐹⟶ℂ) |
382 | | ioosscn 12876 |
. . . . . . . . . 10
⊢ ((𝑄‘𝑖)(,)(𝐸‘𝑋)) ⊆ ℂ |
383 | 382 | a1i 11 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝐸‘𝑋))) limℂ (𝐸‘𝑋))) → ((𝑄‘𝑖)(,)(𝐸‘𝑋)) ⊆ ℂ) |
384 | 181 | eqcomd 2744 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐷 = dom 𝐹) |
385 | 384 | 3ad2ant1 1134 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → 𝐷 = dom 𝐹) |
386 | 227, 385 | sseqtrd 3915 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝑄‘𝑖)(,)(𝐸‘𝑋)) ⊆ dom 𝐹) |
387 | 386 | adantr 484 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝐸‘𝑋))) limℂ (𝐸‘𝑋))) → ((𝑄‘𝑖)(,)(𝐸‘𝑋)) ⊆ dom 𝐹) |
388 | 7 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑍 = (𝑥 ∈ ℝ ↦
((⌊‘((𝐵 −
𝑥) / 𝑇)) · 𝑇))) |
389 | | oveq2 7172 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = 𝑋 → (𝐵 − 𝑥) = (𝐵 − 𝑋)) |
390 | 389 | oveq1d 7179 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑋 → ((𝐵 − 𝑥) / 𝑇) = ((𝐵 − 𝑋) / 𝑇)) |
391 | 390 | fveq2d 6672 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑋 → (⌊‘((𝐵 − 𝑥) / 𝑇)) = (⌊‘((𝐵 − 𝑋) / 𝑇))) |
392 | 391 | oveq1d 7179 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑋 → ((⌊‘((𝐵 − 𝑥) / 𝑇)) · 𝑇) = ((⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇)) |
393 | 392 | adantl 485 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 = 𝑋) → ((⌊‘((𝐵 − 𝑥) / 𝑇)) · 𝑇) = ((⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇)) |
394 | 2, 14 | resubcld 11139 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝐵 − 𝑋) ∈ ℝ) |
395 | 2, 1 | resubcld 11139 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (𝐵 − 𝐴) ∈ ℝ) |
396 | 4, 395 | eqeltrid 2837 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝑇 ∈ ℝ) |
397 | 1, 2 | posdifd 11298 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (𝐴 < 𝐵 ↔ 0 < (𝐵 − 𝐴))) |
398 | 3, 397 | mpbid 235 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 0 < (𝐵 − 𝐴)) |
399 | 4 | eqcomi 2747 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐵 − 𝐴) = 𝑇 |
400 | 399 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (𝐵 − 𝐴) = 𝑇) |
401 | 398, 400 | breqtrd 5053 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 0 < 𝑇) |
402 | 401 | gt0ne0d 11275 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝑇 ≠ 0) |
403 | 394, 396,
402 | redivcld 11539 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ((𝐵 − 𝑋) / 𝑇) ∈ ℝ) |
404 | 403 | flcld 13252 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (⌊‘((𝐵 − 𝑋) / 𝑇)) ∈ ℤ) |
405 | 404 | zred 12161 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (⌊‘((𝐵 − 𝑋) / 𝑇)) ∈ ℝ) |
406 | 405, 396 | remulcld 10742 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇) ∈ ℝ) |
407 | 388, 393,
14, 406 | fvmptd 6776 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑍‘𝑋) = ((⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇)) |
408 | 407, 406 | eqeltrd 2833 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑍‘𝑋) ∈ ℝ) |
409 | 408 | recnd 10740 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑍‘𝑋) ∈ ℂ) |
410 | 409 | adantr 484 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝐸‘𝑋))) limℂ (𝐸‘𝑋))) → (𝑍‘𝑋) ∈ ℂ) |
411 | 410 | 3ad2antl1 1186 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝐸‘𝑋))) limℂ (𝐸‘𝑋))) → (𝑍‘𝑋) ∈ ℂ) |
412 | 411 | negcld 11055 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝐸‘𝑋))) limℂ (𝐸‘𝑋))) → -(𝑍‘𝑋) ∈ ℂ) |
413 | | eqid 2738 |
. . . . . . . . 9
⊢ {𝑧 ∈ ℂ ∣
∃𝑥 ∈ ((𝑄‘𝑖)(,)(𝐸‘𝑋))𝑧 = (𝑥 + -(𝑍‘𝑋))} = {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ ((𝑄‘𝑖)(,)(𝐸‘𝑋))𝑧 = (𝑥 + -(𝑍‘𝑋))} |
414 | | ioosscn 12876 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋) ⊆ ℂ |
415 | 414 | sseli 3871 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋) → 𝑦 ∈ ℂ) |
416 | 415 | adantl 485 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → 𝑦 ∈ ℂ) |
417 | 409 | adantr 484 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → (𝑍‘𝑋) ∈ ℂ) |
418 | 416, 417 | pncand 11069 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → ((𝑦 + (𝑍‘𝑋)) − (𝑍‘𝑋)) = 𝑦) |
419 | 418 | eqcomd 2744 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → 𝑦 = ((𝑦 + (𝑍‘𝑋)) − (𝑍‘𝑋))) |
420 | 419 | 3ad2antl1 1186 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → 𝑦 = ((𝑦 + (𝑍‘𝑋)) − (𝑍‘𝑋))) |
421 | 407 | oveq2d 7180 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ((𝑦 + (𝑍‘𝑋)) − (𝑍‘𝑋)) = ((𝑦 + (𝑍‘𝑋)) − ((⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇))) |
422 | 421 | adantr 484 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → ((𝑦 + (𝑍‘𝑋)) − (𝑍‘𝑋)) = ((𝑦 + (𝑍‘𝑋)) − ((⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇))) |
423 | 416, 417 | addcld 10731 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → (𝑦 + (𝑍‘𝑋)) ∈ ℂ) |
424 | 406 | recnd 10740 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ((⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇) ∈ ℂ) |
425 | 424 | adantr 484 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → ((⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇) ∈ ℂ) |
426 | 423, 425 | negsubd 11074 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → ((𝑦 + (𝑍‘𝑋)) + -((⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇)) = ((𝑦 + (𝑍‘𝑋)) − ((⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇))) |
427 | 404 | zcnd 12162 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (⌊‘((𝐵 − 𝑋) / 𝑇)) ∈ ℂ) |
428 | 396 | recnd 10740 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝑇 ∈ ℂ) |
429 | 427, 428 | mulneg1d 11164 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (-(⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇) = -((⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇)) |
430 | 429 | eqcomd 2744 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → -((⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇) = (-(⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇)) |
431 | 430 | oveq2d 7180 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ((𝑦 + (𝑍‘𝑋)) + -((⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇)) = ((𝑦 + (𝑍‘𝑋)) + (-(⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇))) |
432 | 431 | adantr 484 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → ((𝑦 + (𝑍‘𝑋)) + -((⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇)) = ((𝑦 + (𝑍‘𝑋)) + (-(⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇))) |
433 | 422, 426,
432 | 3eqtr2d 2779 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → ((𝑦 + (𝑍‘𝑋)) − (𝑍‘𝑋)) = ((𝑦 + (𝑍‘𝑋)) + (-(⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇))) |
434 | 433 | 3ad2antl1 1186 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → ((𝑦 + (𝑍‘𝑋)) − (𝑍‘𝑋)) = ((𝑦 + (𝑍‘𝑋)) + (-(⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇))) |
435 | 404 | znegcld 12163 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → -(⌊‘((𝐵 − 𝑋) / 𝑇)) ∈ ℤ) |
436 | 435 | adantr 484 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → -(⌊‘((𝐵 − 𝑋) / 𝑇)) ∈ ℤ) |
437 | 436 | 3ad2antl1 1186 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → -(⌊‘((𝐵 − 𝑋) / 𝑇)) ∈ ℤ) |
438 | | simpl1 1192 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → 𝜑) |
439 | 227 | adantr 484 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → ((𝑄‘𝑖)(,)(𝐸‘𝑋)) ⊆ 𝐷) |
440 | 200 | adantr 484 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → (𝑄‘𝑖) ∈
ℝ*) |
441 | 133 | rexrd 10762 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (𝐸‘𝑋) ∈
ℝ*) |
442 | 441 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → (𝐸‘𝑋) ∈
ℝ*) |
443 | | elioore 12844 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋) → 𝑦 ∈ ℝ) |
444 | 443 | adantl 485 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → 𝑦 ∈ ℝ) |
445 | 408 | adantr 484 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → (𝑍‘𝑋) ∈ ℝ) |
446 | 444, 445 | readdcld 10741 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → (𝑦 + (𝑍‘𝑋)) ∈ ℝ) |
447 | 446 | adantlr 715 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → (𝑦 + (𝑍‘𝑋)) ∈ ℝ) |
448 | 408 | adantr 484 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑍‘𝑋) ∈ ℝ) |
449 | 199, 448 | resubcld 11139 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘𝑖) − (𝑍‘𝑋)) ∈ ℝ) |
450 | 449 | rexrd 10762 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘𝑖) − (𝑍‘𝑋)) ∈
ℝ*) |
451 | 450 | adantr 484 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → ((𝑄‘𝑖) − (𝑍‘𝑋)) ∈
ℝ*) |
452 | 14 | rexrd 10762 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → 𝑋 ∈
ℝ*) |
453 | 452 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → 𝑋 ∈
ℝ*) |
454 | | simpr 488 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) |
455 | | ioogtlb 42557 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝑄‘𝑖) − (𝑍‘𝑋)) ∈ ℝ* ∧ 𝑋 ∈ ℝ*
∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → ((𝑄‘𝑖) − (𝑍‘𝑋)) < 𝑦) |
456 | 451, 453,
454, 455 | syl3anc 1372 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → ((𝑄‘𝑖) − (𝑍‘𝑋)) < 𝑦) |
457 | 199 | adantr 484 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → (𝑄‘𝑖) ∈ ℝ) |
458 | 448 | adantr 484 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → (𝑍‘𝑋) ∈ ℝ) |
459 | 443 | adantl 485 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → 𝑦 ∈ ℝ) |
460 | 457, 458,
459 | ltsubaddd 11307 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → (((𝑄‘𝑖) − (𝑍‘𝑋)) < 𝑦 ↔ (𝑄‘𝑖) < (𝑦 + (𝑍‘𝑋)))) |
461 | 456, 460 | mpbid 235 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → (𝑄‘𝑖) < (𝑦 + (𝑍‘𝑋))) |
462 | 14 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → 𝑋 ∈ ℝ) |
463 | | iooltub 42572 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝑄‘𝑖) − (𝑍‘𝑋)) ∈ ℝ* ∧ 𝑋 ∈ ℝ*
∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → 𝑦 < 𝑋) |
464 | 451, 453,
454, 463 | syl3anc 1372 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → 𝑦 < 𝑋) |
465 | 459, 462,
458, 464 | ltadd1dd 11322 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → (𝑦 + (𝑍‘𝑋)) < (𝑋 + (𝑍‘𝑋))) |
466 | 5 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + (𝑍‘𝑥)))) |
467 | | id 22 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑥 = 𝑋 → 𝑥 = 𝑋) |
468 | | fveq2 6668 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑥 = 𝑋 → (𝑍‘𝑥) = (𝑍‘𝑋)) |
469 | 467, 468 | oveq12d 7182 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑥 = 𝑋 → (𝑥 + (𝑍‘𝑥)) = (𝑋 + (𝑍‘𝑋))) |
470 | 469 | adantl 485 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑥 = 𝑋) → (𝑥 + (𝑍‘𝑥)) = (𝑋 + (𝑍‘𝑋))) |
471 | 14, 408 | readdcld 10741 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → (𝑋 + (𝑍‘𝑋)) ∈ ℝ) |
472 | 466, 470,
14, 471 | fvmptd 6776 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → (𝐸‘𝑋) = (𝑋 + (𝑍‘𝑋))) |
473 | 472 | eqcomd 2744 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (𝑋 + (𝑍‘𝑋)) = (𝐸‘𝑋)) |
474 | 473 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → (𝑋 + (𝑍‘𝑋)) = (𝐸‘𝑋)) |
475 | 465, 474 | breqtrd 5053 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → (𝑦 + (𝑍‘𝑋)) < (𝐸‘𝑋)) |
476 | 440, 442,
447, 461, 475 | eliood 42560 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → (𝑦 + (𝑍‘𝑋)) ∈ ((𝑄‘𝑖)(,)(𝐸‘𝑋))) |
477 | 476 | 3adantl3 1169 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → (𝑦 + (𝑍‘𝑋)) ∈ ((𝑄‘𝑖)(,)(𝐸‘𝑋))) |
478 | 439, 477 | sseldd 3876 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → (𝑦 + (𝑍‘𝑋)) ∈ 𝐷) |
479 | 438, 478,
437 | 3jca 1129 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → (𝜑 ∧ (𝑦 + (𝑍‘𝑋)) ∈ 𝐷 ∧ -(⌊‘((𝐵 − 𝑋) / 𝑇)) ∈ ℤ)) |
480 | | eleq1 2820 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = -(⌊‘((𝐵 − 𝑋) / 𝑇)) → (𝑘 ∈ ℤ ↔
-(⌊‘((𝐵 −
𝑋) / 𝑇)) ∈ ℤ)) |
481 | 480 | 3anbi3d 1443 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = -(⌊‘((𝐵 − 𝑋) / 𝑇)) → ((𝜑 ∧ (𝑦 + (𝑍‘𝑋)) ∈ 𝐷 ∧ 𝑘 ∈ ℤ) ↔ (𝜑 ∧ (𝑦 + (𝑍‘𝑋)) ∈ 𝐷 ∧ -(⌊‘((𝐵 − 𝑋) / 𝑇)) ∈ ℤ))) |
482 | | oveq1 7171 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 = -(⌊‘((𝐵 − 𝑋) / 𝑇)) → (𝑘 · 𝑇) = (-(⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇)) |
483 | 482 | oveq2d 7180 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = -(⌊‘((𝐵 − 𝑋) / 𝑇)) → ((𝑦 + (𝑍‘𝑋)) + (𝑘 · 𝑇)) = ((𝑦 + (𝑍‘𝑋)) + (-(⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇))) |
484 | 483 | eleq1d 2817 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = -(⌊‘((𝐵 − 𝑋) / 𝑇)) → (((𝑦 + (𝑍‘𝑋)) + (𝑘 · 𝑇)) ∈ 𝐷 ↔ ((𝑦 + (𝑍‘𝑋)) + (-(⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇)) ∈ 𝐷)) |
485 | 481, 484 | imbi12d 348 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = -(⌊‘((𝐵 − 𝑋) / 𝑇)) → (((𝜑 ∧ (𝑦 + (𝑍‘𝑋)) ∈ 𝐷 ∧ 𝑘 ∈ ℤ) → ((𝑦 + (𝑍‘𝑋)) + (𝑘 · 𝑇)) ∈ 𝐷) ↔ ((𝜑 ∧ (𝑦 + (𝑍‘𝑋)) ∈ 𝐷 ∧ -(⌊‘((𝐵 − 𝑋) / 𝑇)) ∈ ℤ) → ((𝑦 + (𝑍‘𝑋)) + (-(⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇)) ∈ 𝐷))) |
486 | | ovex 7197 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 + (𝑍‘𝑋)) ∈ V |
487 | | eleq1 2820 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = (𝑦 + (𝑍‘𝑋)) → (𝑥 ∈ 𝐷 ↔ (𝑦 + (𝑍‘𝑋)) ∈ 𝐷)) |
488 | 487 | 3anbi2d 1442 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = (𝑦 + (𝑍‘𝑋)) → ((𝜑 ∧ 𝑥 ∈ 𝐷 ∧ 𝑘 ∈ ℤ) ↔ (𝜑 ∧ (𝑦 + (𝑍‘𝑋)) ∈ 𝐷 ∧ 𝑘 ∈ ℤ))) |
489 | | oveq1 7171 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = (𝑦 + (𝑍‘𝑋)) → (𝑥 + (𝑘 · 𝑇)) = ((𝑦 + (𝑍‘𝑋)) + (𝑘 · 𝑇))) |
490 | 489 | eleq1d 2817 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = (𝑦 + (𝑍‘𝑋)) → ((𝑥 + (𝑘 · 𝑇)) ∈ 𝐷 ↔ ((𝑦 + (𝑍‘𝑋)) + (𝑘 · 𝑇)) ∈ 𝐷)) |
491 | 488, 490 | imbi12d 348 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = (𝑦 + (𝑍‘𝑋)) → (((𝜑 ∧ 𝑥 ∈ 𝐷 ∧ 𝑘 ∈ ℤ) → (𝑥 + (𝑘 · 𝑇)) ∈ 𝐷) ↔ ((𝜑 ∧ (𝑦 + (𝑍‘𝑋)) ∈ 𝐷 ∧ 𝑘 ∈ ℤ) → ((𝑦 + (𝑍‘𝑋)) + (𝑘 · 𝑇)) ∈ 𝐷))) |
492 | | fourierdlem49.dper |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷 ∧ 𝑘 ∈ ℤ) → (𝑥 + (𝑘 · 𝑇)) ∈ 𝐷) |
493 | 486, 491,
492 | vtocl 3463 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑦 + (𝑍‘𝑋)) ∈ 𝐷 ∧ 𝑘 ∈ ℤ) → ((𝑦 + (𝑍‘𝑋)) + (𝑘 · 𝑇)) ∈ 𝐷) |
494 | 485, 493 | vtoclg 3470 |
. . . . . . . . . . . . . . . 16
⊢
(-(⌊‘((𝐵
− 𝑋) / 𝑇)) ∈ ℤ → ((𝜑 ∧ (𝑦 + (𝑍‘𝑋)) ∈ 𝐷 ∧ -(⌊‘((𝐵 − 𝑋) / 𝑇)) ∈ ℤ) → ((𝑦 + (𝑍‘𝑋)) + (-(⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇)) ∈ 𝐷)) |
495 | 437, 479,
494 | sylc 65 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → ((𝑦 + (𝑍‘𝑋)) + (-(⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇)) ∈ 𝐷) |
496 | 434, 495 | eqeltrd 2833 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → ((𝑦 + (𝑍‘𝑋)) − (𝑍‘𝑋)) ∈ 𝐷) |
497 | 420, 496 | eqeltrd 2833 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → 𝑦 ∈ 𝐷) |
498 | 497 | ralrimiva 3096 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → ∀𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)𝑦 ∈ 𝐷) |
499 | | dfss3 3863 |
. . . . . . . . . . . 12
⊢ ((((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋) ⊆ 𝐷 ↔ ∀𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)𝑦 ∈ 𝐷) |
500 | 498, 499 | sylibr 237 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋) ⊆ 𝐷) |
501 | 199 | recnd 10740 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) ∈ ℂ) |
502 | 409 | adantr 484 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑍‘𝑋) ∈ ℂ) |
503 | 501, 502 | negsubd 11074 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘𝑖) + -(𝑍‘𝑋)) = ((𝑄‘𝑖) − (𝑍‘𝑋))) |
504 | 503 | eqcomd 2744 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘𝑖) − (𝑍‘𝑋)) = ((𝑄‘𝑖) + -(𝑍‘𝑋))) |
505 | 472 | oveq1d 7179 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((𝐸‘𝑋) + -(𝑍‘𝑋)) = ((𝑋 + (𝑍‘𝑋)) + -(𝑍‘𝑋))) |
506 | 471 | recnd 10740 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝑋 + (𝑍‘𝑋)) ∈ ℂ) |
507 | 506, 409 | negsubd 11074 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((𝑋 + (𝑍‘𝑋)) + -(𝑍‘𝑋)) = ((𝑋 + (𝑍‘𝑋)) − (𝑍‘𝑋))) |
508 | 14 | recnd 10740 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑋 ∈ ℂ) |
509 | 508, 409 | pncand 11069 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((𝑋 + (𝑍‘𝑋)) − (𝑍‘𝑋)) = 𝑋) |
510 | 505, 507,
509 | 3eqtrrd 2778 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑋 = ((𝐸‘𝑋) + -(𝑍‘𝑋))) |
511 | 510 | adantr 484 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑋 = ((𝐸‘𝑋) + -(𝑍‘𝑋))) |
512 | 504, 511 | oveq12d 7182 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋) = (((𝑄‘𝑖) + -(𝑍‘𝑋))(,)((𝐸‘𝑋) + -(𝑍‘𝑋)))) |
513 | 448 | renegcld 11138 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → -(𝑍‘𝑋) ∈ ℝ) |
514 | 199, 275,
513 | iooshift 42584 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (((𝑄‘𝑖) + -(𝑍‘𝑋))(,)((𝐸‘𝑋) + -(𝑍‘𝑋))) = {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ ((𝑄‘𝑖)(,)(𝐸‘𝑋))𝑧 = (𝑥 + -(𝑍‘𝑋))}) |
515 | 512, 514 | eqtr2d 2774 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ ((𝑄‘𝑖)(,)(𝐸‘𝑋))𝑧 = (𝑥 + -(𝑍‘𝑋))} = (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) |
516 | 515 | 3adant3 1133 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ ((𝑄‘𝑖)(,)(𝐸‘𝑋))𝑧 = (𝑥 + -(𝑍‘𝑋))} = (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) |
517 | 181 | 3ad2ant1 1134 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → dom 𝐹 = 𝐷) |
518 | 500, 516,
517 | 3sstr4d 3922 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ ((𝑄‘𝑖)(,)(𝐸‘𝑋))𝑧 = (𝑥 + -(𝑍‘𝑋))} ⊆ dom 𝐹) |
519 | 518 | adantr 484 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝐸‘𝑋))) limℂ (𝐸‘𝑋))) → {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ ((𝑄‘𝑖)(,)(𝐸‘𝑋))𝑧 = (𝑥 + -(𝑍‘𝑋))} ⊆ dom 𝐹) |
520 | 407 | negeqd 10951 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → -(𝑍‘𝑋) = -((⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇)) |
521 | 520, 430 | eqtrd 2773 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → -(𝑍‘𝑋) = (-(⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇)) |
522 | 521 | oveq2d 7180 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑥 + -(𝑍‘𝑋)) = (𝑥 + (-(⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇))) |
523 | 522 | fveq2d 6672 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐹‘(𝑥 + -(𝑍‘𝑋))) = (𝐹‘(𝑥 + (-(⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇)))) |
524 | 523 | adantr 484 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝑖)(,)(𝐸‘𝑋))) → (𝐹‘(𝑥 + -(𝑍‘𝑋))) = (𝐹‘(𝑥 + (-(⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇)))) |
525 | 524 | 3ad2antl1 1186 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄‘𝑖)(,)(𝐸‘𝑋))) → (𝐹‘(𝑥 + -(𝑍‘𝑋))) = (𝐹‘(𝑥 + (-(⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇)))) |
526 | 435 | adantr 484 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝑖)(,)(𝐸‘𝑋))) → -(⌊‘((𝐵 − 𝑋) / 𝑇)) ∈ ℤ) |
527 | 526 | 3ad2antl1 1186 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄‘𝑖)(,)(𝐸‘𝑋))) → -(⌊‘((𝐵 − 𝑋) / 𝑇)) ∈ ℤ) |
528 | | simpl1 1192 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄‘𝑖)(,)(𝐸‘𝑋))) → 𝜑) |
529 | 227 | sselda 3875 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄‘𝑖)(,)(𝐸‘𝑋))) → 𝑥 ∈ 𝐷) |
530 | 528, 529,
527 | 3jca 1129 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄‘𝑖)(,)(𝐸‘𝑋))) → (𝜑 ∧ 𝑥 ∈ 𝐷 ∧ -(⌊‘((𝐵 − 𝑋) / 𝑇)) ∈ ℤ)) |
531 | 480 | 3anbi3d 1443 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = -(⌊‘((𝐵 − 𝑋) / 𝑇)) → ((𝜑 ∧ 𝑥 ∈ 𝐷 ∧ 𝑘 ∈ ℤ) ↔ (𝜑 ∧ 𝑥 ∈ 𝐷 ∧ -(⌊‘((𝐵 − 𝑋) / 𝑇)) ∈ ℤ))) |
532 | 482 | oveq2d 7180 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = -(⌊‘((𝐵 − 𝑋) / 𝑇)) → (𝑥 + (𝑘 · 𝑇)) = (𝑥 + (-(⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇))) |
533 | 532 | fveq2d 6672 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = -(⌊‘((𝐵 − 𝑋) / 𝑇)) → (𝐹‘(𝑥 + (𝑘 · 𝑇))) = (𝐹‘(𝑥 + (-(⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇)))) |
534 | 533 | eqeq1d 2740 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = -(⌊‘((𝐵 − 𝑋) / 𝑇)) → ((𝐹‘(𝑥 + (𝑘 · 𝑇))) = (𝐹‘𝑥) ↔ (𝐹‘(𝑥 + (-(⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇))) = (𝐹‘𝑥))) |
535 | 531, 534 | imbi12d 348 |
. . . . . . . . . . . . 13
⊢ (𝑘 = -(⌊‘((𝐵 − 𝑋) / 𝑇)) → (((𝜑 ∧ 𝑥 ∈ 𝐷 ∧ 𝑘 ∈ ℤ) → (𝐹‘(𝑥 + (𝑘 · 𝑇))) = (𝐹‘𝑥)) ↔ ((𝜑 ∧ 𝑥 ∈ 𝐷 ∧ -(⌊‘((𝐵 − 𝑋) / 𝑇)) ∈ ℤ) → (𝐹‘(𝑥 + (-(⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇))) = (𝐹‘𝑥)))) |
536 | | fourierdlem49.per |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷 ∧ 𝑘 ∈ ℤ) → (𝐹‘(𝑥 + (𝑘 · 𝑇))) = (𝐹‘𝑥)) |
537 | 535, 536 | vtoclg 3470 |
. . . . . . . . . . . 12
⊢
(-(⌊‘((𝐵
− 𝑋) / 𝑇)) ∈ ℤ → ((𝜑 ∧ 𝑥 ∈ 𝐷 ∧ -(⌊‘((𝐵 − 𝑋) / 𝑇)) ∈ ℤ) → (𝐹‘(𝑥 + (-(⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇))) = (𝐹‘𝑥))) |
538 | 527, 530,
537 | sylc 65 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄‘𝑖)(,)(𝐸‘𝑋))) → (𝐹‘(𝑥 + (-(⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇))) = (𝐹‘𝑥)) |
539 | 525, 538 | eqtrd 2773 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄‘𝑖)(,)(𝐸‘𝑋))) → (𝐹‘(𝑥 + -(𝑍‘𝑋))) = (𝐹‘𝑥)) |
540 | 539 | adantlr 715 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝐸‘𝑋))) limℂ (𝐸‘𝑋))) ∧ 𝑥 ∈ ((𝑄‘𝑖)(,)(𝐸‘𝑋))) → (𝐹‘(𝑥 + -(𝑍‘𝑋))) = (𝐹‘𝑥)) |
541 | | simpr 488 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝐸‘𝑋))) limℂ (𝐸‘𝑋))) → 𝑦 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝐸‘𝑋))) limℂ (𝐸‘𝑋))) |
542 | 381, 383,
387, 412, 413, 519, 540, 541 | limcperiod 42695 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝐸‘𝑋))) limℂ (𝐸‘𝑋))) → 𝑦 ∈ ((𝐹 ↾ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ ((𝑄‘𝑖)(,)(𝐸‘𝑋))𝑧 = (𝑥 + -(𝑍‘𝑋))}) limℂ ((𝐸‘𝑋) + -(𝑍‘𝑋)))) |
543 | 515 | reseq2d 5819 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ ((𝑄‘𝑖)(,)(𝐸‘𝑋))𝑧 = (𝑥 + -(𝑍‘𝑋))}) = (𝐹 ↾ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋))) |
544 | 511 | eqcomd 2744 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐸‘𝑋) + -(𝑍‘𝑋)) = 𝑋) |
545 | 543, 544 | oveq12d 7182 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ ((𝑄‘𝑖)(,)(𝐸‘𝑋))𝑧 = (𝑥 + -(𝑍‘𝑋))}) limℂ ((𝐸‘𝑋) + -(𝑍‘𝑋))) = ((𝐹 ↾ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) limℂ 𝑋)) |
546 | 545 | 3adant3 1133 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝐹 ↾ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ ((𝑄‘𝑖)(,)(𝐸‘𝑋))𝑧 = (𝑥 + -(𝑍‘𝑋))}) limℂ ((𝐸‘𝑋) + -(𝑍‘𝑋))) = ((𝐹 ↾ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) limℂ 𝑋)) |
547 | 546 | adantr 484 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝐸‘𝑋))) limℂ (𝐸‘𝑋))) → ((𝐹 ↾ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ ((𝑄‘𝑖)(,)(𝐸‘𝑋))𝑧 = (𝑥 + -(𝑍‘𝑋))}) limℂ ((𝐸‘𝑋) + -(𝑍‘𝑋))) = ((𝐹 ↾ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) limℂ 𝑋)) |
548 | 542, 547 | eleqtrd 2835 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝐸‘𝑋))) limℂ (𝐸‘𝑋))) → 𝑦 ∈ ((𝐹 ↾ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) limℂ 𝑋)) |
549 | 379 | adantr 484 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ ((𝐹 ↾ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) limℂ 𝑋)) → 𝐹:dom 𝐹⟶ℂ) |
550 | 549 | 3ad2antl1 1186 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ ((𝐹 ↾ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) limℂ 𝑋)) → 𝐹:dom 𝐹⟶ℂ) |
551 | 414 | a1i 11 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ ((𝐹 ↾ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) limℂ 𝑋)) → (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋) ⊆ ℂ) |
552 | 500, 517 | sseqtrrd 3916 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋) ⊆ dom 𝐹) |
553 | 552 | adantr 484 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ ((𝐹 ↾ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) limℂ 𝑋)) → (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋) ⊆ dom 𝐹) |
554 | 409 | adantr 484 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ ((𝐹 ↾ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) limℂ 𝑋)) → (𝑍‘𝑋) ∈ ℂ) |
555 | 554 | 3ad2antl1 1186 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ ((𝐹 ↾ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) limℂ 𝑋)) → (𝑍‘𝑋) ∈ ℂ) |
556 | | eqid 2738 |
. . . . . . . . 9
⊢ {𝑧 ∈ ℂ ∣
∃𝑥 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)𝑧 = (𝑥 + (𝑍‘𝑋))} = {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)𝑧 = (𝑥 + (𝑍‘𝑋))} |
557 | 501, 502 | npcand 11072 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (((𝑄‘𝑖) − (𝑍‘𝑋)) + (𝑍‘𝑋)) = (𝑄‘𝑖)) |
558 | 557 | eqcomd 2744 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) = (((𝑄‘𝑖) − (𝑍‘𝑋)) + (𝑍‘𝑋))) |
559 | 472 | adantr 484 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐸‘𝑋) = (𝑋 + (𝑍‘𝑋))) |
560 | 558, 559 | oveq12d 7182 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘𝑖)(,)(𝐸‘𝑋)) = ((((𝑄‘𝑖) − (𝑍‘𝑋)) + (𝑍‘𝑋))(,)(𝑋 + (𝑍‘𝑋)))) |
561 | 14 | adantr 484 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑋 ∈ ℝ) |
562 | 449, 561,
448 | iooshift 42584 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((((𝑄‘𝑖) − (𝑍‘𝑋)) + (𝑍‘𝑋))(,)(𝑋 + (𝑍‘𝑋))) = {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)𝑧 = (𝑥 + (𝑍‘𝑋))}) |
563 | 560, 562 | eqtr2d 2774 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)𝑧 = (𝑥 + (𝑍‘𝑋))} = ((𝑄‘𝑖)(,)(𝐸‘𝑋))) |
564 | 563 | 3adant3 1133 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)𝑧 = (𝑥 + (𝑍‘𝑋))} = ((𝑄‘𝑖)(,)(𝐸‘𝑋))) |
565 | 227, 564,
517 | 3sstr4d 3922 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)𝑧 = (𝑥 + (𝑍‘𝑋))} ⊆ dom 𝐹) |
566 | 565 | adantr 484 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ ((𝐹 ↾ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) limℂ 𝑋)) → {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)𝑧 = (𝑥 + (𝑍‘𝑋))} ⊆ dom 𝐹) |
567 | 407 | oveq2d 7180 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑥 + (𝑍‘𝑋)) = (𝑥 + ((⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇))) |
568 | 567 | fveq2d 6672 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐹‘(𝑥 + (𝑍‘𝑋))) = (𝐹‘(𝑥 + ((⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇)))) |
569 | 568 | adantr 484 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → (𝐹‘(𝑥 + (𝑍‘𝑋))) = (𝐹‘(𝑥 + ((⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇)))) |
570 | 569 | 3ad2antl1 1186 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → (𝐹‘(𝑥 + (𝑍‘𝑋))) = (𝐹‘(𝑥 + ((⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇)))) |
571 | 404 | adantr 484 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → (⌊‘((𝐵 − 𝑋) / 𝑇)) ∈ ℤ) |
572 | 571 | 3ad2antl1 1186 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → (⌊‘((𝐵 − 𝑋) / 𝑇)) ∈ ℤ) |
573 | | simpl1 1192 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → 𝜑) |
574 | 500 | sselda 3875 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → 𝑥 ∈ 𝐷) |
575 | 573, 574,
572 | 3jca 1129 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → (𝜑 ∧ 𝑥 ∈ 𝐷 ∧ (⌊‘((𝐵 − 𝑋) / 𝑇)) ∈ ℤ)) |
576 | | eleq1 2820 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = (⌊‘((𝐵 − 𝑋) / 𝑇)) → (𝑘 ∈ ℤ ↔ (⌊‘((𝐵 − 𝑋) / 𝑇)) ∈ ℤ)) |
577 | 576 | 3anbi3d 1443 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = (⌊‘((𝐵 − 𝑋) / 𝑇)) → ((𝜑 ∧ 𝑥 ∈ 𝐷 ∧ 𝑘 ∈ ℤ) ↔ (𝜑 ∧ 𝑥 ∈ 𝐷 ∧ (⌊‘((𝐵 − 𝑋) / 𝑇)) ∈ ℤ))) |
578 | | oveq1 7171 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = (⌊‘((𝐵 − 𝑋) / 𝑇)) → (𝑘 · 𝑇) = ((⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇)) |
579 | 578 | oveq2d 7180 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = (⌊‘((𝐵 − 𝑋) / 𝑇)) → (𝑥 + (𝑘 · 𝑇)) = (𝑥 + ((⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇))) |
580 | 579 | fveq2d 6672 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = (⌊‘((𝐵 − 𝑋) / 𝑇)) → (𝐹‘(𝑥 + (𝑘 · 𝑇))) = (𝐹‘(𝑥 + ((⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇)))) |
581 | 580 | eqeq1d 2740 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = (⌊‘((𝐵 − 𝑋) / 𝑇)) → ((𝐹‘(𝑥 + (𝑘 · 𝑇))) = (𝐹‘𝑥) ↔ (𝐹‘(𝑥 + ((⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇))) = (𝐹‘𝑥))) |
582 | 577, 581 | imbi12d 348 |
. . . . . . . . . . . . 13
⊢ (𝑘 = (⌊‘((𝐵 − 𝑋) / 𝑇)) → (((𝜑 ∧ 𝑥 ∈ 𝐷 ∧ 𝑘 ∈ ℤ) → (𝐹‘(𝑥 + (𝑘 · 𝑇))) = (𝐹‘𝑥)) ↔ ((𝜑 ∧ 𝑥 ∈ 𝐷 ∧ (⌊‘((𝐵 − 𝑋) / 𝑇)) ∈ ℤ) → (𝐹‘(𝑥 + ((⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇))) = (𝐹‘𝑥)))) |
583 | 582, 536 | vtoclg 3470 |
. . . . . . . . . . . 12
⊢
((⌊‘((𝐵
− 𝑋) / 𝑇)) ∈ ℤ → ((𝜑 ∧ 𝑥 ∈ 𝐷 ∧ (⌊‘((𝐵 − 𝑋) / 𝑇)) ∈ ℤ) → (𝐹‘(𝑥 + ((⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇))) = (𝐹‘𝑥))) |
584 | 572, 575,
583 | sylc 65 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → (𝐹‘(𝑥 + ((⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇))) = (𝐹‘𝑥)) |
585 | 570, 584 | eqtrd 2773 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → (𝐹‘(𝑥 + (𝑍‘𝑋))) = (𝐹‘𝑥)) |
586 | 585 | adantlr 715 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ ((𝐹 ↾ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) limℂ 𝑋)) ∧ 𝑥 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → (𝐹‘(𝑥 + (𝑍‘𝑋))) = (𝐹‘𝑥)) |
587 | | simpr 488 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ ((𝐹 ↾ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) limℂ 𝑋)) → 𝑦 ∈ ((𝐹 ↾ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) limℂ 𝑋)) |
588 | 550, 551,
553, 555, 556, 566, 586, 587 | limcperiod 42695 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ ((𝐹 ↾ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) limℂ 𝑋)) → 𝑦 ∈ ((𝐹 ↾ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)𝑧 = (𝑥 + (𝑍‘𝑋))}) limℂ (𝑋 + (𝑍‘𝑋)))) |
589 | 563 | reseq2d 5819 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)𝑧 = (𝑥 + (𝑍‘𝑋))}) = (𝐹 ↾ ((𝑄‘𝑖)(,)(𝐸‘𝑋)))) |
590 | 473 | adantr 484 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑋 + (𝑍‘𝑋)) = (𝐸‘𝑋)) |
591 | 589, 590 | oveq12d 7182 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)𝑧 = (𝑥 + (𝑍‘𝑋))}) limℂ (𝑋 + (𝑍‘𝑋))) = ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝐸‘𝑋))) limℂ (𝐸‘𝑋))) |
592 | 591 | 3adant3 1133 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝐹 ↾ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)𝑧 = (𝑥 + (𝑍‘𝑋))}) limℂ (𝑋 + (𝑍‘𝑋))) = ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝐸‘𝑋))) limℂ (𝐸‘𝑋))) |
593 | 592 | adantr 484 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ ((𝐹 ↾ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) limℂ 𝑋)) → ((𝐹 ↾ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)𝑧 = (𝑥 + (𝑍‘𝑋))}) limℂ (𝑋 + (𝑍‘𝑋))) = ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝐸‘𝑋))) limℂ (𝐸‘𝑋))) |
594 | 588, 593 | eleqtrd 2835 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ ((𝐹 ↾ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) limℂ 𝑋)) → 𝑦 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝐸‘𝑋))) limℂ (𝐸‘𝑋))) |
595 | 548, 594 | impbida 801 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝑦 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝐸‘𝑋))) limℂ (𝐸‘𝑋)) ↔ 𝑦 ∈ ((𝐹 ↾ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) limℂ 𝑋))) |
596 | 595 | eqrdv 2736 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝐸‘𝑋))) limℂ (𝐸‘𝑋)) = ((𝐹 ↾ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) limℂ 𝑋)) |
597 | | resindm 5868 |
. . . . . . . . . . 11
⊢ (Rel
𝐹 → (𝐹 ↾ ((-∞(,)𝑋) ∩ dom 𝐹)) = (𝐹 ↾ (-∞(,)𝑋))) |
598 | 597 | eqcomd 2744 |
. . . . . . . . . 10
⊢ (Rel
𝐹 → (𝐹 ↾ (-∞(,)𝑋)) = (𝐹 ↾ ((-∞(,)𝑋) ∩ dom 𝐹))) |
599 | 176, 598 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (𝐹 ↾ (-∞(,)𝑋)) = (𝐹 ↾ ((-∞(,)𝑋) ∩ dom 𝐹))) |
600 | 181 | ineq2d 4101 |
. . . . . . . . . 10
⊢ (𝜑 → ((-∞(,)𝑋) ∩ dom 𝐹) = ((-∞(,)𝑋) ∩ 𝐷)) |
601 | 600 | reseq2d 5819 |
. . . . . . . . 9
⊢ (𝜑 → (𝐹 ↾ ((-∞(,)𝑋) ∩ dom 𝐹)) = (𝐹 ↾ ((-∞(,)𝑋) ∩ 𝐷))) |
602 | 599, 601 | eqtrd 2773 |
. . . . . . . 8
⊢ (𝜑 → (𝐹 ↾ (-∞(,)𝑋)) = (𝐹 ↾ ((-∞(,)𝑋) ∩ 𝐷))) |
603 | 602 | oveq1d 7179 |
. . . . . . 7
⊢ (𝜑 → ((𝐹 ↾ (-∞(,)𝑋)) limℂ 𝑋) = ((𝐹 ↾ ((-∞(,)𝑋) ∩ 𝐷)) limℂ 𝑋)) |
604 | 603 | 3ad2ant1 1134 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝐹 ↾ (-∞(,)𝑋)) limℂ 𝑋) = ((𝐹 ↾ ((-∞(,)𝑋) ∩ 𝐷)) limℂ 𝑋)) |
605 | | inss2 4118 |
. . . . . . . . . 10
⊢
((-∞(,)𝑋)
∩ 𝐷) ⊆ 𝐷 |
606 | 605 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → ((-∞(,)𝑋) ∩ 𝐷) ⊆ 𝐷) |
607 | 190, 606 | fssresd 6539 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝐹 ↾ ((-∞(,)𝑋) ∩ 𝐷)):((-∞(,)𝑋) ∩ 𝐷)⟶ℂ) |
608 | 449 | mnfltd 12595 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → -∞ < ((𝑄‘𝑖) − (𝑍‘𝑋))) |
609 | 195, 450,
608 | xrltled 12619 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → -∞ ≤ ((𝑄‘𝑖) − (𝑍‘𝑋))) |
610 | | iooss1 12849 |
. . . . . . . . . . 11
⊢
((-∞ ∈ ℝ* ∧ -∞ ≤ ((𝑄‘𝑖) − (𝑍‘𝑋))) → (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋) ⊆ (-∞(,)𝑋)) |
611 | 194, 609,
610 | sylancr 590 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋) ⊆ (-∞(,)𝑋)) |
612 | 611 | 3adant3 1133 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋) ⊆ (-∞(,)𝑋)) |
613 | 612, 500 | ssind 4121 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋) ⊆ ((-∞(,)𝑋) ∩ 𝐷)) |
614 | 605, 231 | sstrid 3886 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → ((-∞(,)𝑋) ∩ 𝐷) ⊆ ℂ) |
615 | | eqid 2738 |
. . . . . . . 8
⊢
((TopOpen‘ℂfld) ↾t
(((-∞(,)𝑋) ∩
𝐷) ∪ {𝑋})) = ((TopOpen‘ℂfld)
↾t (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})) |
616 | 450 | 3adant3 1133 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝑄‘𝑖) − (𝑍‘𝑋)) ∈
ℝ*) |
617 | 452 | 3ad2ant1 1134 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → 𝑋 ∈
ℝ*) |
618 | 472 | 3ad2ant1 1134 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝐸‘𝑋) = (𝑋 + (𝑍‘𝑋))) |
619 | 238, 618 | breqtrd 5053 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝑄‘𝑖) < (𝑋 + (𝑍‘𝑋))) |
620 | 408 | 3ad2ant1 1134 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝑍‘𝑋) ∈ ℝ) |
621 | 14 | 3ad2ant1 1134 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → 𝑋 ∈ ℝ) |
622 | 211, 620,
621 | ltsubaddd 11307 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → (((𝑄‘𝑖) − (𝑍‘𝑋)) < 𝑋 ↔ (𝑄‘𝑖) < (𝑋 + (𝑍‘𝑋)))) |
623 | 619, 622 | mpbird 260 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝑄‘𝑖) − (𝑍‘𝑋)) < 𝑋) |
624 | 14 | leidd 11277 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑋 ≤ 𝑋) |
625 | 624 | 3ad2ant1 1134 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → 𝑋 ≤ 𝑋) |
626 | 616, 617,
617, 623, 625 | eliocd 42569 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → 𝑋 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,]𝑋)) |
627 | | ioounsn 12944 |
. . . . . . . . . . . 12
⊢ ((((𝑄‘𝑖) − (𝑍‘𝑋)) ∈ ℝ* ∧ 𝑋 ∈ ℝ*
∧ ((𝑄‘𝑖) − (𝑍‘𝑋)) < 𝑋) → ((((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋) ∪ {𝑋}) = (((𝑄‘𝑖) − (𝑍‘𝑋))(,]𝑋)) |
628 | 616, 617,
623, 627 | syl3anc 1372 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → ((((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋) ∪ {𝑋}) = (((𝑄‘𝑖) − (𝑍‘𝑋))(,]𝑋)) |
629 | 628 | fveq2d 6672 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) →
((int‘((TopOpen‘ℂfld) ↾t
(((-∞(,)𝑋) ∩
𝐷) ∪ {𝑋})))‘((((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋) ∪ {𝑋})) =
((int‘((TopOpen‘ℂfld) ↾t
(((-∞(,)𝑋) ∩
𝐷) ∪ {𝑋})))‘(((𝑄‘𝑖) − (𝑍‘𝑋))(,]𝑋))) |
630 | | ovex 7197 |
. . . . . . . . . . . . . 14
⊢
(-∞(,)𝑋)
∈ V |
631 | 630 | inex1 5182 |
. . . . . . . . . . . . 13
⊢
((-∞(,)𝑋)
∩ 𝐷) ∈
V |
632 | | snex 5295 |
. . . . . . . . . . . . 13
⊢ {𝑋} ∈ V |
633 | 631, 632 | unex 7481 |
. . . . . . . . . . . 12
⊢
(((-∞(,)𝑋)
∩ 𝐷) ∪ {𝑋}) ∈ V |
634 | | resttop 21904 |
. . . . . . . . . . . 12
⊢
(((TopOpen‘ℂfld) ∈ Top ∧
(((-∞(,)𝑋) ∩
𝐷) ∪ {𝑋}) ∈ V) →
((TopOpen‘ℂfld) ↾t (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})) ∈ Top) |
635 | 244, 633,
634 | mp2an 692 |
. . . . . . . . . . 11
⊢
((TopOpen‘ℂfld) ↾t
(((-∞(,)𝑋) ∩
𝐷) ∪ {𝑋})) ∈ Top |
636 | 633 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}) ∈ V) |
637 | | iooretop 23511 |
. . . . . . . . . . . . . 14
⊢ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)+∞) ∈ (topGen‘ran
(,)) |
638 | 637 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → (((𝑄‘𝑖) − (𝑍‘𝑋))(,)+∞) ∈ (topGen‘ran
(,))) |
639 | | elrestr 16798 |
. . . . . . . . . . . . 13
⊢
(((topGen‘ran (,)) ∈ Top ∧ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}) ∈ V ∧ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)+∞) ∈ (topGen‘ran
(,))) → ((((𝑄‘𝑖) − (𝑍‘𝑋))(,)+∞) ∩ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})) ∈ ((topGen‘ran (,))
↾t (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}))) |
640 | 252, 636,
638, 639 | syl3anc 1372 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → ((((𝑄‘𝑖) − (𝑍‘𝑋))(,)+∞) ∩ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})) ∈ ((topGen‘ran (,))
↾t (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}))) |
641 | 450 | adantr 484 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,]𝑋)) → ((𝑄‘𝑖) − (𝑍‘𝑋)) ∈
ℝ*) |
642 | 259 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,]𝑋)) → +∞ ∈
ℝ*) |
643 | 14 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,]𝑋)) → 𝑋 ∈ ℝ) |
644 | | iocssre 12894 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑄‘𝑖) − (𝑍‘𝑋)) ∈ ℝ* ∧ 𝑋 ∈ ℝ) → (((𝑄‘𝑖) − (𝑍‘𝑋))(,]𝑋) ⊆ ℝ) |
645 | 641, 643,
644 | syl2anc 587 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,]𝑋)) → (((𝑄‘𝑖) − (𝑍‘𝑋))(,]𝑋) ⊆ ℝ) |
646 | | simpr 488 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,]𝑋)) → 𝑥 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,]𝑋)) |
647 | 645, 646 | sseldd 3876 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,]𝑋)) → 𝑥 ∈ ℝ) |
648 | 452 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,]𝑋)) → 𝑋 ∈
ℝ*) |
649 | | iocgtlb 42564 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑄‘𝑖) − (𝑍‘𝑋)) ∈ ℝ* ∧ 𝑋 ∈ ℝ*
∧ 𝑥 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,]𝑋)) → ((𝑄‘𝑖) − (𝑍‘𝑋)) < 𝑥) |
650 | 641, 648,
646, 649 | syl3anc 1372 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,]𝑋)) → ((𝑄‘𝑖) − (𝑍‘𝑋)) < 𝑥) |
651 | 647 | ltpnfd 12592 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,]𝑋)) → 𝑥 < +∞) |
652 | 641, 642,
647, 650, 651 | eliood 42560 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,]𝑋)) → 𝑥 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)+∞)) |
653 | 652 | 3adantl3 1169 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,]𝑋)) → 𝑥 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)+∞)) |
654 | | eqvisset 3414 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = 𝑋 → 𝑋 ∈ V) |
655 | | snidg 4547 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑋 ∈ V → 𝑋 ∈ {𝑋}) |
656 | 654, 655 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = 𝑋 → 𝑋 ∈ {𝑋}) |
657 | 467, 656 | eqeltrd 2833 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑋 → 𝑥 ∈ {𝑋}) |
658 | | elun2 4065 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈ {𝑋} → 𝑥 ∈ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})) |
659 | 657, 658 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑋 → 𝑥 ∈ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})) |
660 | 659 | adantl 485 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,]𝑋)) ∧ 𝑥 = 𝑋) → 𝑥 ∈ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})) |
661 | | simpll 767 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,]𝑋)) ∧ ¬ 𝑥 = 𝑋) → (𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1))))) |
662 | 641 | adantr 484 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,]𝑋)) ∧ ¬ 𝑥 = 𝑋) → ((𝑄‘𝑖) − (𝑍‘𝑋)) ∈
ℝ*) |
663 | 452 | ad3antrrr 730 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,]𝑋)) ∧ ¬ 𝑥 = 𝑋) → 𝑋 ∈
ℝ*) |
664 | 647 | adantr 484 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,]𝑋)) ∧ ¬ 𝑥 = 𝑋) → 𝑥 ∈ ℝ) |
665 | 650 | adantr 484 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,]𝑋)) ∧ ¬ 𝑥 = 𝑋) → ((𝑄‘𝑖) − (𝑍‘𝑋)) < 𝑥) |
666 | 14 | ad3antrrr 730 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,]𝑋)) ∧ ¬ 𝑥 = 𝑋) → 𝑋 ∈ ℝ) |
667 | | iocleub 42565 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝑄‘𝑖) − (𝑍‘𝑋)) ∈ ℝ* ∧ 𝑋 ∈ ℝ*
∧ 𝑥 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,]𝑋)) → 𝑥 ≤ 𝑋) |
668 | 641, 648,
646, 667 | syl3anc 1372 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,]𝑋)) → 𝑥 ≤ 𝑋) |
669 | 668 | adantr 484 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,]𝑋)) ∧ ¬ 𝑥 = 𝑋) → 𝑥 ≤ 𝑋) |
670 | 467 | eqcoms 2746 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑋 = 𝑥 → 𝑥 = 𝑋) |
671 | 670 | necon3bi 2960 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (¬
𝑥 = 𝑋 → 𝑋 ≠ 𝑥) |
672 | 671 | adantl 485 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,]𝑋)) ∧ ¬ 𝑥 = 𝑋) → 𝑋 ≠ 𝑥) |
673 | 664, 666,
669, 672 | leneltd 10865 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,]𝑋)) ∧ ¬ 𝑥 = 𝑋) → 𝑥 < 𝑋) |
674 | 662, 663,
664, 665, 673 | eliood 42560 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,]𝑋)) ∧ ¬ 𝑥 = 𝑋) → 𝑥 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) |
675 | 674 | 3adantll3 42109 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,]𝑋)) ∧ ¬ 𝑥 = 𝑋) → 𝑥 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) |
676 | 613 | sselda 3875 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → 𝑥 ∈ ((-∞(,)𝑋) ∩ 𝐷)) |
677 | | elun1 4064 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈ ((-∞(,)𝑋) ∩ 𝐷) → 𝑥 ∈ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})) |
678 | 676, 677 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → 𝑥 ∈ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})) |
679 | 661, 675,
678 | syl2anc 587 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,]𝑋)) ∧ ¬ 𝑥 = 𝑋) → 𝑥 ∈ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})) |
680 | 660, 679 | pm2.61dan 813 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,]𝑋)) → 𝑥 ∈ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})) |
681 | 653, 680 | elind 4082 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,]𝑋)) → 𝑥 ∈ ((((𝑄‘𝑖) − (𝑍‘𝑋))(,)+∞) ∩ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}))) |
682 | 616 | adantr 484 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((((𝑄‘𝑖) − (𝑍‘𝑋))(,)+∞) ∩ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}))) → ((𝑄‘𝑖) − (𝑍‘𝑋)) ∈
ℝ*) |
683 | 617 | adantr 484 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((((𝑄‘𝑖) − (𝑍‘𝑋))(,)+∞) ∩ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}))) → 𝑋 ∈
ℝ*) |
684 | | elinel1 4083 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈ ((((𝑄‘𝑖) − (𝑍‘𝑋))(,)+∞) ∩ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})) → 𝑥 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)+∞)) |
685 | | elioore 12844 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)+∞) → 𝑥 ∈ ℝ) |
686 | 684, 685 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ ((((𝑄‘𝑖) − (𝑍‘𝑋))(,)+∞) ∩ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})) → 𝑥 ∈ ℝ) |
687 | 686 | rexrd 10762 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ ((((𝑄‘𝑖) − (𝑍‘𝑋))(,)+∞) ∩ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})) → 𝑥 ∈ ℝ*) |
688 | 687 | adantl 485 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((((𝑄‘𝑖) − (𝑍‘𝑋))(,)+∞) ∩ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}))) → 𝑥 ∈ ℝ*) |
689 | 450 | adantr 484 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((((𝑄‘𝑖) − (𝑍‘𝑋))(,)+∞) ∩ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}))) → ((𝑄‘𝑖) − (𝑍‘𝑋)) ∈
ℝ*) |
690 | 259 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((((𝑄‘𝑖) − (𝑍‘𝑋))(,)+∞) ∩ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}))) → +∞ ∈
ℝ*) |
691 | 684 | adantl 485 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((((𝑄‘𝑖) − (𝑍‘𝑋))(,)+∞) ∩ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}))) → 𝑥 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)+∞)) |
692 | | ioogtlb 42557 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑄‘𝑖) − (𝑍‘𝑋)) ∈ ℝ* ∧ +∞
∈ ℝ* ∧ 𝑥 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)+∞)) → ((𝑄‘𝑖) − (𝑍‘𝑋)) < 𝑥) |
693 | 689, 690,
691, 692 | syl3anc 1372 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((((𝑄‘𝑖) − (𝑍‘𝑋))(,)+∞) ∩ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}))) → ((𝑄‘𝑖) − (𝑍‘𝑋)) < 𝑥) |
694 | 693 | 3adantl3 1169 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((((𝑄‘𝑖) − (𝑍‘𝑋))(,)+∞) ∩ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}))) → ((𝑄‘𝑖) − (𝑍‘𝑋)) < 𝑥) |
695 | | elinel2 4084 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ ((((𝑄‘𝑖) − (𝑍‘𝑋))(,)+∞) ∩ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})) → 𝑥 ∈ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})) |
696 | | elsni 4530 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 ∈ {𝑋} → 𝑥 = 𝑋) |
697 | 696 | adantl 485 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑥 ∈ {𝑋}) → 𝑥 = 𝑋) |
698 | 624 | adantr 484 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑥 ∈ {𝑋}) → 𝑋 ≤ 𝑋) |
699 | 697, 698 | eqbrtrd 5049 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑥 ∈ {𝑋}) → 𝑥 ≤ 𝑋) |
700 | 699 | adantlr 715 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑥 ∈ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})) ∧ 𝑥 ∈ {𝑋}) → 𝑥 ≤ 𝑋) |
701 | | simpll 767 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑥 ∈ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})) ∧ ¬ 𝑥 ∈ {𝑋}) → 𝜑) |
702 | | elunnel2 42104 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑥 ∈ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}) ∧ ¬ 𝑥 ∈ {𝑋}) → 𝑥 ∈ ((-∞(,)𝑋) ∩ 𝐷)) |
703 | 702 | adantll 714 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑥 ∈ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})) ∧ ¬ 𝑥 ∈ {𝑋}) → 𝑥 ∈ ((-∞(,)𝑋) ∩ 𝐷)) |
704 | | elinel1 4083 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 ∈ ((-∞(,)𝑋) ∩ 𝐷) → 𝑥 ∈ (-∞(,)𝑋)) |
705 | 703, 704 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑥 ∈ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})) ∧ ¬ 𝑥 ∈ {𝑋}) → 𝑥 ∈ (-∞(,)𝑋)) |
706 | | elioore 12844 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 ∈ (-∞(,)𝑋) → 𝑥 ∈ ℝ) |
707 | 706 | adantl 485 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑥 ∈ (-∞(,)𝑋)) → 𝑥 ∈ ℝ) |
708 | 14 | adantr 484 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑥 ∈ (-∞(,)𝑋)) → 𝑋 ∈ ℝ) |
709 | 194 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑥 ∈ (-∞(,)𝑋)) → -∞ ∈
ℝ*) |
710 | 452 | adantr 484 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑥 ∈ (-∞(,)𝑋)) → 𝑋 ∈
ℝ*) |
711 | | simpr 488 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑥 ∈ (-∞(,)𝑋)) → 𝑥 ∈ (-∞(,)𝑋)) |
712 | | iooltub 42572 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((-∞ ∈ ℝ* ∧ 𝑋 ∈ ℝ* ∧ 𝑥 ∈ (-∞(,)𝑋)) → 𝑥 < 𝑋) |
713 | 709, 710,
711, 712 | syl3anc 1372 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑥 ∈ (-∞(,)𝑋)) → 𝑥 < 𝑋) |
714 | 707, 708,
713 | ltled 10859 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑥 ∈ (-∞(,)𝑋)) → 𝑥 ≤ 𝑋) |
715 | 701, 705,
714 | syl2anc 587 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑥 ∈ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})) ∧ ¬ 𝑥 ∈ {𝑋}) → 𝑥 ≤ 𝑋) |
716 | 700, 715 | pm2.61dan 813 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})) → 𝑥 ≤ 𝑋) |
717 | 695, 716 | sylan2 596 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ ((((𝑄‘𝑖) − (𝑍‘𝑋))(,)+∞) ∩ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}))) → 𝑥 ≤ 𝑋) |
718 | 717 | 3ad2antl1 1186 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((((𝑄‘𝑖) − (𝑍‘𝑋))(,)+∞) ∩ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}))) → 𝑥 ≤ 𝑋) |
719 | 682, 683,
688, 694, 718 | eliocd 42569 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((((𝑄‘𝑖) − (𝑍‘𝑋))(,)+∞) ∩ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}))) → 𝑥 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,]𝑋)) |
720 | 681, 719 | impbida 801 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝑥 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,]𝑋) ↔ 𝑥 ∈ ((((𝑄‘𝑖) − (𝑍‘𝑋))(,)+∞) ∩ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})))) |
721 | 720 | eqrdv 2736 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → (((𝑄‘𝑖) − (𝑍‘𝑋))(,]𝑋) = ((((𝑄‘𝑖) − (𝑍‘𝑋))(,)+∞) ∩ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}))) |
722 | 605, 229 | sstrid 3886 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((-∞(,)𝑋) ∩ 𝐷) ⊆ ℝ) |
723 | 14 | snssd 4694 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → {𝑋} ⊆ ℝ) |
724 | 722, 723 | unssd 4074 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}) ⊆ ℝ) |
725 | 724 | 3ad2ant1 1134 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}) ⊆ ℝ) |
726 | 233, 366 | rerest 23549 |
. . . . . . . . . . . . 13
⊢
((((-∞(,)𝑋)
∩ 𝐷) ∪ {𝑋}) ⊆ ℝ →
((TopOpen‘ℂfld) ↾t (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})) = ((topGen‘ran (,))
↾t (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}))) |
727 | 725, 726 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) →
((TopOpen‘ℂfld) ↾t (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})) = ((topGen‘ran (,))
↾t (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}))) |
728 | 640, 721,
727 | 3eltr4d 2848 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → (((𝑄‘𝑖) − (𝑍‘𝑋))(,]𝑋) ∈
((TopOpen‘ℂfld) ↾t (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}))) |
729 | | isopn3i 21826 |
. . . . . . . . . . 11
⊢
((((TopOpen‘ℂfld) ↾t
(((-∞(,)𝑋) ∩
𝐷) ∪ {𝑋})) ∈ Top ∧ (((𝑄‘𝑖) − (𝑍‘𝑋))(,]𝑋) ∈
((TopOpen‘ℂfld) ↾t (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}))) →
((int‘((TopOpen‘ℂfld) ↾t
(((-∞(,)𝑋) ∩
𝐷) ∪ {𝑋})))‘(((𝑄‘𝑖) − (𝑍‘𝑋))(,]𝑋)) = (((𝑄‘𝑖) − (𝑍‘𝑋))(,]𝑋)) |
730 | 635, 728,
729 | sylancr 590 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) →
((int‘((TopOpen‘ℂfld) ↾t
(((-∞(,)𝑋) ∩
𝐷) ∪ {𝑋})))‘(((𝑄‘𝑖) − (𝑍‘𝑋))(,]𝑋)) = (((𝑄‘𝑖) − (𝑍‘𝑋))(,]𝑋)) |
731 | 629, 730 | eqtr2d 2774 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → (((𝑄‘𝑖) − (𝑍‘𝑋))(,]𝑋) =
((int‘((TopOpen‘ℂfld) ↾t
(((-∞(,)𝑋) ∩
𝐷) ∪ {𝑋})))‘((((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋) ∪ {𝑋}))) |
732 | 626, 731 | eleqtrd 2835 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → 𝑋 ∈
((int‘((TopOpen‘ℂfld) ↾t
(((-∞(,)𝑋) ∩
𝐷) ∪ {𝑋})))‘((((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋) ∪ {𝑋}))) |
733 | 607, 613,
614, 233, 615, 732 | limcres 24630 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → (((𝐹 ↾ ((-∞(,)𝑋) ∩ 𝐷)) ↾ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) limℂ 𝑋) = ((𝐹 ↾ ((-∞(,)𝑋) ∩ 𝐷)) limℂ 𝑋)) |
734 | 733 | eqcomd 2744 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝐹 ↾ ((-∞(,)𝑋) ∩ 𝐷)) limℂ 𝑋) = (((𝐹 ↾ ((-∞(,)𝑋) ∩ 𝐷)) ↾ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) limℂ 𝑋)) |
735 | 613 | resabs1d 5850 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝐹 ↾ ((-∞(,)𝑋) ∩ 𝐷)) ↾ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) = (𝐹 ↾ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋))) |
736 | 735 | oveq1d 7179 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → (((𝐹 ↾ ((-∞(,)𝑋) ∩ 𝐷)) ↾ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) limℂ 𝑋) = ((𝐹 ↾ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) limℂ 𝑋)) |
737 | 604, 734,
736 | 3eqtrrd 2778 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝐹 ↾ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) limℂ 𝑋) = ((𝐹 ↾ (-∞(,)𝑋)) limℂ 𝑋)) |
738 | 377, 596,
737 | 3eqtrrd 2778 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝐹 ↾ (-∞(,)𝑋)) limℂ 𝑋) = ((𝐹 ↾ (-∞(,)(𝐸‘𝑋))) limℂ (𝐸‘𝑋))) |
739 | 738 | rexlimdv3a 3195 |
. . 3
⊢ (𝜑 → (∃𝑖 ∈ (0..^𝑀)(𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1))) → ((𝐹 ↾ (-∞(,)𝑋)) limℂ 𝑋) = ((𝐹 ↾ (-∞(,)(𝐸‘𝑋))) limℂ (𝐸‘𝑋)))) |
740 | 173, 739 | mpd 15 |
. 2
⊢ (𝜑 → ((𝐹 ↾ (-∞(,)𝑋)) limℂ 𝑋) = ((𝐹 ↾ (-∞(,)(𝐸‘𝑋))) limℂ (𝐸‘𝑋))) |
741 | 120 | 3adant3 1133 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝑄‘𝑖) < (𝑄‘(𝑖 + 1))) |
742 | 218 | 3adant3 1133 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) |
743 | | fourierdlem49.l |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1)))) |
744 | 743 | 3adant3 1133 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → 𝐿 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1)))) |
745 | | eqid 2738 |
. . . . . . . 8
⊢ if((𝐸‘𝑋) = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘(𝐸‘𝑋))) = if((𝐸‘𝑋) = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘(𝐸‘𝑋))) |
746 | | eqid 2738 |
. . . . . . . 8
⊢
((TopOpen‘ℂfld) ↾t (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) =
((TopOpen‘ℂfld) ↾t (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) |
747 | 211, 209,
741, 742, 744, 211, 235, 238, 217, 745, 746 | fourierdlem33 43207 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → if((𝐸‘𝑋) = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘(𝐸‘𝑋))) ∈ (((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ↾ ((𝑄‘𝑖)(,)(𝐸‘𝑋))) limℂ (𝐸‘𝑋))) |
748 | 217 | resabs1d 5850 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ↾ ((𝑄‘𝑖)(,)(𝐸‘𝑋))) = (𝐹 ↾ ((𝑄‘𝑖)(,)(𝐸‘𝑋)))) |
749 | 748 | oveq1d 7179 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → (((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ↾ ((𝑄‘𝑖)(,)(𝐸‘𝑋))) limℂ (𝐸‘𝑋)) = ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝐸‘𝑋))) limℂ (𝐸‘𝑋))) |
750 | 747, 749 | eleqtrd 2835 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → if((𝐸‘𝑋) = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘(𝐸‘𝑋))) ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝐸‘𝑋))) limℂ (𝐸‘𝑋))) |
751 | | ne0i 4221 |
. . . . . 6
⊢
(if((𝐸‘𝑋) = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))‘(𝐸‘𝑋))) ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝐸‘𝑋))) limℂ (𝐸‘𝑋)) → ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝐸‘𝑋))) limℂ (𝐸‘𝑋)) ≠ ∅) |
752 | 750, 751 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝐸‘𝑋))) limℂ (𝐸‘𝑋)) ≠ ∅) |
753 | 377, 752 | eqnetrd 3001 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝐹 ↾ (-∞(,)(𝐸‘𝑋))) limℂ (𝐸‘𝑋)) ≠ ∅) |
754 | 753 | rexlimdv3a 3195 |
. . 3
⊢ (𝜑 → (∃𝑖 ∈ (0..^𝑀)(𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1))) → ((𝐹 ↾ (-∞(,)(𝐸‘𝑋))) limℂ (𝐸‘𝑋)) ≠ ∅)) |
755 | 173, 754 | mpd 15 |
. 2
⊢ (𝜑 → ((𝐹 ↾ (-∞(,)(𝐸‘𝑋))) limℂ (𝐸‘𝑋)) ≠ ∅) |
756 | 740, 755 | eqnetrd 3001 |
1
⊢ (𝜑 → ((𝐹 ↾ (-∞(,)𝑋)) limℂ 𝑋) ≠ ∅) |