Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem49 Structured version   Visualization version   GIF version

Theorem fourierdlem49 44386
Description: The given periodic function 𝐹 has a left limit at every point in the reals. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem49.a (𝜑𝐴 ∈ ℝ)
fourierdlem49.b (𝜑𝐵 ∈ ℝ)
fourierdlem49.altb (𝜑𝐴 < 𝐵)
fourierdlem49.p 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem49.t 𝑇 = (𝐵𝐴)
fourierdlem49.m (𝜑𝑀 ∈ ℕ)
fourierdlem49.q (𝜑𝑄 ∈ (𝑃𝑀))
fourierdlem49.d (𝜑𝐷 ⊆ ℝ)
fourierdlem49.f (𝜑𝐹:𝐷⟶ℝ)
fourierdlem49.dper ((𝜑𝑥𝐷𝑘 ∈ ℤ) → (𝑥 + (𝑘 · 𝑇)) ∈ 𝐷)
fourierdlem49.per ((𝜑𝑥𝐷𝑘 ∈ ℤ) → (𝐹‘(𝑥 + (𝑘 · 𝑇))) = (𝐹𝑥))
fourierdlem49.cn ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
fourierdlem49.l ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
fourierdlem49.x (𝜑𝑋 ∈ ℝ)
fourierdlem49.z 𝑍 = (𝑥 ∈ ℝ ↦ ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇))
fourierdlem49.e 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + (𝑍𝑥)))
Assertion
Ref Expression
fourierdlem49 (𝜑 → ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋) ≠ ∅)
Distinct variable groups:   𝐴,𝑖,𝑚,𝑝   𝑥,𝐴,𝑖   𝐵,𝑖,𝑘   𝐵,𝑚,𝑝   𝑥,𝐵,𝑘   𝐷,𝑘,𝑥   𝑖,𝐸,𝑘,𝑥   𝑖,𝐹,𝑘,𝑥   𝑖,𝑀,𝑘   𝑚,𝑀,𝑝   𝑥,𝑀   𝑄,𝑖,𝑘   𝑄,𝑝   𝑥,𝑄   𝑇,𝑘,𝑥   𝑖,𝑋,𝑘,𝑥   𝑘,𝑍,𝑥   𝜑,𝑖,𝑘,𝑥
Allowed substitution hints:   𝜑(𝑚,𝑝)   𝐴(𝑘)   𝐷(𝑖,𝑚,𝑝)   𝑃(𝑥,𝑖,𝑘,𝑚,𝑝)   𝑄(𝑚)   𝑇(𝑖,𝑚,𝑝)   𝐸(𝑚,𝑝)   𝐹(𝑚,𝑝)   𝐿(𝑥,𝑖,𝑘,𝑚,𝑝)   𝑋(𝑚,𝑝)   𝑍(𝑖,𝑚,𝑝)

Proof of Theorem fourierdlem49
Dummy variables 𝑗 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fourierdlem49.a . . . . . 6 (𝜑𝐴 ∈ ℝ)
2 fourierdlem49.b . . . . . 6 (𝜑𝐵 ∈ ℝ)
3 fourierdlem49.altb . . . . . 6 (𝜑𝐴 < 𝐵)
4 fourierdlem49.t . . . . . 6 𝑇 = (𝐵𝐴)
5 fourierdlem49.e . . . . . . 7 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + (𝑍𝑥)))
6 ovex 7390 . . . . . . . . . 10 ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇) ∈ V
7 fourierdlem49.z . . . . . . . . . . 11 𝑍 = (𝑥 ∈ ℝ ↦ ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇))
87fvmpt2 6959 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇) ∈ V) → (𝑍𝑥) = ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇))
96, 8mpan2 689 . . . . . . . . 9 (𝑥 ∈ ℝ → (𝑍𝑥) = ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇))
109oveq2d 7373 . . . . . . . 8 (𝑥 ∈ ℝ → (𝑥 + (𝑍𝑥)) = (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
1110mpteq2ia 5208 . . . . . . 7 (𝑥 ∈ ℝ ↦ (𝑥 + (𝑍𝑥))) = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
125, 11eqtri 2764 . . . . . 6 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
131, 2, 3, 4, 12fourierdlem4 44342 . . . . 5 (𝜑𝐸:ℝ⟶(𝐴(,]𝐵))
14 fourierdlem49.x . . . . 5 (𝜑𝑋 ∈ ℝ)
1513, 14ffvelcdmd 7036 . . . 4 (𝜑 → (𝐸𝑋) ∈ (𝐴(,]𝐵))
16 simpr 485 . . . . . . 7 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ (𝐸𝑋) ∈ ran 𝑄) → (𝐸𝑋) ∈ ran 𝑄)
17 fourierdlem49.q . . . . . . . . . . . . 13 (𝜑𝑄 ∈ (𝑃𝑀))
18 fourierdlem49.m . . . . . . . . . . . . . 14 (𝜑𝑀 ∈ ℕ)
19 fourierdlem49.p . . . . . . . . . . . . . . 15 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
2019fourierdlem2 44340 . . . . . . . . . . . . . 14 (𝑀 ∈ ℕ → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
2118, 20syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
2217, 21mpbid 231 . . . . . . . . . . . 12 (𝜑 → (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))))
2322simpld 495 . . . . . . . . . . 11 (𝜑𝑄 ∈ (ℝ ↑m (0...𝑀)))
24 elmapi 8787 . . . . . . . . . . 11 (𝑄 ∈ (ℝ ↑m (0...𝑀)) → 𝑄:(0...𝑀)⟶ℝ)
2523, 24syl 17 . . . . . . . . . 10 (𝜑𝑄:(0...𝑀)⟶ℝ)
26 ffn 6668 . . . . . . . . . 10 (𝑄:(0...𝑀)⟶ℝ → 𝑄 Fn (0...𝑀))
2725, 26syl 17 . . . . . . . . 9 (𝜑𝑄 Fn (0...𝑀))
2827ad2antrr 724 . . . . . . . 8 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ (𝐸𝑋) ∈ ran 𝑄) → 𝑄 Fn (0...𝑀))
29 fvelrnb 6903 . . . . . . . 8 (𝑄 Fn (0...𝑀) → ((𝐸𝑋) ∈ ran 𝑄 ↔ ∃𝑗 ∈ (0...𝑀)(𝑄𝑗) = (𝐸𝑋)))
3028, 29syl 17 . . . . . . 7 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ (𝐸𝑋) ∈ ran 𝑄) → ((𝐸𝑋) ∈ ran 𝑄 ↔ ∃𝑗 ∈ (0...𝑀)(𝑄𝑗) = (𝐸𝑋)))
3116, 30mpbid 231 . . . . . 6 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ (𝐸𝑋) ∈ ran 𝑄) → ∃𝑗 ∈ (0...𝑀)(𝑄𝑗) = (𝐸𝑋))
32 1zzd 12534 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 1 ∈ ℤ)
33 elfzelz 13441 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℤ)
3433ad2antlr 725 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 𝑗 ∈ ℤ)
35 1e0p1 12660 . . . . . . . . . . . . . . . . 17 1 = (0 + 1)
3635a1i 11 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 1 = (0 + 1))
3734zred 12607 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 𝑗 ∈ ℝ)
38 elfzle1 13444 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ (0...𝑀) → 0 ≤ 𝑗)
3938ad2antlr 725 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 0 ≤ 𝑗)
40 id 22 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑄𝑗) = (𝐸𝑋) → (𝑄𝑗) = (𝐸𝑋))
4140eqcomd 2742 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑄𝑗) = (𝐸𝑋) → (𝐸𝑋) = (𝑄𝑗))
4241ad2antlr 725 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑄𝑗) = (𝐸𝑋)) ∧ 𝑗 = 0) → (𝐸𝑋) = (𝑄𝑗))
43 fveq2 6842 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑗 = 0 → (𝑄𝑗) = (𝑄‘0))
4443adantl 482 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑄𝑗) = (𝐸𝑋)) ∧ 𝑗 = 0) → (𝑄𝑗) = (𝑄‘0))
4522simprld 770 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → ((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵))
4645simpld 495 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝑄‘0) = 𝐴)
4746ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑄𝑗) = (𝐸𝑋)) ∧ 𝑗 = 0) → (𝑄‘0) = 𝐴)
4842, 44, 473eqtrd 2780 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑄𝑗) = (𝐸𝑋)) ∧ 𝑗 = 0) → (𝐸𝑋) = 𝐴)
4948adantllr 717 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ (𝑄𝑗) = (𝐸𝑋)) ∧ 𝑗 = 0) → (𝐸𝑋) = 𝐴)
5049adantllr 717 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) ∧ 𝑗 = 0) → (𝐸𝑋) = 𝐴)
511adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) → 𝐴 ∈ ℝ)
521rexrd 11205 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐴 ∈ ℝ*)
5352adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) → 𝐴 ∈ ℝ*)
542rexrd 11205 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐵 ∈ ℝ*)
5554adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) → 𝐵 ∈ ℝ*)
56 simpr 485 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) → (𝐸𝑋) ∈ (𝐴(,]𝐵))
57 iocgtlb 43730 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) → 𝐴 < (𝐸𝑋))
5853, 55, 56, 57syl3anc 1371 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) → 𝐴 < (𝐸𝑋))
5951, 58gtned 11290 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) → (𝐸𝑋) ≠ 𝐴)
6059neneqd 2948 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) → ¬ (𝐸𝑋) = 𝐴)
6160ad3antrrr 728 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) ∧ 𝑗 = 0) → ¬ (𝐸𝑋) = 𝐴)
6250, 61pm2.65da 815 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → ¬ 𝑗 = 0)
6362neqned 2950 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 𝑗 ≠ 0)
6437, 39, 63ne0gt0d 11292 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 0 < 𝑗)
65 0zd 12511 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 0 ∈ ℤ)
66 zltp1le 12553 . . . . . . . . . . . . . . . . . 18 ((0 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (0 < 𝑗 ↔ (0 + 1) ≤ 𝑗))
6765, 34, 66syl2anc 584 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (0 < 𝑗 ↔ (0 + 1) ≤ 𝑗))
6864, 67mpbid 231 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (0 + 1) ≤ 𝑗)
6936, 68eqbrtrd 5127 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 1 ≤ 𝑗)
70 eluz2 12769 . . . . . . . . . . . . . . 15 (𝑗 ∈ (ℤ‘1) ↔ (1 ∈ ℤ ∧ 𝑗 ∈ ℤ ∧ 1 ≤ 𝑗))
7132, 34, 69, 70syl3anbrc 1343 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 𝑗 ∈ (ℤ‘1))
72 nnuz 12806 . . . . . . . . . . . . . 14 ℕ = (ℤ‘1)
7371, 72eleqtrrdi 2849 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 𝑗 ∈ ℕ)
74 nnm1nn0 12454 . . . . . . . . . . . . 13 (𝑗 ∈ ℕ → (𝑗 − 1) ∈ ℕ0)
7573, 74syl 17 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑗 − 1) ∈ ℕ0)
76 nn0uz 12805 . . . . . . . . . . . . 13 0 = (ℤ‘0)
7776a1i 11 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → ℕ0 = (ℤ‘0))
7875, 77eleqtrd 2840 . . . . . . . . . . 11 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑗 − 1) ∈ (ℤ‘0))
7918nnzd 12526 . . . . . . . . . . . 12 (𝜑𝑀 ∈ ℤ)
8079ad3antrrr 728 . . . . . . . . . . 11 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 𝑀 ∈ ℤ)
81 peano2zm 12546 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℤ → (𝑗 − 1) ∈ ℤ)
8233, 81syl 17 . . . . . . . . . . . . . 14 (𝑗 ∈ (0...𝑀) → (𝑗 − 1) ∈ ℤ)
8382zred 12607 . . . . . . . . . . . . 13 (𝑗 ∈ (0...𝑀) → (𝑗 − 1) ∈ ℝ)
8433zred 12607 . . . . . . . . . . . . 13 (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℝ)
85 elfzel2 13439 . . . . . . . . . . . . . 14 (𝑗 ∈ (0...𝑀) → 𝑀 ∈ ℤ)
8685zred 12607 . . . . . . . . . . . . 13 (𝑗 ∈ (0...𝑀) → 𝑀 ∈ ℝ)
8784ltm1d 12087 . . . . . . . . . . . . 13 (𝑗 ∈ (0...𝑀) → (𝑗 − 1) < 𝑗)
88 elfzle2 13445 . . . . . . . . . . . . 13 (𝑗 ∈ (0...𝑀) → 𝑗𝑀)
8983, 84, 86, 87, 88ltletrd 11315 . . . . . . . . . . . 12 (𝑗 ∈ (0...𝑀) → (𝑗 − 1) < 𝑀)
9089ad2antlr 725 . . . . . . . . . . 11 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑗 − 1) < 𝑀)
91 elfzo2 13575 . . . . . . . . . . 11 ((𝑗 − 1) ∈ (0..^𝑀) ↔ ((𝑗 − 1) ∈ (ℤ‘0) ∧ 𝑀 ∈ ℤ ∧ (𝑗 − 1) < 𝑀))
9278, 80, 90, 91syl3anbrc 1343 . . . . . . . . . 10 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑗 − 1) ∈ (0..^𝑀))
9325ad3antrrr 728 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 𝑄:(0...𝑀)⟶ℝ)
9434, 81syl 17 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑗 − 1) ∈ ℤ)
9575nn0ge0d 12476 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 0 ≤ (𝑗 − 1))
9683, 86, 89ltled 11303 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (0...𝑀) → (𝑗 − 1) ≤ 𝑀)
9796ad2antlr 725 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑗 − 1) ≤ 𝑀)
9865, 80, 94, 95, 97elfzd 13432 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑗 − 1) ∈ (0...𝑀))
9993, 98ffvelcdmd 7036 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑄‘(𝑗 − 1)) ∈ ℝ)
10099rexrd 11205 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑄‘(𝑗 − 1)) ∈ ℝ*)
10125ffvelcdmda 7035 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (0...𝑀)) → (𝑄𝑗) ∈ ℝ)
102101rexrd 11205 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (0...𝑀)) → (𝑄𝑗) ∈ ℝ*)
103102adantlr 713 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) → (𝑄𝑗) ∈ ℝ*)
104103adantr 481 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑄𝑗) ∈ ℝ*)
105 iocssre 13344 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐴(,]𝐵) ⊆ ℝ)
10652, 2, 105syl2anc 584 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴(,]𝐵) ⊆ ℝ)
107106sselda 3944 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) → (𝐸𝑋) ∈ ℝ)
108107rexrd 11205 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) → (𝐸𝑋) ∈ ℝ*)
109108ad2antrr 724 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝐸𝑋) ∈ ℝ*)
110 simplll 773 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 𝜑)
111 ovex 7390 . . . . . . . . . . . . . . . 16 (𝑗 − 1) ∈ V
112 eleq1 2825 . . . . . . . . . . . . . . . . . 18 (𝑖 = (𝑗 − 1) → (𝑖 ∈ (0..^𝑀) ↔ (𝑗 − 1) ∈ (0..^𝑀)))
113112anbi2d 629 . . . . . . . . . . . . . . . . 17 (𝑖 = (𝑗 − 1) → ((𝜑𝑖 ∈ (0..^𝑀)) ↔ (𝜑 ∧ (𝑗 − 1) ∈ (0..^𝑀))))
114 fveq2 6842 . . . . . . . . . . . . . . . . . 18 (𝑖 = (𝑗 − 1) → (𝑄𝑖) = (𝑄‘(𝑗 − 1)))
115 oveq1 7364 . . . . . . . . . . . . . . . . . . 19 (𝑖 = (𝑗 − 1) → (𝑖 + 1) = ((𝑗 − 1) + 1))
116115fveq2d 6846 . . . . . . . . . . . . . . . . . 18 (𝑖 = (𝑗 − 1) → (𝑄‘(𝑖 + 1)) = (𝑄‘((𝑗 − 1) + 1)))
117114, 116breq12d 5118 . . . . . . . . . . . . . . . . 17 (𝑖 = (𝑗 − 1) → ((𝑄𝑖) < (𝑄‘(𝑖 + 1)) ↔ (𝑄‘(𝑗 − 1)) < (𝑄‘((𝑗 − 1) + 1))))
118113, 117imbi12d 344 . . . . . . . . . . . . . . . 16 (𝑖 = (𝑗 − 1) → (((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) < (𝑄‘(𝑖 + 1))) ↔ ((𝜑 ∧ (𝑗 − 1) ∈ (0..^𝑀)) → (𝑄‘(𝑗 − 1)) < (𝑄‘((𝑗 − 1) + 1)))))
11922simprrd 772 . . . . . . . . . . . . . . . . 17 (𝜑 → ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))
120119r19.21bi 3234 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) < (𝑄‘(𝑖 + 1)))
121111, 118, 120vtocl 3518 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑗 − 1) ∈ (0..^𝑀)) → (𝑄‘(𝑗 − 1)) < (𝑄‘((𝑗 − 1) + 1)))
122110, 92, 121syl2anc 584 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑄‘(𝑗 − 1)) < (𝑄‘((𝑗 − 1) + 1)))
12333zcnd 12608 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℂ)
124 1cnd 11150 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ (0...𝑀) → 1 ∈ ℂ)
125123, 124npcand 11516 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ (0...𝑀) → ((𝑗 − 1) + 1) = 𝑗)
126125eqcomd 2742 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (0...𝑀) → 𝑗 = ((𝑗 − 1) + 1))
127126fveq2d 6846 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (0...𝑀) → (𝑄𝑗) = (𝑄‘((𝑗 − 1) + 1)))
128127eqcomd 2742 . . . . . . . . . . . . . . 15 (𝑗 ∈ (0...𝑀) → (𝑄‘((𝑗 − 1) + 1)) = (𝑄𝑗))
129128ad2antlr 725 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑄‘((𝑗 − 1) + 1)) = (𝑄𝑗))
130122, 129breqtrd 5131 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑄‘(𝑗 − 1)) < (𝑄𝑗))
131 simpr 485 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑄𝑗) = (𝐸𝑋))
132130, 131breqtrd 5131 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑄‘(𝑗 − 1)) < (𝐸𝑋))
133106, 15sseldd 3945 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐸𝑋) ∈ ℝ)
134133leidd 11721 . . . . . . . . . . . . . . 15 (𝜑 → (𝐸𝑋) ≤ (𝐸𝑋))
135134ad2antrr 724 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝐸𝑋) ≤ (𝐸𝑋))
13641adantl 482 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝐸𝑋) = (𝑄𝑗))
137135, 136breqtrd 5131 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝐸𝑋) ≤ (𝑄𝑗))
138137adantllr 717 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝐸𝑋) ≤ (𝑄𝑗))
139100, 104, 109, 132, 138eliocd 43735 . . . . . . . . . . 11 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝐸𝑋) ∈ ((𝑄‘(𝑗 − 1))(,](𝑄𝑗)))
140127oveq2d 7373 . . . . . . . . . . . 12 (𝑗 ∈ (0...𝑀) → ((𝑄‘(𝑗 − 1))(,](𝑄𝑗)) = ((𝑄‘(𝑗 − 1))(,](𝑄‘((𝑗 − 1) + 1))))
141140ad2antlr 725 . . . . . . . . . . 11 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → ((𝑄‘(𝑗 − 1))(,](𝑄𝑗)) = ((𝑄‘(𝑗 − 1))(,](𝑄‘((𝑗 − 1) + 1))))
142139, 141eleqtrd 2840 . . . . . . . . . 10 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝐸𝑋) ∈ ((𝑄‘(𝑗 − 1))(,](𝑄‘((𝑗 − 1) + 1))))
143114, 116oveq12d 7375 . . . . . . . . . . . 12 (𝑖 = (𝑗 − 1) → ((𝑄𝑖)(,](𝑄‘(𝑖 + 1))) = ((𝑄‘(𝑗 − 1))(,](𝑄‘((𝑗 − 1) + 1))))
144143eleq2d 2823 . . . . . . . . . . 11 (𝑖 = (𝑗 − 1) → ((𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1))) ↔ (𝐸𝑋) ∈ ((𝑄‘(𝑗 − 1))(,](𝑄‘((𝑗 − 1) + 1)))))
145144rspcev 3581 . . . . . . . . . 10 (((𝑗 − 1) ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄‘(𝑗 − 1))(,](𝑄‘((𝑗 − 1) + 1)))) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1))))
14692, 142, 145syl2anc 584 . . . . . . . . 9 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1))))
147146ex 413 . . . . . . . 8 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) → ((𝑄𝑗) = (𝐸𝑋) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))))
148147adantlr 713 . . . . . . 7 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ (𝐸𝑋) ∈ ran 𝑄) ∧ 𝑗 ∈ (0...𝑀)) → ((𝑄𝑗) = (𝐸𝑋) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))))
149148rexlimdva 3152 . . . . . 6 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ (𝐸𝑋) ∈ ran 𝑄) → (∃𝑗 ∈ (0...𝑀)(𝑄𝑗) = (𝐸𝑋) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))))
15031, 149mpd 15 . . . . 5 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ (𝐸𝑋) ∈ ran 𝑄) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1))))
15118ad2antrr 724 . . . . . . 7 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ ¬ (𝐸𝑋) ∈ ran 𝑄) → 𝑀 ∈ ℕ)
15225ad2antrr 724 . . . . . . 7 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ ¬ (𝐸𝑋) ∈ ran 𝑄) → 𝑄:(0...𝑀)⟶ℝ)
153 iocssicc 13354 . . . . . . . . . 10 (𝐴(,]𝐵) ⊆ (𝐴[,]𝐵)
15446eqcomd 2742 . . . . . . . . . . 11 (𝜑𝐴 = (𝑄‘0))
15545simprd 496 . . . . . . . . . . . 12 (𝜑 → (𝑄𝑀) = 𝐵)
156155eqcomd 2742 . . . . . . . . . . 11 (𝜑𝐵 = (𝑄𝑀))
157154, 156oveq12d 7375 . . . . . . . . . 10 (𝜑 → (𝐴[,]𝐵) = ((𝑄‘0)[,](𝑄𝑀)))
158153, 157sseqtrid 3996 . . . . . . . . 9 (𝜑 → (𝐴(,]𝐵) ⊆ ((𝑄‘0)[,](𝑄𝑀)))
159158sselda 3944 . . . . . . . 8 ((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) → (𝐸𝑋) ∈ ((𝑄‘0)[,](𝑄𝑀)))
160159adantr 481 . . . . . . 7 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ ¬ (𝐸𝑋) ∈ ran 𝑄) → (𝐸𝑋) ∈ ((𝑄‘0)[,](𝑄𝑀)))
161 simpr 485 . . . . . . 7 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ ¬ (𝐸𝑋) ∈ ran 𝑄) → ¬ (𝐸𝑋) ∈ ran 𝑄)
162 fveq2 6842 . . . . . . . . . 10 (𝑘 = 𝑗 → (𝑄𝑘) = (𝑄𝑗))
163162breq1d 5115 . . . . . . . . 9 (𝑘 = 𝑗 → ((𝑄𝑘) < (𝐸𝑋) ↔ (𝑄𝑗) < (𝐸𝑋)))
164163cbvrabv 3417 . . . . . . . 8 {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < (𝐸𝑋)} = {𝑗 ∈ (0..^𝑀) ∣ (𝑄𝑗) < (𝐸𝑋)}
165164supeq1i 9383 . . . . . . 7 sup({𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < (𝐸𝑋)}, ℝ, < ) = sup({𝑗 ∈ (0..^𝑀) ∣ (𝑄𝑗) < (𝐸𝑋)}, ℝ, < )
166151, 152, 160, 161, 165fourierdlem25 44363 . . . . . 6 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ ¬ (𝐸𝑋) ∈ ran 𝑄) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
167 ioossioc 43720 . . . . . . . . 9 ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))
168167sseli 3940 . . . . . . . 8 ((𝐸𝑋) ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) → (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1))))
169168a1i 11 . . . . . . 7 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ ¬ (𝐸𝑋) ∈ ran 𝑄) ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐸𝑋) ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) → (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))))
170169reximdva 3165 . . . . . 6 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ ¬ (𝐸𝑋) ∈ ran 𝑄) → (∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))))
171166, 170mpd 15 . . . . 5 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ ¬ (𝐸𝑋) ∈ ran 𝑄) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1))))
172150, 171pm2.61dan 811 . . . 4 ((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1))))
17315, 172mpdan 685 . . 3 (𝜑 → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1))))
174 fourierdlem49.f . . . . . . . . . . 11 (𝜑𝐹:𝐷⟶ℝ)
175 frel 6673 . . . . . . . . . . 11 (𝐹:𝐷⟶ℝ → Rel 𝐹)
176174, 175syl 17 . . . . . . . . . 10 (𝜑 → Rel 𝐹)
177 resindm 5986 . . . . . . . . . . 11 (Rel 𝐹 → (𝐹 ↾ ((-∞(,)(𝐸𝑋)) ∩ dom 𝐹)) = (𝐹 ↾ (-∞(,)(𝐸𝑋))))
178177eqcomd 2742 . . . . . . . . . 10 (Rel 𝐹 → (𝐹 ↾ (-∞(,)(𝐸𝑋))) = (𝐹 ↾ ((-∞(,)(𝐸𝑋)) ∩ dom 𝐹)))
179176, 178syl 17 . . . . . . . . 9 (𝜑 → (𝐹 ↾ (-∞(,)(𝐸𝑋))) = (𝐹 ↾ ((-∞(,)(𝐸𝑋)) ∩ dom 𝐹)))
180 fdm 6677 . . . . . . . . . . . 12 (𝐹:𝐷⟶ℝ → dom 𝐹 = 𝐷)
181174, 180syl 17 . . . . . . . . . . 11 (𝜑 → dom 𝐹 = 𝐷)
182181ineq2d 4172 . . . . . . . . . 10 (𝜑 → ((-∞(,)(𝐸𝑋)) ∩ dom 𝐹) = ((-∞(,)(𝐸𝑋)) ∩ 𝐷))
183182reseq2d 5937 . . . . . . . . 9 (𝜑 → (𝐹 ↾ ((-∞(,)(𝐸𝑋)) ∩ dom 𝐹)) = (𝐹 ↾ ((-∞(,)(𝐸𝑋)) ∩ 𝐷)))
184179, 183eqtrd 2776 . . . . . . . 8 (𝜑 → (𝐹 ↾ (-∞(,)(𝐸𝑋))) = (𝐹 ↾ ((-∞(,)(𝐸𝑋)) ∩ 𝐷)))
1851843ad2ant1 1133 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝐹 ↾ (-∞(,)(𝐸𝑋))) = (𝐹 ↾ ((-∞(,)(𝐸𝑋)) ∩ 𝐷)))
186185oveq1d 7372 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝐹 ↾ (-∞(,)(𝐸𝑋))) lim (𝐸𝑋)) = ((𝐹 ↾ ((-∞(,)(𝐸𝑋)) ∩ 𝐷)) lim (𝐸𝑋)))
187 ax-resscn 11108 . . . . . . . . . . 11 ℝ ⊆ ℂ
188187a1i 11 . . . . . . . . . 10 (𝜑 → ℝ ⊆ ℂ)
189174, 188fssd 6686 . . . . . . . . 9 (𝜑𝐹:𝐷⟶ℂ)
1901893ad2ant1 1133 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → 𝐹:𝐷⟶ℂ)
191 inss2 4189 . . . . . . . . 9 ((-∞(,)(𝐸𝑋)) ∩ 𝐷) ⊆ 𝐷
192191a1i 11 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((-∞(,)(𝐸𝑋)) ∩ 𝐷) ⊆ 𝐷)
193190, 192fssresd 6709 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝐹 ↾ ((-∞(,)(𝐸𝑋)) ∩ 𝐷)):((-∞(,)(𝐸𝑋)) ∩ 𝐷)⟶ℂ)
194 mnfxr 11212 . . . . . . . . . 10 -∞ ∈ ℝ*
195194a1i 11 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → -∞ ∈ ℝ*)
19625adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶ℝ)
197 elfzofz 13588 . . . . . . . . . . . . . 14 (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ (0...𝑀))
198197adantl 482 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0...𝑀))
199196, 198ffvelcdmd 7036 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ ℝ)
200199rexrd 11205 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ ℝ*)
201199mnfltd 13045 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → -∞ < (𝑄𝑖))
202195, 200, 201xrltled 13069 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → -∞ ≤ (𝑄𝑖))
203 iooss1 13299 . . . . . . . . . 10 ((-∞ ∈ ℝ* ∧ -∞ ≤ (𝑄𝑖)) → ((𝑄𝑖)(,)(𝐸𝑋)) ⊆ (-∞(,)(𝐸𝑋)))
204194, 202, 203sylancr 587 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)(,)(𝐸𝑋)) ⊆ (-∞(,)(𝐸𝑋)))
2052043adant3 1132 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝑄𝑖)(,)(𝐸𝑋)) ⊆ (-∞(,)(𝐸𝑋)))
206 fzofzp1 13669 . . . . . . . . . . . . . 14 (𝑖 ∈ (0..^𝑀) → (𝑖 + 1) ∈ (0...𝑀))
207206adantl 482 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑖 + 1) ∈ (0...𝑀))
208196, 207ffvelcdmd 7036 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ℝ)
2092083adant3 1132 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝑄‘(𝑖 + 1)) ∈ ℝ)
210209rexrd 11205 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝑄‘(𝑖 + 1)) ∈ ℝ*)
2111993adant3 1132 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝑄𝑖) ∈ ℝ)
212211rexrd 11205 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝑄𝑖) ∈ ℝ*)
213 simp3 1138 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1))))
214 iocleub 43731 . . . . . . . . . . 11 (((𝑄𝑖) ∈ ℝ* ∧ (𝑄‘(𝑖 + 1)) ∈ ℝ* ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝐸𝑋) ≤ (𝑄‘(𝑖 + 1)))
215212, 210, 213, 214syl3anc 1371 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝐸𝑋) ≤ (𝑄‘(𝑖 + 1)))
216 iooss2 13300 . . . . . . . . . 10 (((𝑄‘(𝑖 + 1)) ∈ ℝ* ∧ (𝐸𝑋) ≤ (𝑄‘(𝑖 + 1))) → ((𝑄𝑖)(,)(𝐸𝑋)) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
217210, 215, 216syl2anc 584 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝑄𝑖)(,)(𝐸𝑋)) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
218 fourierdlem49.cn . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
219 cncff 24256 . . . . . . . . . . . . 13 ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ)
220 fdm 6677 . . . . . . . . . . . . 13 ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ → dom (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
221218, 219, 2203syl 18 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → dom (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
222 ssdmres 5960 . . . . . . . . . . . 12 (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ dom 𝐹 ↔ dom (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
223221, 222sylibr 233 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ dom 𝐹)
224181adantr 481 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → dom 𝐹 = 𝐷)
225223, 224sseqtrd 3984 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ 𝐷)
2262253adant3 1132 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ 𝐷)
227217, 226sstrd 3954 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝑄𝑖)(,)(𝐸𝑋)) ⊆ 𝐷)
228205, 227ssind 4192 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝑄𝑖)(,)(𝐸𝑋)) ⊆ ((-∞(,)(𝐸𝑋)) ∩ 𝐷))
229 fourierdlem49.d . . . . . . . . . 10 (𝜑𝐷 ⊆ ℝ)
230229, 188sstrd 3954 . . . . . . . . 9 (𝜑𝐷 ⊆ ℂ)
2312303ad2ant1 1133 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → 𝐷 ⊆ ℂ)
232191, 231sstrid 3955 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((-∞(,)(𝐸𝑋)) ∩ 𝐷) ⊆ ℂ)
233 eqid 2736 . . . . . . 7 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
234 eqid 2736 . . . . . . 7 ((TopOpen‘ℂfld) ↾t (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})) = ((TopOpen‘ℂfld) ↾t (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}))
2351333ad2ant1 1133 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝐸𝑋) ∈ ℝ)
236235rexrd 11205 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝐸𝑋) ∈ ℝ*)
237 iocgtlb 43730 . . . . . . . . . 10 (((𝑄𝑖) ∈ ℝ* ∧ (𝑄‘(𝑖 + 1)) ∈ ℝ* ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝑄𝑖) < (𝐸𝑋))
238212, 210, 213, 237syl3anc 1371 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝑄𝑖) < (𝐸𝑋))
239235leidd 11721 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝐸𝑋) ≤ (𝐸𝑋))
240212, 236, 236, 238, 239eliocd 43735 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝐸𝑋)))
241 ioounsn 13394 . . . . . . . . . . 11 (((𝑄𝑖) ∈ ℝ* ∧ (𝐸𝑋) ∈ ℝ* ∧ (𝑄𝑖) < (𝐸𝑋)) → (((𝑄𝑖)(,)(𝐸𝑋)) ∪ {(𝐸𝑋)}) = ((𝑄𝑖)(,](𝐸𝑋)))
242212, 236, 238, 241syl3anc 1371 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (((𝑄𝑖)(,)(𝐸𝑋)) ∪ {(𝐸𝑋)}) = ((𝑄𝑖)(,](𝐸𝑋)))
243242fveq2d 6846 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((int‘((TopOpen‘ℂfld) ↾t (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})))‘(((𝑄𝑖)(,)(𝐸𝑋)) ∪ {(𝐸𝑋)})) = ((int‘((TopOpen‘ℂfld) ↾t (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})))‘((𝑄𝑖)(,](𝐸𝑋))))
244233cnfldtop 24147 . . . . . . . . . . 11 (TopOpen‘ℂfld) ∈ Top
245 ovex 7390 . . . . . . . . . . . . 13 (-∞(,)(𝐸𝑋)) ∈ V
246245inex1 5274 . . . . . . . . . . . 12 ((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∈ V
247 snex 5388 . . . . . . . . . . . 12 {(𝐸𝑋)} ∈ V
248246, 247unex 7680 . . . . . . . . . . 11 (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}) ∈ V
249 resttop 22511 . . . . . . . . . . 11 (((TopOpen‘ℂfld) ∈ Top ∧ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}) ∈ V) → ((TopOpen‘ℂfld) ↾t (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})) ∈ Top)
250244, 248, 249mp2an 690 . . . . . . . . . 10 ((TopOpen‘ℂfld) ↾t (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})) ∈ Top
251 retop 24125 . . . . . . . . . . . . 13 (topGen‘ran (,)) ∈ Top
252251a1i 11 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (topGen‘ran (,)) ∈ Top)
253248a1i 11 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}) ∈ V)
254 iooretop 24129 . . . . . . . . . . . . 13 ((𝑄𝑖)(,)+∞) ∈ (topGen‘ran (,))
255254a1i 11 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝑄𝑖)(,)+∞) ∈ (topGen‘ran (,)))
256 elrestr 17310 . . . . . . . . . . . 12 (((topGen‘ran (,)) ∈ Top ∧ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}) ∈ V ∧ ((𝑄𝑖)(,)+∞) ∈ (topGen‘ran (,))) → (((𝑄𝑖)(,)+∞) ∩ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})) ∈ ((topGen‘ran (,)) ↾t (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})))
257252, 253, 255, 256syl3anc 1371 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (((𝑄𝑖)(,)+∞) ∩ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})) ∈ ((topGen‘ran (,)) ↾t (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})))
258 simpr 485 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 = (𝐸𝑋)) → 𝑥 = (𝐸𝑋))
259 pnfxr 11209 . . . . . . . . . . . . . . . . . . . 20 +∞ ∈ ℝ*
260259a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → +∞ ∈ ℝ*)
261235ltpnfd 13042 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝐸𝑋) < +∞)
262212, 260, 235, 238, 261eliood 43726 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝐸𝑋) ∈ ((𝑄𝑖)(,)+∞))
263 snidg 4620 . . . . . . . . . . . . . . . . . . . . 21 ((𝐸𝑋) ∈ ℝ → (𝐸𝑋) ∈ {(𝐸𝑋)})
264 elun2 4137 . . . . . . . . . . . . . . . . . . . . 21 ((𝐸𝑋) ∈ {(𝐸𝑋)} → (𝐸𝑋) ∈ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}))
265263, 264syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝐸𝑋) ∈ ℝ → (𝐸𝑋) ∈ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}))
266133, 265syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐸𝑋) ∈ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}))
2672663ad2ant1 1133 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝐸𝑋) ∈ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}))
268262, 267elind 4154 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝐸𝑋) ∈ (((𝑄𝑖)(,)+∞) ∩ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})))
269268adantr 481 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 = (𝐸𝑋)) → (𝐸𝑋) ∈ (((𝑄𝑖)(,)+∞) ∩ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})))
270258, 269eqeltrd 2838 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 = (𝐸𝑋)) → 𝑥 ∈ (((𝑄𝑖)(,)+∞) ∩ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})))
271270adantlr 713 . . . . . . . . . . . . . 14 ((((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ 𝑥 = (𝐸𝑋)) → 𝑥 ∈ (((𝑄𝑖)(,)+∞) ∩ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})))
272212adantr 481 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) → (𝑄𝑖) ∈ ℝ*)
273259a1i 11 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) → +∞ ∈ ℝ*)
274200adantr 481 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) → (𝑄𝑖) ∈ ℝ*)
275133adantr 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐸𝑋) ∈ ℝ)
276275adantr 481 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) → (𝐸𝑋) ∈ ℝ)
277 iocssre 13344 . . . . . . . . . . . . . . . . . . . 20 (((𝑄𝑖) ∈ ℝ* ∧ (𝐸𝑋) ∈ ℝ) → ((𝑄𝑖)(,](𝐸𝑋)) ⊆ ℝ)
278274, 276, 277syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) → ((𝑄𝑖)(,](𝐸𝑋)) ⊆ ℝ)
279 simpr 485 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) → 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋)))
280278, 279sseldd 3945 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) → 𝑥 ∈ ℝ)
2812803adantl3 1168 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) → 𝑥 ∈ ℝ)
282276rexrd 11205 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) → (𝐸𝑋) ∈ ℝ*)
283 iocgtlb 43730 . . . . . . . . . . . . . . . . . . 19 (((𝑄𝑖) ∈ ℝ* ∧ (𝐸𝑋) ∈ ℝ*𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) → (𝑄𝑖) < 𝑥)
284274, 282, 279, 283syl3anc 1371 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) → (𝑄𝑖) < 𝑥)
2852843adantl3 1168 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) → (𝑄𝑖) < 𝑥)
286281ltpnfd 13042 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) → 𝑥 < +∞)
287272, 273, 281, 285, 286eliood 43726 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) → 𝑥 ∈ ((𝑄𝑖)(,)+∞))
288287adantr 481 . . . . . . . . . . . . . . 15 ((((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ ¬ 𝑥 = (𝐸𝑋)) → 𝑥 ∈ ((𝑄𝑖)(,)+∞))
289194a1i 11 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ ¬ 𝑥 = (𝐸𝑋)) → -∞ ∈ ℝ*)
290282adantr 481 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ ¬ 𝑥 = (𝐸𝑋)) → (𝐸𝑋) ∈ ℝ*)
291280adantr 481 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ ¬ 𝑥 = (𝐸𝑋)) → 𝑥 ∈ ℝ)
292291mnfltd 13045 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ ¬ 𝑥 = (𝐸𝑋)) → -∞ < 𝑥)
293133ad3antrrr 728 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ ¬ 𝑥 = (𝐸𝑋)) → (𝐸𝑋) ∈ ℝ)
294 iocleub 43731 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑄𝑖) ∈ ℝ* ∧ (𝐸𝑋) ∈ ℝ*𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) → 𝑥 ≤ (𝐸𝑋))
295274, 282, 279, 294syl3anc 1371 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) → 𝑥 ≤ (𝐸𝑋))
296295adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ ¬ 𝑥 = (𝐸𝑋)) → 𝑥 ≤ (𝐸𝑋))
297 neqne 2951 . . . . . . . . . . . . . . . . . . . . . 22 𝑥 = (𝐸𝑋) → 𝑥 ≠ (𝐸𝑋))
298297necomd 2999 . . . . . . . . . . . . . . . . . . . . 21 𝑥 = (𝐸𝑋) → (𝐸𝑋) ≠ 𝑥)
299298adantl 482 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ ¬ 𝑥 = (𝐸𝑋)) → (𝐸𝑋) ≠ 𝑥)
300291, 293, 296, 299leneltd 11309 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ ¬ 𝑥 = (𝐸𝑋)) → 𝑥 < (𝐸𝑋))
301289, 290, 291, 292, 300eliood 43726 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ ¬ 𝑥 = (𝐸𝑋)) → 𝑥 ∈ (-∞(,)(𝐸𝑋)))
3023013adantll3 43237 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ ¬ 𝑥 = (𝐸𝑋)) → 𝑥 ∈ (-∞(,)(𝐸𝑋)))
303226ad2antrr 724 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ ¬ 𝑥 = (𝐸𝑋)) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ 𝐷)
304272adantr 481 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ ¬ 𝑥 = (𝐸𝑋)) → (𝑄𝑖) ∈ ℝ*)
305210ad2antrr 724 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ ¬ 𝑥 = (𝐸𝑋)) → (𝑄‘(𝑖 + 1)) ∈ ℝ*)
306281adantr 481 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ ¬ 𝑥 = (𝐸𝑋)) → 𝑥 ∈ ℝ)
307285adantr 481 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ ¬ 𝑥 = (𝐸𝑋)) → (𝑄𝑖) < 𝑥)
308235ad2antrr 724 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ ¬ 𝑥 = (𝐸𝑋)) → (𝐸𝑋) ∈ ℝ)
309209ad2antrr 724 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ ¬ 𝑥 = (𝐸𝑋)) → (𝑄‘(𝑖 + 1)) ∈ ℝ)
3103003adantll3 43237 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ ¬ 𝑥 = (𝐸𝑋)) → 𝑥 < (𝐸𝑋))
311215ad2antrr 724 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ ¬ 𝑥 = (𝐸𝑋)) → (𝐸𝑋) ≤ (𝑄‘(𝑖 + 1)))
312306, 308, 309, 310, 311ltletrd 11315 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ ¬ 𝑥 = (𝐸𝑋)) → 𝑥 < (𝑄‘(𝑖 + 1)))
313304, 305, 306, 307, 312eliood 43726 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ ¬ 𝑥 = (𝐸𝑋)) → 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
314303, 313sseldd 3945 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ ¬ 𝑥 = (𝐸𝑋)) → 𝑥𝐷)
315302, 314elind 4154 . . . . . . . . . . . . . . . 16 ((((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ ¬ 𝑥 = (𝐸𝑋)) → 𝑥 ∈ ((-∞(,)(𝐸𝑋)) ∩ 𝐷))
316 elun1 4136 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ((-∞(,)(𝐸𝑋)) ∩ 𝐷) → 𝑥 ∈ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}))
317315, 316syl 17 . . . . . . . . . . . . . . 15 ((((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ ¬ 𝑥 = (𝐸𝑋)) → 𝑥 ∈ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}))
318288, 317elind 4154 . . . . . . . . . . . . . 14 ((((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ ¬ 𝑥 = (𝐸𝑋)) → 𝑥 ∈ (((𝑄𝑖)(,)+∞) ∩ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})))
319271, 318pm2.61dan 811 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) → 𝑥 ∈ (((𝑄𝑖)(,)+∞) ∩ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})))
320212adantr 481 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ (((𝑄𝑖)(,)+∞) ∩ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}))) → (𝑄𝑖) ∈ ℝ*)
321236adantr 481 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ (((𝑄𝑖)(,)+∞) ∩ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}))) → (𝐸𝑋) ∈ ℝ*)
322 elinel1 4155 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (((𝑄𝑖)(,)+∞) ∩ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})) → 𝑥 ∈ ((𝑄𝑖)(,)+∞))
323 elioore 13294 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ((𝑄𝑖)(,)+∞) → 𝑥 ∈ ℝ)
324323rexrd 11205 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ((𝑄𝑖)(,)+∞) → 𝑥 ∈ ℝ*)
325322, 324syl 17 . . . . . . . . . . . . . . 15 (𝑥 ∈ (((𝑄𝑖)(,)+∞) ∩ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})) → 𝑥 ∈ ℝ*)
326325adantl 482 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ (((𝑄𝑖)(,)+∞) ∩ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}))) → 𝑥 ∈ ℝ*)
327200adantr 481 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄𝑖)(,)+∞) ∩ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}))) → (𝑄𝑖) ∈ ℝ*)
328259a1i 11 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄𝑖)(,)+∞) ∩ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}))) → +∞ ∈ ℝ*)
329322adantl 482 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄𝑖)(,)+∞) ∩ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}))) → 𝑥 ∈ ((𝑄𝑖)(,)+∞))
330 ioogtlb 43723 . . . . . . . . . . . . . . . 16 (((𝑄𝑖) ∈ ℝ* ∧ +∞ ∈ ℝ*𝑥 ∈ ((𝑄𝑖)(,)+∞)) → (𝑄𝑖) < 𝑥)
331327, 328, 329, 330syl3anc 1371 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄𝑖)(,)+∞) ∩ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}))) → (𝑄𝑖) < 𝑥)
3323313adantl3 1168 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ (((𝑄𝑖)(,)+∞) ∩ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}))) → (𝑄𝑖) < 𝑥)
333 elinel2 4156 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (((𝑄𝑖)(,)+∞) ∩ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})) → 𝑥 ∈ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}))
334 elsni 4603 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ {(𝐸𝑋)} → 𝑥 = (𝐸𝑋))
335334adantl 482 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ {(𝐸𝑋)}) → 𝑥 = (𝐸𝑋))
336134adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ {(𝐸𝑋)}) → (𝐸𝑋) ≤ (𝐸𝑋))
337335, 336eqbrtrd 5127 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ {(𝐸𝑋)}) → 𝑥 ≤ (𝐸𝑋))
338337adantlr 713 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})) ∧ 𝑥 ∈ {(𝐸𝑋)}) → 𝑥 ≤ (𝐸𝑋))
339 simpll 765 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})) ∧ ¬ 𝑥 ∈ {(𝐸𝑋)}) → 𝜑)
340 elunnel2 4110 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}) ∧ ¬ 𝑥 ∈ {(𝐸𝑋)}) → 𝑥 ∈ ((-∞(,)(𝐸𝑋)) ∩ 𝐷))
341340adantll 712 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})) ∧ ¬ 𝑥 ∈ {(𝐸𝑋)}) → 𝑥 ∈ ((-∞(,)(𝐸𝑋)) ∩ 𝐷))
342 elinel1 4155 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ((-∞(,)(𝐸𝑋)) ∩ 𝐷) → 𝑥 ∈ (-∞(,)(𝐸𝑋)))
343 elioore 13294 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ (-∞(,)(𝐸𝑋)) → 𝑥 ∈ ℝ)
344343adantl 482 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (-∞(,)(𝐸𝑋))) → 𝑥 ∈ ℝ)
345133adantr 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (-∞(,)(𝐸𝑋))) → (𝐸𝑋) ∈ ℝ)
346194a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑥 ∈ (-∞(,)(𝐸𝑋))) → -∞ ∈ ℝ*)
347345rexrd 11205 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑥 ∈ (-∞(,)(𝐸𝑋))) → (𝐸𝑋) ∈ ℝ*)
348 simpr 485 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑥 ∈ (-∞(,)(𝐸𝑋))) → 𝑥 ∈ (-∞(,)(𝐸𝑋)))
349 iooltub 43738 . . . . . . . . . . . . . . . . . . . . . 22 ((-∞ ∈ ℝ* ∧ (𝐸𝑋) ∈ ℝ*𝑥 ∈ (-∞(,)(𝐸𝑋))) → 𝑥 < (𝐸𝑋))
350346, 347, 348, 349syl3anc 1371 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (-∞(,)(𝐸𝑋))) → 𝑥 < (𝐸𝑋))
351344, 345, 350ltled 11303 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (-∞(,)(𝐸𝑋))) → 𝑥 ≤ (𝐸𝑋))
352342, 351sylan2 593 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ ((-∞(,)(𝐸𝑋)) ∩ 𝐷)) → 𝑥 ≤ (𝐸𝑋))
353339, 341, 352syl2anc 584 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})) ∧ ¬ 𝑥 ∈ {(𝐸𝑋)}) → 𝑥 ≤ (𝐸𝑋))
354338, 353pm2.61dan 811 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})) → 𝑥 ≤ (𝐸𝑋))
355354adantlr 713 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})) → 𝑥 ≤ (𝐸𝑋))
356333, 355sylan2 593 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄𝑖)(,)+∞) ∩ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}))) → 𝑥 ≤ (𝐸𝑋))
3573563adantl3 1168 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ (((𝑄𝑖)(,)+∞) ∩ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}))) → 𝑥 ≤ (𝐸𝑋))
358320, 321, 326, 332, 357eliocd 43735 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ (((𝑄𝑖)(,)+∞) ∩ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}))) → 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋)))
359319, 358impbida 799 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋)) ↔ 𝑥 ∈ (((𝑄𝑖)(,)+∞) ∩ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}))))
360359eqrdv 2734 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝑄𝑖)(,](𝐸𝑋)) = (((𝑄𝑖)(,)+∞) ∩ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})))
361 ioossre 13325 . . . . . . . . . . . . . 14 (-∞(,)(𝐸𝑋)) ⊆ ℝ
362 ssinss1 4197 . . . . . . . . . . . . . 14 ((-∞(,)(𝐸𝑋)) ⊆ ℝ → ((-∞(,)(𝐸𝑋)) ∩ 𝐷) ⊆ ℝ)
363361, 362mp1i 13 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((-∞(,)(𝐸𝑋)) ∩ 𝐷) ⊆ ℝ)
364235snssd 4769 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → {(𝐸𝑋)} ⊆ ℝ)
365363, 364unssd 4146 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}) ⊆ ℝ)
366 eqid 2736 . . . . . . . . . . . . 13 (topGen‘ran (,)) = (topGen‘ran (,))
367233, 366rerest 24167 . . . . . . . . . . . 12 ((((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}) ⊆ ℝ → ((TopOpen‘ℂfld) ↾t (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})) = ((topGen‘ran (,)) ↾t (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})))
368365, 367syl 17 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((TopOpen‘ℂfld) ↾t (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})) = ((topGen‘ran (,)) ↾t (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})))
369257, 360, 3683eltr4d 2853 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝑄𝑖)(,](𝐸𝑋)) ∈ ((TopOpen‘ℂfld) ↾t (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})))
370 isopn3i 22433 . . . . . . . . . 10 ((((TopOpen‘ℂfld) ↾t (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})) ∈ Top ∧ ((𝑄𝑖)(,](𝐸𝑋)) ∈ ((TopOpen‘ℂfld) ↾t (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}))) → ((int‘((TopOpen‘ℂfld) ↾t (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})))‘((𝑄𝑖)(,](𝐸𝑋))) = ((𝑄𝑖)(,](𝐸𝑋)))
371250, 369, 370sylancr 587 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((int‘((TopOpen‘ℂfld) ↾t (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})))‘((𝑄𝑖)(,](𝐸𝑋))) = ((𝑄𝑖)(,](𝐸𝑋)))
372243, 371eqtr2d 2777 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝑄𝑖)(,](𝐸𝑋)) = ((int‘((TopOpen‘ℂfld) ↾t (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})))‘(((𝑄𝑖)(,)(𝐸𝑋)) ∪ {(𝐸𝑋)})))
373240, 372eleqtrd 2840 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝐸𝑋) ∈ ((int‘((TopOpen‘ℂfld) ↾t (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})))‘(((𝑄𝑖)(,)(𝐸𝑋)) ∪ {(𝐸𝑋)})))
374193, 228, 232, 233, 234, 373limcres 25250 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (((𝐹 ↾ ((-∞(,)(𝐸𝑋)) ∩ 𝐷)) ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋)) = ((𝐹 ↾ ((-∞(,)(𝐸𝑋)) ∩ 𝐷)) lim (𝐸𝑋)))
375228resabs1d 5968 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝐹 ↾ ((-∞(,)(𝐸𝑋)) ∩ 𝐷)) ↾ ((𝑄𝑖)(,)(𝐸𝑋))) = (𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))))
376375oveq1d 7372 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (((𝐹 ↾ ((-∞(,)(𝐸𝑋)) ∩ 𝐷)) ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋)) = ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋)))
377186, 374, 3763eqtr2d 2782 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝐹 ↾ (-∞(,)(𝐸𝑋))) lim (𝐸𝑋)) = ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋)))
378181feq2d 6654 . . . . . . . . . . . 12 (𝜑 → (𝐹:dom 𝐹⟶ℂ ↔ 𝐹:𝐷⟶ℂ))
379189, 378mpbird 256 . . . . . . . . . . 11 (𝜑𝐹:dom 𝐹⟶ℂ)
380379adantr 481 . . . . . . . . . 10 ((𝜑𝑦 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋))) → 𝐹:dom 𝐹⟶ℂ)
3813803ad2antl1 1185 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋))) → 𝐹:dom 𝐹⟶ℂ)
382 ioosscn 13326 . . . . . . . . . 10 ((𝑄𝑖)(,)(𝐸𝑋)) ⊆ ℂ
383382a1i 11 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋))) → ((𝑄𝑖)(,)(𝐸𝑋)) ⊆ ℂ)
384181eqcomd 2742 . . . . . . . . . . . 12 (𝜑𝐷 = dom 𝐹)
3853843ad2ant1 1133 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → 𝐷 = dom 𝐹)
386227, 385sseqtrd 3984 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝑄𝑖)(,)(𝐸𝑋)) ⊆ dom 𝐹)
387386adantr 481 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋))) → ((𝑄𝑖)(,)(𝐸𝑋)) ⊆ dom 𝐹)
3887a1i 11 . . . . . . . . . . . . . . 15 (𝜑𝑍 = (𝑥 ∈ ℝ ↦ ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
389 oveq2 7365 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑋 → (𝐵𝑥) = (𝐵𝑋))
390389oveq1d 7372 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑋 → ((𝐵𝑥) / 𝑇) = ((𝐵𝑋) / 𝑇))
391390fveq2d 6846 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑋 → (⌊‘((𝐵𝑥) / 𝑇)) = (⌊‘((𝐵𝑋) / 𝑇)))
392391oveq1d 7372 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑋 → ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇) = ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))
393392adantl 482 . . . . . . . . . . . . . . 15 ((𝜑𝑥 = 𝑋) → ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇) = ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))
3942, 14resubcld 11583 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐵𝑋) ∈ ℝ)
3952, 1resubcld 11583 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐵𝐴) ∈ ℝ)
3964, 395eqeltrid 2842 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑇 ∈ ℝ)
3971, 2posdifd 11742 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝐴 < 𝐵 ↔ 0 < (𝐵𝐴)))
3983, 397mpbid 231 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → 0 < (𝐵𝐴))
3994eqcomi 2745 . . . . . . . . . . . . . . . . . . . . . 22 (𝐵𝐴) = 𝑇
400399a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐵𝐴) = 𝑇)
401398, 400breqtrd 5131 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → 0 < 𝑇)
402401gt0ne0d 11719 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑇 ≠ 0)
403394, 396, 402redivcld 11983 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝐵𝑋) / 𝑇) ∈ ℝ)
404403flcld 13703 . . . . . . . . . . . . . . . . 17 (𝜑 → (⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ)
405404zred 12607 . . . . . . . . . . . . . . . 16 (𝜑 → (⌊‘((𝐵𝑋) / 𝑇)) ∈ ℝ)
406405, 396remulcld 11185 . . . . . . . . . . . . . . 15 (𝜑 → ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇) ∈ ℝ)
407388, 393, 14, 406fvmptd 6955 . . . . . . . . . . . . . 14 (𝜑 → (𝑍𝑋) = ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))
408407, 406eqeltrd 2838 . . . . . . . . . . . . 13 (𝜑 → (𝑍𝑋) ∈ ℝ)
409408recnd 11183 . . . . . . . . . . . 12 (𝜑 → (𝑍𝑋) ∈ ℂ)
410409adantr 481 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋))) → (𝑍𝑋) ∈ ℂ)
4114103ad2antl1 1185 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋))) → (𝑍𝑋) ∈ ℂ)
412411negcld 11499 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋))) → -(𝑍𝑋) ∈ ℂ)
413 eqid 2736 . . . . . . . . 9 {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ ((𝑄𝑖)(,)(𝐸𝑋))𝑧 = (𝑥 + -(𝑍𝑋))} = {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ ((𝑄𝑖)(,)(𝐸𝑋))𝑧 = (𝑥 + -(𝑍𝑋))}
414 ioosscn 13326 . . . . . . . . . . . . . . . . . . 19 (((𝑄𝑖) − (𝑍𝑋))(,)𝑋) ⊆ ℂ
415414sseli 3940 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋) → 𝑦 ∈ ℂ)
416415adantl 482 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → 𝑦 ∈ ℂ)
417409adantr 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → (𝑍𝑋) ∈ ℂ)
418416, 417pncand 11513 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → ((𝑦 + (𝑍𝑋)) − (𝑍𝑋)) = 𝑦)
419418eqcomd 2742 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → 𝑦 = ((𝑦 + (𝑍𝑋)) − (𝑍𝑋)))
4204193ad2antl1 1185 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → 𝑦 = ((𝑦 + (𝑍𝑋)) − (𝑍𝑋)))
421407oveq2d 7373 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝑦 + (𝑍𝑋)) − (𝑍𝑋)) = ((𝑦 + (𝑍𝑋)) − ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)))
422421adantr 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → ((𝑦 + (𝑍𝑋)) − (𝑍𝑋)) = ((𝑦 + (𝑍𝑋)) − ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)))
423416, 417addcld 11174 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → (𝑦 + (𝑍𝑋)) ∈ ℂ)
424406recnd 11183 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇) ∈ ℂ)
425424adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇) ∈ ℂ)
426423, 425negsubd 11518 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → ((𝑦 + (𝑍𝑋)) + -((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)) = ((𝑦 + (𝑍𝑋)) − ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)))
427404zcnd 12608 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (⌊‘((𝐵𝑋) / 𝑇)) ∈ ℂ)
428396recnd 11183 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑇 ∈ ℂ)
429427, 428mulneg1d 11608 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (-(⌊‘((𝐵𝑋) / 𝑇)) · 𝑇) = -((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))
430429eqcomd 2742 . . . . . . . . . . . . . . . . . . 19 (𝜑 → -((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇) = (-(⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))
431430oveq2d 7373 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝑦 + (𝑍𝑋)) + -((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)) = ((𝑦 + (𝑍𝑋)) + (-(⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)))
432431adantr 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → ((𝑦 + (𝑍𝑋)) + -((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)) = ((𝑦 + (𝑍𝑋)) + (-(⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)))
433422, 426, 4323eqtr2d 2782 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → ((𝑦 + (𝑍𝑋)) − (𝑍𝑋)) = ((𝑦 + (𝑍𝑋)) + (-(⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)))
4344333ad2antl1 1185 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → ((𝑦 + (𝑍𝑋)) − (𝑍𝑋)) = ((𝑦 + (𝑍𝑋)) + (-(⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)))
435404znegcld 12609 . . . . . . . . . . . . . . . . . 18 (𝜑 → -(⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ)
436435adantr 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → -(⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ)
4374363ad2antl1 1185 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → -(⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ)
438 simpl1 1191 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → 𝜑)
439227adantr 481 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → ((𝑄𝑖)(,)(𝐸𝑋)) ⊆ 𝐷)
440200adantr 481 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → (𝑄𝑖) ∈ ℝ*)
441133rexrd 11205 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐸𝑋) ∈ ℝ*)
442441ad2antrr 724 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → (𝐸𝑋) ∈ ℝ*)
443 elioore 13294 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋) → 𝑦 ∈ ℝ)
444443adantl 482 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → 𝑦 ∈ ℝ)
445408adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → (𝑍𝑋) ∈ ℝ)
446444, 445readdcld 11184 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → (𝑦 + (𝑍𝑋)) ∈ ℝ)
447446adantlr 713 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → (𝑦 + (𝑍𝑋)) ∈ ℝ)
448408adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑍𝑋) ∈ ℝ)
449199, 448resubcld 11583 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖) − (𝑍𝑋)) ∈ ℝ)
450449rexrd 11205 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖) − (𝑍𝑋)) ∈ ℝ*)
451450adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → ((𝑄𝑖) − (𝑍𝑋)) ∈ ℝ*)
45214rexrd 11205 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑋 ∈ ℝ*)
453452ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → 𝑋 ∈ ℝ*)
454 simpr 485 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋))
455 ioogtlb 43723 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑄𝑖) − (𝑍𝑋)) ∈ ℝ*𝑋 ∈ ℝ*𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → ((𝑄𝑖) − (𝑍𝑋)) < 𝑦)
456451, 453, 454, 455syl3anc 1371 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → ((𝑄𝑖) − (𝑍𝑋)) < 𝑦)
457199adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → (𝑄𝑖) ∈ ℝ)
458448adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → (𝑍𝑋) ∈ ℝ)
459443adantl 482 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → 𝑦 ∈ ℝ)
460457, 458, 459ltsubaddd 11751 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → (((𝑄𝑖) − (𝑍𝑋)) < 𝑦 ↔ (𝑄𝑖) < (𝑦 + (𝑍𝑋))))
461456, 460mpbid 231 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → (𝑄𝑖) < (𝑦 + (𝑍𝑋)))
46214ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → 𝑋 ∈ ℝ)
463 iooltub 43738 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑄𝑖) − (𝑍𝑋)) ∈ ℝ*𝑋 ∈ ℝ*𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → 𝑦 < 𝑋)
464451, 453, 454, 463syl3anc 1371 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → 𝑦 < 𝑋)
465459, 462, 458, 464ltadd1dd 11766 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → (𝑦 + (𝑍𝑋)) < (𝑋 + (𝑍𝑋)))
4665a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + (𝑍𝑥))))
467 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 = 𝑋𝑥 = 𝑋)
468 fveq2 6842 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 = 𝑋 → (𝑍𝑥) = (𝑍𝑋))
469467, 468oveq12d 7375 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 = 𝑋 → (𝑥 + (𝑍𝑥)) = (𝑋 + (𝑍𝑋)))
470469adantl 482 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑥 = 𝑋) → (𝑥 + (𝑍𝑥)) = (𝑋 + (𝑍𝑋)))
47114, 408readdcld 11184 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝑋 + (𝑍𝑋)) ∈ ℝ)
472466, 470, 14, 471fvmptd 6955 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝐸𝑋) = (𝑋 + (𝑍𝑋)))
473472eqcomd 2742 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑋 + (𝑍𝑋)) = (𝐸𝑋))
474473ad2antrr 724 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → (𝑋 + (𝑍𝑋)) = (𝐸𝑋))
475465, 474breqtrd 5131 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → (𝑦 + (𝑍𝑋)) < (𝐸𝑋))
476440, 442, 447, 461, 475eliood 43726 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → (𝑦 + (𝑍𝑋)) ∈ ((𝑄𝑖)(,)(𝐸𝑋)))
4774763adantl3 1168 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → (𝑦 + (𝑍𝑋)) ∈ ((𝑄𝑖)(,)(𝐸𝑋)))
478439, 477sseldd 3945 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → (𝑦 + (𝑍𝑋)) ∈ 𝐷)
479438, 478, 4373jca 1128 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → (𝜑 ∧ (𝑦 + (𝑍𝑋)) ∈ 𝐷 ∧ -(⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ))
480 eleq1 2825 . . . . . . . . . . . . . . . . . . 19 (𝑘 = -(⌊‘((𝐵𝑋) / 𝑇)) → (𝑘 ∈ ℤ ↔ -(⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ))
4814803anbi3d 1442 . . . . . . . . . . . . . . . . . 18 (𝑘 = -(⌊‘((𝐵𝑋) / 𝑇)) → ((𝜑 ∧ (𝑦 + (𝑍𝑋)) ∈ 𝐷𝑘 ∈ ℤ) ↔ (𝜑 ∧ (𝑦 + (𝑍𝑋)) ∈ 𝐷 ∧ -(⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ)))
482 oveq1 7364 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = -(⌊‘((𝐵𝑋) / 𝑇)) → (𝑘 · 𝑇) = (-(⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))
483482oveq2d 7373 . . . . . . . . . . . . . . . . . . 19 (𝑘 = -(⌊‘((𝐵𝑋) / 𝑇)) → ((𝑦 + (𝑍𝑋)) + (𝑘 · 𝑇)) = ((𝑦 + (𝑍𝑋)) + (-(⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)))
484483eleq1d 2822 . . . . . . . . . . . . . . . . . 18 (𝑘 = -(⌊‘((𝐵𝑋) / 𝑇)) → (((𝑦 + (𝑍𝑋)) + (𝑘 · 𝑇)) ∈ 𝐷 ↔ ((𝑦 + (𝑍𝑋)) + (-(⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)) ∈ 𝐷))
485481, 484imbi12d 344 . . . . . . . . . . . . . . . . 17 (𝑘 = -(⌊‘((𝐵𝑋) / 𝑇)) → (((𝜑 ∧ (𝑦 + (𝑍𝑋)) ∈ 𝐷𝑘 ∈ ℤ) → ((𝑦 + (𝑍𝑋)) + (𝑘 · 𝑇)) ∈ 𝐷) ↔ ((𝜑 ∧ (𝑦 + (𝑍𝑋)) ∈ 𝐷 ∧ -(⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ) → ((𝑦 + (𝑍𝑋)) + (-(⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)) ∈ 𝐷)))
486 ovex 7390 . . . . . . . . . . . . . . . . . 18 (𝑦 + (𝑍𝑋)) ∈ V
487 eleq1 2825 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = (𝑦 + (𝑍𝑋)) → (𝑥𝐷 ↔ (𝑦 + (𝑍𝑋)) ∈ 𝐷))
4884873anbi2d 1441 . . . . . . . . . . . . . . . . . . 19 (𝑥 = (𝑦 + (𝑍𝑋)) → ((𝜑𝑥𝐷𝑘 ∈ ℤ) ↔ (𝜑 ∧ (𝑦 + (𝑍𝑋)) ∈ 𝐷𝑘 ∈ ℤ)))
489 oveq1 7364 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = (𝑦 + (𝑍𝑋)) → (𝑥 + (𝑘 · 𝑇)) = ((𝑦 + (𝑍𝑋)) + (𝑘 · 𝑇)))
490489eleq1d 2822 . . . . . . . . . . . . . . . . . . 19 (𝑥 = (𝑦 + (𝑍𝑋)) → ((𝑥 + (𝑘 · 𝑇)) ∈ 𝐷 ↔ ((𝑦 + (𝑍𝑋)) + (𝑘 · 𝑇)) ∈ 𝐷))
491488, 490imbi12d 344 . . . . . . . . . . . . . . . . . 18 (𝑥 = (𝑦 + (𝑍𝑋)) → (((𝜑𝑥𝐷𝑘 ∈ ℤ) → (𝑥 + (𝑘 · 𝑇)) ∈ 𝐷) ↔ ((𝜑 ∧ (𝑦 + (𝑍𝑋)) ∈ 𝐷𝑘 ∈ ℤ) → ((𝑦 + (𝑍𝑋)) + (𝑘 · 𝑇)) ∈ 𝐷)))
492 fourierdlem49.dper . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐷𝑘 ∈ ℤ) → (𝑥 + (𝑘 · 𝑇)) ∈ 𝐷)
493486, 491, 492vtocl 3518 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑦 + (𝑍𝑋)) ∈ 𝐷𝑘 ∈ ℤ) → ((𝑦 + (𝑍𝑋)) + (𝑘 · 𝑇)) ∈ 𝐷)
494485, 493vtoclg 3525 . . . . . . . . . . . . . . . 16 (-(⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ → ((𝜑 ∧ (𝑦 + (𝑍𝑋)) ∈ 𝐷 ∧ -(⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ) → ((𝑦 + (𝑍𝑋)) + (-(⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)) ∈ 𝐷))
495437, 479, 494sylc 65 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → ((𝑦 + (𝑍𝑋)) + (-(⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)) ∈ 𝐷)
496434, 495eqeltrd 2838 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → ((𝑦 + (𝑍𝑋)) − (𝑍𝑋)) ∈ 𝐷)
497420, 496eqeltrd 2838 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → 𝑦𝐷)
498497ralrimiva 3143 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ∀𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)𝑦𝐷)
499 dfss3 3932 . . . . . . . . . . . 12 ((((𝑄𝑖) − (𝑍𝑋))(,)𝑋) ⊆ 𝐷 ↔ ∀𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)𝑦𝐷)
500498, 499sylibr 233 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (((𝑄𝑖) − (𝑍𝑋))(,)𝑋) ⊆ 𝐷)
501199recnd 11183 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ ℂ)
502409adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑍𝑋) ∈ ℂ)
503501, 502negsubd 11518 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖) + -(𝑍𝑋)) = ((𝑄𝑖) − (𝑍𝑋)))
504503eqcomd 2742 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖) − (𝑍𝑋)) = ((𝑄𝑖) + -(𝑍𝑋)))
505472oveq1d 7372 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐸𝑋) + -(𝑍𝑋)) = ((𝑋 + (𝑍𝑋)) + -(𝑍𝑋)))
506471recnd 11183 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑋 + (𝑍𝑋)) ∈ ℂ)
507506, 409negsubd 11518 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑋 + (𝑍𝑋)) + -(𝑍𝑋)) = ((𝑋 + (𝑍𝑋)) − (𝑍𝑋)))
50814recnd 11183 . . . . . . . . . . . . . . . . 17 (𝜑𝑋 ∈ ℂ)
509508, 409pncand 11513 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑋 + (𝑍𝑋)) − (𝑍𝑋)) = 𝑋)
510505, 507, 5093eqtrrd 2781 . . . . . . . . . . . . . . 15 (𝜑𝑋 = ((𝐸𝑋) + -(𝑍𝑋)))
511510adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑋 = ((𝐸𝑋) + -(𝑍𝑋)))
512504, 511oveq12d 7375 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → (((𝑄𝑖) − (𝑍𝑋))(,)𝑋) = (((𝑄𝑖) + -(𝑍𝑋))(,)((𝐸𝑋) + -(𝑍𝑋))))
513448renegcld 11582 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → -(𝑍𝑋) ∈ ℝ)
514199, 275, 513iooshift 43750 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → (((𝑄𝑖) + -(𝑍𝑋))(,)((𝐸𝑋) + -(𝑍𝑋))) = {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ ((𝑄𝑖)(,)(𝐸𝑋))𝑧 = (𝑥 + -(𝑍𝑋))})
515512, 514eqtr2d 2777 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ ((𝑄𝑖)(,)(𝐸𝑋))𝑧 = (𝑥 + -(𝑍𝑋))} = (((𝑄𝑖) − (𝑍𝑋))(,)𝑋))
5165153adant3 1132 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ ((𝑄𝑖)(,)(𝐸𝑋))𝑧 = (𝑥 + -(𝑍𝑋))} = (((𝑄𝑖) − (𝑍𝑋))(,)𝑋))
5171813ad2ant1 1133 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → dom 𝐹 = 𝐷)
518500, 516, 5173sstr4d 3991 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ ((𝑄𝑖)(,)(𝐸𝑋))𝑧 = (𝑥 + -(𝑍𝑋))} ⊆ dom 𝐹)
519518adantr 481 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋))) → {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ ((𝑄𝑖)(,)(𝐸𝑋))𝑧 = (𝑥 + -(𝑍𝑋))} ⊆ dom 𝐹)
520407negeqd 11395 . . . . . . . . . . . . . . . 16 (𝜑 → -(𝑍𝑋) = -((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))
521520, 430eqtrd 2776 . . . . . . . . . . . . . . 15 (𝜑 → -(𝑍𝑋) = (-(⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))
522521oveq2d 7373 . . . . . . . . . . . . . 14 (𝜑 → (𝑥 + -(𝑍𝑋)) = (𝑥 + (-(⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)))
523522fveq2d 6846 . . . . . . . . . . . . 13 (𝜑 → (𝐹‘(𝑥 + -(𝑍𝑋))) = (𝐹‘(𝑥 + (-(⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))))
524523adantr 481 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ((𝑄𝑖)(,)(𝐸𝑋))) → (𝐹‘(𝑥 + -(𝑍𝑋))) = (𝐹‘(𝑥 + (-(⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))))
5255243ad2antl1 1185 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝐸𝑋))) → (𝐹‘(𝑥 + -(𝑍𝑋))) = (𝐹‘(𝑥 + (-(⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))))
526435adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ((𝑄𝑖)(,)(𝐸𝑋))) → -(⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ)
5275263ad2antl1 1185 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝐸𝑋))) → -(⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ)
528 simpl1 1191 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝐸𝑋))) → 𝜑)
529227sselda 3944 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝐸𝑋))) → 𝑥𝐷)
530528, 529, 5273jca 1128 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝐸𝑋))) → (𝜑𝑥𝐷 ∧ -(⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ))
5314803anbi3d 1442 . . . . . . . . . . . . . 14 (𝑘 = -(⌊‘((𝐵𝑋) / 𝑇)) → ((𝜑𝑥𝐷𝑘 ∈ ℤ) ↔ (𝜑𝑥𝐷 ∧ -(⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ)))
532482oveq2d 7373 . . . . . . . . . . . . . . . 16 (𝑘 = -(⌊‘((𝐵𝑋) / 𝑇)) → (𝑥 + (𝑘 · 𝑇)) = (𝑥 + (-(⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)))
533532fveq2d 6846 . . . . . . . . . . . . . . 15 (𝑘 = -(⌊‘((𝐵𝑋) / 𝑇)) → (𝐹‘(𝑥 + (𝑘 · 𝑇))) = (𝐹‘(𝑥 + (-(⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))))
534533eqeq1d 2738 . . . . . . . . . . . . . 14 (𝑘 = -(⌊‘((𝐵𝑋) / 𝑇)) → ((𝐹‘(𝑥 + (𝑘 · 𝑇))) = (𝐹𝑥) ↔ (𝐹‘(𝑥 + (-(⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))) = (𝐹𝑥)))
535531, 534imbi12d 344 . . . . . . . . . . . . 13 (𝑘 = -(⌊‘((𝐵𝑋) / 𝑇)) → (((𝜑𝑥𝐷𝑘 ∈ ℤ) → (𝐹‘(𝑥 + (𝑘 · 𝑇))) = (𝐹𝑥)) ↔ ((𝜑𝑥𝐷 ∧ -(⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ) → (𝐹‘(𝑥 + (-(⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))) = (𝐹𝑥))))
536 fourierdlem49.per . . . . . . . . . . . . 13 ((𝜑𝑥𝐷𝑘 ∈ ℤ) → (𝐹‘(𝑥 + (𝑘 · 𝑇))) = (𝐹𝑥))
537535, 536vtoclg 3525 . . . . . . . . . . . 12 (-(⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ → ((𝜑𝑥𝐷 ∧ -(⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ) → (𝐹‘(𝑥 + (-(⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))) = (𝐹𝑥)))
538527, 530, 537sylc 65 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝐸𝑋))) → (𝐹‘(𝑥 + (-(⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))) = (𝐹𝑥))
539525, 538eqtrd 2776 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝐸𝑋))) → (𝐹‘(𝑥 + -(𝑍𝑋))) = (𝐹𝑥))
540539adantlr 713 . . . . . . . . 9 ((((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋))) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝐸𝑋))) → (𝐹‘(𝑥 + -(𝑍𝑋))) = (𝐹𝑥))
541 simpr 485 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋))) → 𝑦 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋)))
542381, 383, 387, 412, 413, 519, 540, 541limcperiod 43859 . . . . . . . 8 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋))) → 𝑦 ∈ ((𝐹 ↾ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ ((𝑄𝑖)(,)(𝐸𝑋))𝑧 = (𝑥 + -(𝑍𝑋))}) lim ((𝐸𝑋) + -(𝑍𝑋))))
543515reseq2d 5937 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ ((𝑄𝑖)(,)(𝐸𝑋))𝑧 = (𝑥 + -(𝑍𝑋))}) = (𝐹 ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)))
544511eqcomd 2742 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐸𝑋) + -(𝑍𝑋)) = 𝑋)
545543, 544oveq12d 7375 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ ((𝑄𝑖)(,)(𝐸𝑋))𝑧 = (𝑥 + -(𝑍𝑋))}) lim ((𝐸𝑋) + -(𝑍𝑋))) = ((𝐹 ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) lim 𝑋))
5465453adant3 1132 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝐹 ↾ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ ((𝑄𝑖)(,)(𝐸𝑋))𝑧 = (𝑥 + -(𝑍𝑋))}) lim ((𝐸𝑋) + -(𝑍𝑋))) = ((𝐹 ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) lim 𝑋))
547546adantr 481 . . . . . . . 8 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋))) → ((𝐹 ↾ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ ((𝑄𝑖)(,)(𝐸𝑋))𝑧 = (𝑥 + -(𝑍𝑋))}) lim ((𝐸𝑋) + -(𝑍𝑋))) = ((𝐹 ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) lim 𝑋))
548542, 547eleqtrd 2840 . . . . . . 7 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋))) → 𝑦 ∈ ((𝐹 ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) lim 𝑋))
549379adantr 481 . . . . . . . . . 10 ((𝜑𝑦 ∈ ((𝐹 ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) lim 𝑋)) → 𝐹:dom 𝐹⟶ℂ)
5505493ad2antl1 1185 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ ((𝐹 ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) lim 𝑋)) → 𝐹:dom 𝐹⟶ℂ)
551414a1i 11 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ ((𝐹 ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) lim 𝑋)) → (((𝑄𝑖) − (𝑍𝑋))(,)𝑋) ⊆ ℂ)
552500, 517sseqtrrd 3985 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (((𝑄𝑖) − (𝑍𝑋))(,)𝑋) ⊆ dom 𝐹)
553552adantr 481 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ ((𝐹 ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) lim 𝑋)) → (((𝑄𝑖) − (𝑍𝑋))(,)𝑋) ⊆ dom 𝐹)
554409adantr 481 . . . . . . . . . 10 ((𝜑𝑦 ∈ ((𝐹 ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) lim 𝑋)) → (𝑍𝑋) ∈ ℂ)
5555543ad2antl1 1185 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ ((𝐹 ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) lim 𝑋)) → (𝑍𝑋) ∈ ℂ)
556 eqid 2736 . . . . . . . . 9 {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)𝑧 = (𝑥 + (𝑍𝑋))} = {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)𝑧 = (𝑥 + (𝑍𝑋))}
557501, 502npcand 11516 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → (((𝑄𝑖) − (𝑍𝑋)) + (𝑍𝑋)) = (𝑄𝑖))
558557eqcomd 2742 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) = (((𝑄𝑖) − (𝑍𝑋)) + (𝑍𝑋)))
559472adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐸𝑋) = (𝑋 + (𝑍𝑋)))
560558, 559oveq12d 7375 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)(,)(𝐸𝑋)) = ((((𝑄𝑖) − (𝑍𝑋)) + (𝑍𝑋))(,)(𝑋 + (𝑍𝑋))))
56114adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑋 ∈ ℝ)
562449, 561, 448iooshift 43750 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → ((((𝑄𝑖) − (𝑍𝑋)) + (𝑍𝑋))(,)(𝑋 + (𝑍𝑋))) = {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)𝑧 = (𝑥 + (𝑍𝑋))})
563560, 562eqtr2d 2777 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)𝑧 = (𝑥 + (𝑍𝑋))} = ((𝑄𝑖)(,)(𝐸𝑋)))
5645633adant3 1132 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)𝑧 = (𝑥 + (𝑍𝑋))} = ((𝑄𝑖)(,)(𝐸𝑋)))
565227, 564, 5173sstr4d 3991 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)𝑧 = (𝑥 + (𝑍𝑋))} ⊆ dom 𝐹)
566565adantr 481 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ ((𝐹 ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) lim 𝑋)) → {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)𝑧 = (𝑥 + (𝑍𝑋))} ⊆ dom 𝐹)
567407oveq2d 7373 . . . . . . . . . . . . . 14 (𝜑 → (𝑥 + (𝑍𝑋)) = (𝑥 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)))
568567fveq2d 6846 . . . . . . . . . . . . 13 (𝜑 → (𝐹‘(𝑥 + (𝑍𝑋))) = (𝐹‘(𝑥 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))))
569568adantr 481 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → (𝐹‘(𝑥 + (𝑍𝑋))) = (𝐹‘(𝑥 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))))
5705693ad2antl1 1185 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → (𝐹‘(𝑥 + (𝑍𝑋))) = (𝐹‘(𝑥 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))))
571404adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → (⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ)
5725713ad2antl1 1185 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → (⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ)
573 simpl1 1191 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → 𝜑)
574500sselda 3944 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → 𝑥𝐷)
575573, 574, 5723jca 1128 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → (𝜑𝑥𝐷 ∧ (⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ))
576 eleq1 2825 . . . . . . . . . . . . . . 15 (𝑘 = (⌊‘((𝐵𝑋) / 𝑇)) → (𝑘 ∈ ℤ ↔ (⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ))
5775763anbi3d 1442 . . . . . . . . . . . . . 14 (𝑘 = (⌊‘((𝐵𝑋) / 𝑇)) → ((𝜑𝑥𝐷𝑘 ∈ ℤ) ↔ (𝜑𝑥𝐷 ∧ (⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ)))
578 oveq1 7364 . . . . . . . . . . . . . . . . 17 (𝑘 = (⌊‘((𝐵𝑋) / 𝑇)) → (𝑘 · 𝑇) = ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))
579578oveq2d 7373 . . . . . . . . . . . . . . . 16 (𝑘 = (⌊‘((𝐵𝑋) / 𝑇)) → (𝑥 + (𝑘 · 𝑇)) = (𝑥 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)))
580579fveq2d 6846 . . . . . . . . . . . . . . 15 (𝑘 = (⌊‘((𝐵𝑋) / 𝑇)) → (𝐹‘(𝑥 + (𝑘 · 𝑇))) = (𝐹‘(𝑥 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))))
581580eqeq1d 2738 . . . . . . . . . . . . . 14 (𝑘 = (⌊‘((𝐵𝑋) / 𝑇)) → ((𝐹‘(𝑥 + (𝑘 · 𝑇))) = (𝐹𝑥) ↔ (𝐹‘(𝑥 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))) = (𝐹𝑥)))
582577, 581imbi12d 344 . . . . . . . . . . . . 13 (𝑘 = (⌊‘((𝐵𝑋) / 𝑇)) → (((𝜑𝑥𝐷𝑘 ∈ ℤ) → (𝐹‘(𝑥 + (𝑘 · 𝑇))) = (𝐹𝑥)) ↔ ((𝜑𝑥𝐷 ∧ (⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ) → (𝐹‘(𝑥 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))) = (𝐹𝑥))))
583582, 536vtoclg 3525 . . . . . . . . . . . 12 ((⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ → ((𝜑𝑥𝐷 ∧ (⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ) → (𝐹‘(𝑥 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))) = (𝐹𝑥)))
584572, 575, 583sylc 65 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → (𝐹‘(𝑥 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))) = (𝐹𝑥))
585570, 584eqtrd 2776 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → (𝐹‘(𝑥 + (𝑍𝑋))) = (𝐹𝑥))
586585adantlr 713 . . . . . . . . 9 ((((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ ((𝐹 ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) lim 𝑋)) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → (𝐹‘(𝑥 + (𝑍𝑋))) = (𝐹𝑥))
587 simpr 485 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ ((𝐹 ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) lim 𝑋)) → 𝑦 ∈ ((𝐹 ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) lim 𝑋))
588550, 551, 553, 555, 556, 566, 586, 587limcperiod 43859 . . . . . . . 8 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ ((𝐹 ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) lim 𝑋)) → 𝑦 ∈ ((𝐹 ↾ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)𝑧 = (𝑥 + (𝑍𝑋))}) lim (𝑋 + (𝑍𝑋))))
589563reseq2d 5937 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)𝑧 = (𝑥 + (𝑍𝑋))}) = (𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))))
590473adantr 481 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑋 + (𝑍𝑋)) = (𝐸𝑋))
591589, 590oveq12d 7375 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)𝑧 = (𝑥 + (𝑍𝑋))}) lim (𝑋 + (𝑍𝑋))) = ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋)))
5925913adant3 1132 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝐹 ↾ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)𝑧 = (𝑥 + (𝑍𝑋))}) lim (𝑋 + (𝑍𝑋))) = ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋)))
593592adantr 481 . . . . . . . 8 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ ((𝐹 ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) lim 𝑋)) → ((𝐹 ↾ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)𝑧 = (𝑥 + (𝑍𝑋))}) lim (𝑋 + (𝑍𝑋))) = ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋)))
594588, 593eleqtrd 2840 . . . . . . 7 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ ((𝐹 ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) lim 𝑋)) → 𝑦 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋)))
595548, 594impbida 799 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝑦 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋)) ↔ 𝑦 ∈ ((𝐹 ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) lim 𝑋)))
596595eqrdv 2734 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋)) = ((𝐹 ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) lim 𝑋))
597 resindm 5986 . . . . . . . . . . 11 (Rel 𝐹 → (𝐹 ↾ ((-∞(,)𝑋) ∩ dom 𝐹)) = (𝐹 ↾ (-∞(,)𝑋)))
598597eqcomd 2742 . . . . . . . . . 10 (Rel 𝐹 → (𝐹 ↾ (-∞(,)𝑋)) = (𝐹 ↾ ((-∞(,)𝑋) ∩ dom 𝐹)))
599176, 598syl 17 . . . . . . . . 9 (𝜑 → (𝐹 ↾ (-∞(,)𝑋)) = (𝐹 ↾ ((-∞(,)𝑋) ∩ dom 𝐹)))
600181ineq2d 4172 . . . . . . . . . 10 (𝜑 → ((-∞(,)𝑋) ∩ dom 𝐹) = ((-∞(,)𝑋) ∩ 𝐷))
601600reseq2d 5937 . . . . . . . . 9 (𝜑 → (𝐹 ↾ ((-∞(,)𝑋) ∩ dom 𝐹)) = (𝐹 ↾ ((-∞(,)𝑋) ∩ 𝐷)))
602599, 601eqtrd 2776 . . . . . . . 8 (𝜑 → (𝐹 ↾ (-∞(,)𝑋)) = (𝐹 ↾ ((-∞(,)𝑋) ∩ 𝐷)))
603602oveq1d 7372 . . . . . . 7 (𝜑 → ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋) = ((𝐹 ↾ ((-∞(,)𝑋) ∩ 𝐷)) lim 𝑋))
6046033ad2ant1 1133 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋) = ((𝐹 ↾ ((-∞(,)𝑋) ∩ 𝐷)) lim 𝑋))
605 inss2 4189 . . . . . . . . . 10 ((-∞(,)𝑋) ∩ 𝐷) ⊆ 𝐷
606605a1i 11 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((-∞(,)𝑋) ∩ 𝐷) ⊆ 𝐷)
607190, 606fssresd 6709 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝐹 ↾ ((-∞(,)𝑋) ∩ 𝐷)):((-∞(,)𝑋) ∩ 𝐷)⟶ℂ)
608449mnfltd 13045 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → -∞ < ((𝑄𝑖) − (𝑍𝑋)))
609195, 450, 608xrltled 13069 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → -∞ ≤ ((𝑄𝑖) − (𝑍𝑋)))
610 iooss1 13299 . . . . . . . . . . 11 ((-∞ ∈ ℝ* ∧ -∞ ≤ ((𝑄𝑖) − (𝑍𝑋))) → (((𝑄𝑖) − (𝑍𝑋))(,)𝑋) ⊆ (-∞(,)𝑋))
611194, 609, 610sylancr 587 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → (((𝑄𝑖) − (𝑍𝑋))(,)𝑋) ⊆ (-∞(,)𝑋))
6126113adant3 1132 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (((𝑄𝑖) − (𝑍𝑋))(,)𝑋) ⊆ (-∞(,)𝑋))
613612, 500ssind 4192 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (((𝑄𝑖) − (𝑍𝑋))(,)𝑋) ⊆ ((-∞(,)𝑋) ∩ 𝐷))
614605, 231sstrid 3955 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((-∞(,)𝑋) ∩ 𝐷) ⊆ ℂ)
615 eqid 2736 . . . . . . . 8 ((TopOpen‘ℂfld) ↾t (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})) = ((TopOpen‘ℂfld) ↾t (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}))
6164503adant3 1132 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝑄𝑖) − (𝑍𝑋)) ∈ ℝ*)
6174523ad2ant1 1133 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → 𝑋 ∈ ℝ*)
6184723ad2ant1 1133 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝐸𝑋) = (𝑋 + (𝑍𝑋)))
619238, 618breqtrd 5131 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝑄𝑖) < (𝑋 + (𝑍𝑋)))
6204083ad2ant1 1133 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝑍𝑋) ∈ ℝ)
621143ad2ant1 1133 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → 𝑋 ∈ ℝ)
622211, 620, 621ltsubaddd 11751 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (((𝑄𝑖) − (𝑍𝑋)) < 𝑋 ↔ (𝑄𝑖) < (𝑋 + (𝑍𝑋))))
623619, 622mpbird 256 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝑄𝑖) − (𝑍𝑋)) < 𝑋)
62414leidd 11721 . . . . . . . . . . 11 (𝜑𝑋𝑋)
6256243ad2ant1 1133 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → 𝑋𝑋)
626616, 617, 617, 623, 625eliocd 43735 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → 𝑋 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋))
627 ioounsn 13394 . . . . . . . . . . . 12 ((((𝑄𝑖) − (𝑍𝑋)) ∈ ℝ*𝑋 ∈ ℝ* ∧ ((𝑄𝑖) − (𝑍𝑋)) < 𝑋) → ((((𝑄𝑖) − (𝑍𝑋))(,)𝑋) ∪ {𝑋}) = (((𝑄𝑖) − (𝑍𝑋))(,]𝑋))
628616, 617, 623, 627syl3anc 1371 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((((𝑄𝑖) − (𝑍𝑋))(,)𝑋) ∪ {𝑋}) = (((𝑄𝑖) − (𝑍𝑋))(,]𝑋))
629628fveq2d 6846 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((int‘((TopOpen‘ℂfld) ↾t (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})))‘((((𝑄𝑖) − (𝑍𝑋))(,)𝑋) ∪ {𝑋})) = ((int‘((TopOpen‘ℂfld) ↾t (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})))‘(((𝑄𝑖) − (𝑍𝑋))(,]𝑋)))
630 ovex 7390 . . . . . . . . . . . . . 14 (-∞(,)𝑋) ∈ V
631630inex1 5274 . . . . . . . . . . . . 13 ((-∞(,)𝑋) ∩ 𝐷) ∈ V
632 snex 5388 . . . . . . . . . . . . 13 {𝑋} ∈ V
633631, 632unex 7680 . . . . . . . . . . . 12 (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}) ∈ V
634 resttop 22511 . . . . . . . . . . . 12 (((TopOpen‘ℂfld) ∈ Top ∧ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}) ∈ V) → ((TopOpen‘ℂfld) ↾t (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})) ∈ Top)
635244, 633, 634mp2an 690 . . . . . . . . . . 11 ((TopOpen‘ℂfld) ↾t (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})) ∈ Top
636633a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}) ∈ V)
637 iooretop 24129 . . . . . . . . . . . . . 14 (((𝑄𝑖) − (𝑍𝑋))(,)+∞) ∈ (topGen‘ran (,))
638637a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (((𝑄𝑖) − (𝑍𝑋))(,)+∞) ∈ (topGen‘ran (,)))
639 elrestr 17310 . . . . . . . . . . . . 13 (((topGen‘ran (,)) ∈ Top ∧ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}) ∈ V ∧ (((𝑄𝑖) − (𝑍𝑋))(,)+∞) ∈ (topGen‘ran (,))) → ((((𝑄𝑖) − (𝑍𝑋))(,)+∞) ∩ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})) ∈ ((topGen‘ran (,)) ↾t (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})))
640252, 636, 638, 639syl3anc 1371 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((((𝑄𝑖) − (𝑍𝑋))(,)+∞) ∩ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})) ∈ ((topGen‘ran (,)) ↾t (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})))
641450adantr 481 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) → ((𝑄𝑖) − (𝑍𝑋)) ∈ ℝ*)
642259a1i 11 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) → +∞ ∈ ℝ*)
64314ad2antrr 724 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) → 𝑋 ∈ ℝ)
644 iocssre 13344 . . . . . . . . . . . . . . . . . . 19 ((((𝑄𝑖) − (𝑍𝑋)) ∈ ℝ*𝑋 ∈ ℝ) → (((𝑄𝑖) − (𝑍𝑋))(,]𝑋) ⊆ ℝ)
645641, 643, 644syl2anc 584 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) → (((𝑄𝑖) − (𝑍𝑋))(,]𝑋) ⊆ ℝ)
646 simpr 485 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) → 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋))
647645, 646sseldd 3945 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) → 𝑥 ∈ ℝ)
648452ad2antrr 724 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) → 𝑋 ∈ ℝ*)
649 iocgtlb 43730 . . . . . . . . . . . . . . . . . 18 ((((𝑄𝑖) − (𝑍𝑋)) ∈ ℝ*𝑋 ∈ ℝ*𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) → ((𝑄𝑖) − (𝑍𝑋)) < 𝑥)
650641, 648, 646, 649syl3anc 1371 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) → ((𝑄𝑖) − (𝑍𝑋)) < 𝑥)
651647ltpnfd 13042 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) → 𝑥 < +∞)
652641, 642, 647, 650, 651eliood 43726 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) → 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)+∞))
6536523adantl3 1168 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) → 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)+∞))
654 eqvisset 3462 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑋𝑋 ∈ V)
655 snidg 4620 . . . . . . . . . . . . . . . . . . . 20 (𝑋 ∈ V → 𝑋 ∈ {𝑋})
656654, 655syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑋𝑋 ∈ {𝑋})
657467, 656eqeltrd 2838 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑋𝑥 ∈ {𝑋})
658 elun2 4137 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ {𝑋} → 𝑥 ∈ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}))
659657, 658syl 17 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑋𝑥 ∈ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}))
660659adantl 482 . . . . . . . . . . . . . . . 16 ((((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) ∧ 𝑥 = 𝑋) → 𝑥 ∈ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}))
661 simpll 765 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) ∧ ¬ 𝑥 = 𝑋) → (𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))))
662641adantr 481 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) ∧ ¬ 𝑥 = 𝑋) → ((𝑄𝑖) − (𝑍𝑋)) ∈ ℝ*)
663452ad3antrrr 728 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) ∧ ¬ 𝑥 = 𝑋) → 𝑋 ∈ ℝ*)
664647adantr 481 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) ∧ ¬ 𝑥 = 𝑋) → 𝑥 ∈ ℝ)
665650adantr 481 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) ∧ ¬ 𝑥 = 𝑋) → ((𝑄𝑖) − (𝑍𝑋)) < 𝑥)
66614ad3antrrr 728 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) ∧ ¬ 𝑥 = 𝑋) → 𝑋 ∈ ℝ)
667 iocleub 43731 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑄𝑖) − (𝑍𝑋)) ∈ ℝ*𝑋 ∈ ℝ*𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) → 𝑥𝑋)
668641, 648, 646, 667syl3anc 1371 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) → 𝑥𝑋)
669668adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) ∧ ¬ 𝑥 = 𝑋) → 𝑥𝑋)
670467eqcoms 2744 . . . . . . . . . . . . . . . . . . . . . 22 (𝑋 = 𝑥𝑥 = 𝑋)
671670necon3bi 2970 . . . . . . . . . . . . . . . . . . . . 21 𝑥 = 𝑋𝑋𝑥)
672671adantl 482 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) ∧ ¬ 𝑥 = 𝑋) → 𝑋𝑥)
673664, 666, 669, 672leneltd 11309 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) ∧ ¬ 𝑥 = 𝑋) → 𝑥 < 𝑋)
674662, 663, 664, 665, 673eliood 43726 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) ∧ ¬ 𝑥 = 𝑋) → 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋))
6756743adantll3 43237 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) ∧ ¬ 𝑥 = 𝑋) → 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋))
676613sselda 3944 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → 𝑥 ∈ ((-∞(,)𝑋) ∩ 𝐷))
677 elun1 4136 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ((-∞(,)𝑋) ∩ 𝐷) → 𝑥 ∈ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}))
678676, 677syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → 𝑥 ∈ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}))
679661, 675, 678syl2anc 584 . . . . . . . . . . . . . . . 16 ((((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) ∧ ¬ 𝑥 = 𝑋) → 𝑥 ∈ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}))
680660, 679pm2.61dan 811 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) → 𝑥 ∈ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}))
681653, 680elind 4154 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) → 𝑥 ∈ ((((𝑄𝑖) − (𝑍𝑋))(,)+∞) ∩ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})))
682616adantr 481 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((((𝑄𝑖) − (𝑍𝑋))(,)+∞) ∩ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}))) → ((𝑄𝑖) − (𝑍𝑋)) ∈ ℝ*)
683617adantr 481 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((((𝑄𝑖) − (𝑍𝑋))(,)+∞) ∩ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}))) → 𝑋 ∈ ℝ*)
684 elinel1 4155 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ((((𝑄𝑖) − (𝑍𝑋))(,)+∞) ∩ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})) → 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)+∞))
685 elioore 13294 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)+∞) → 𝑥 ∈ ℝ)
686684, 685syl 17 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ((((𝑄𝑖) − (𝑍𝑋))(,)+∞) ∩ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})) → 𝑥 ∈ ℝ)
687686rexrd 11205 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ((((𝑄𝑖) − (𝑍𝑋))(,)+∞) ∩ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})) → 𝑥 ∈ ℝ*)
688687adantl 482 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((((𝑄𝑖) − (𝑍𝑋))(,)+∞) ∩ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}))) → 𝑥 ∈ ℝ*)
689450adantr 481 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((((𝑄𝑖) − (𝑍𝑋))(,)+∞) ∩ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}))) → ((𝑄𝑖) − (𝑍𝑋)) ∈ ℝ*)
690259a1i 11 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((((𝑄𝑖) − (𝑍𝑋))(,)+∞) ∩ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}))) → +∞ ∈ ℝ*)
691684adantl 482 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((((𝑄𝑖) − (𝑍𝑋))(,)+∞) ∩ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}))) → 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)+∞))
692 ioogtlb 43723 . . . . . . . . . . . . . . . . 17 ((((𝑄𝑖) − (𝑍𝑋)) ∈ ℝ* ∧ +∞ ∈ ℝ*𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)+∞)) → ((𝑄𝑖) − (𝑍𝑋)) < 𝑥)
693689, 690, 691, 692syl3anc 1371 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((((𝑄𝑖) − (𝑍𝑋))(,)+∞) ∩ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}))) → ((𝑄𝑖) − (𝑍𝑋)) < 𝑥)
6946933adantl3 1168 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((((𝑄𝑖) − (𝑍𝑋))(,)+∞) ∩ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}))) → ((𝑄𝑖) − (𝑍𝑋)) < 𝑥)
695 elinel2 4156 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ((((𝑄𝑖) − (𝑍𝑋))(,)+∞) ∩ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})) → 𝑥 ∈ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}))
696 elsni 4603 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ {𝑋} → 𝑥 = 𝑋)
697696adantl 482 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ {𝑋}) → 𝑥 = 𝑋)
698624adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ {𝑋}) → 𝑋𝑋)
699697, 698eqbrtrd 5127 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ {𝑋}) → 𝑥𝑋)
700699adantlr 713 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})) ∧ 𝑥 ∈ {𝑋}) → 𝑥𝑋)
701 simpll 765 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})) ∧ ¬ 𝑥 ∈ {𝑋}) → 𝜑)
702 elunnel2 4110 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}) ∧ ¬ 𝑥 ∈ {𝑋}) → 𝑥 ∈ ((-∞(,)𝑋) ∩ 𝐷))
703702adantll 712 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})) ∧ ¬ 𝑥 ∈ {𝑋}) → 𝑥 ∈ ((-∞(,)𝑋) ∩ 𝐷))
704 elinel1 4155 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ((-∞(,)𝑋) ∩ 𝐷) → 𝑥 ∈ (-∞(,)𝑋))
705703, 704syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})) ∧ ¬ 𝑥 ∈ {𝑋}) → 𝑥 ∈ (-∞(,)𝑋))
706 elioore 13294 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (-∞(,)𝑋) → 𝑥 ∈ ℝ)
707706adantl 482 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (-∞(,)𝑋)) → 𝑥 ∈ ℝ)
70814adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (-∞(,)𝑋)) → 𝑋 ∈ ℝ)
709194a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (-∞(,)𝑋)) → -∞ ∈ ℝ*)
710452adantr 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (-∞(,)𝑋)) → 𝑋 ∈ ℝ*)
711 simpr 485 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (-∞(,)𝑋)) → 𝑥 ∈ (-∞(,)𝑋))
712 iooltub 43738 . . . . . . . . . . . . . . . . . . . . 21 ((-∞ ∈ ℝ*𝑋 ∈ ℝ*𝑥 ∈ (-∞(,)𝑋)) → 𝑥 < 𝑋)
713709, 710, 711, 712syl3anc 1371 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (-∞(,)𝑋)) → 𝑥 < 𝑋)
714707, 708, 713ltled 11303 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (-∞(,)𝑋)) → 𝑥𝑋)
715701, 705, 714syl2anc 584 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})) ∧ ¬ 𝑥 ∈ {𝑋}) → 𝑥𝑋)
716700, 715pm2.61dan 811 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})) → 𝑥𝑋)
717695, 716sylan2 593 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ((((𝑄𝑖) − (𝑍𝑋))(,)+∞) ∩ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}))) → 𝑥𝑋)
7187173ad2antl1 1185 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((((𝑄𝑖) − (𝑍𝑋))(,)+∞) ∩ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}))) → 𝑥𝑋)
719682, 683, 688, 694, 718eliocd 43735 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((((𝑄𝑖) − (𝑍𝑋))(,)+∞) ∩ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}))) → 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋))
720681, 719impbida 799 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋) ↔ 𝑥 ∈ ((((𝑄𝑖) − (𝑍𝑋))(,)+∞) ∩ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}))))
721720eqrdv 2734 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (((𝑄𝑖) − (𝑍𝑋))(,]𝑋) = ((((𝑄𝑖) − (𝑍𝑋))(,)+∞) ∩ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})))
722605, 229sstrid 3955 . . . . . . . . . . . . . . 15 (𝜑 → ((-∞(,)𝑋) ∩ 𝐷) ⊆ ℝ)
72314snssd 4769 . . . . . . . . . . . . . . 15 (𝜑 → {𝑋} ⊆ ℝ)
724722, 723unssd 4146 . . . . . . . . . . . . . 14 (𝜑 → (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}) ⊆ ℝ)
7257243ad2ant1 1133 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}) ⊆ ℝ)
726233, 366rerest 24167 . . . . . . . . . . . . 13 ((((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}) ⊆ ℝ → ((TopOpen‘ℂfld) ↾t (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})) = ((topGen‘ran (,)) ↾t (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})))
727725, 726syl 17 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((TopOpen‘ℂfld) ↾t (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})) = ((topGen‘ran (,)) ↾t (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})))
728640, 721, 7273eltr4d 2853 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (((𝑄𝑖) − (𝑍𝑋))(,]𝑋) ∈ ((TopOpen‘ℂfld) ↾t (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})))
729 isopn3i 22433 . . . . . . . . . . 11 ((((TopOpen‘ℂfld) ↾t (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})) ∈ Top ∧ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋) ∈ ((TopOpen‘ℂfld) ↾t (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}))) → ((int‘((TopOpen‘ℂfld) ↾t (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})))‘(((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) = (((𝑄𝑖) − (𝑍𝑋))(,]𝑋))
730635, 728, 729sylancr 587 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((int‘((TopOpen‘ℂfld) ↾t (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})))‘(((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) = (((𝑄𝑖) − (𝑍𝑋))(,]𝑋))
731629, 730eqtr2d 2777 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (((𝑄𝑖) − (𝑍𝑋))(,]𝑋) = ((int‘((TopOpen‘ℂfld) ↾t (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})))‘((((𝑄𝑖) − (𝑍𝑋))(,)𝑋) ∪ {𝑋})))
732626, 731eleqtrd 2840 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → 𝑋 ∈ ((int‘((TopOpen‘ℂfld) ↾t (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})))‘((((𝑄𝑖) − (𝑍𝑋))(,)𝑋) ∪ {𝑋})))
733607, 613, 614, 233, 615, 732limcres 25250 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (((𝐹 ↾ ((-∞(,)𝑋) ∩ 𝐷)) ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) lim 𝑋) = ((𝐹 ↾ ((-∞(,)𝑋) ∩ 𝐷)) lim 𝑋))
734733eqcomd 2742 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝐹 ↾ ((-∞(,)𝑋) ∩ 𝐷)) lim 𝑋) = (((𝐹 ↾ ((-∞(,)𝑋) ∩ 𝐷)) ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) lim 𝑋))
735613resabs1d 5968 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝐹 ↾ ((-∞(,)𝑋) ∩ 𝐷)) ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) = (𝐹 ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)))
736735oveq1d 7372 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (((𝐹 ↾ ((-∞(,)𝑋) ∩ 𝐷)) ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) lim 𝑋) = ((𝐹 ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) lim 𝑋))
737604, 734, 7363eqtrrd 2781 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝐹 ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) lim 𝑋) = ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋))
738377, 596, 7373eqtrrd 2781 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋) = ((𝐹 ↾ (-∞(,)(𝐸𝑋))) lim (𝐸𝑋)))
739738rexlimdv3a 3156 . . 3 (𝜑 → (∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1))) → ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋) = ((𝐹 ↾ (-∞(,)(𝐸𝑋))) lim (𝐸𝑋))))
740173, 739mpd 15 . 2 (𝜑 → ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋) = ((𝐹 ↾ (-∞(,)(𝐸𝑋))) lim (𝐸𝑋)))
7411203adant3 1132 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝑄𝑖) < (𝑄‘(𝑖 + 1)))
7422183adant3 1132 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
743 fourierdlem49.l . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
7447433adant3 1132 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
745 eqid 2736 . . . . . . . 8 if((𝐸𝑋) = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘(𝐸𝑋))) = if((𝐸𝑋) = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘(𝐸𝑋)))
746 eqid 2736 . . . . . . . 8 ((TopOpen‘ℂfld) ↾t (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) = ((TopOpen‘ℂfld) ↾t (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))}))
747211, 209, 741, 742, 744, 211, 235, 238, 217, 745, 746fourierdlem33 44371 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → if((𝐸𝑋) = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘(𝐸𝑋))) ∈ (((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋)))
748217resabs1d 5968 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ↾ ((𝑄𝑖)(,)(𝐸𝑋))) = (𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))))
749748oveq1d 7372 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋)) = ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋)))
750747, 749eleqtrd 2840 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → if((𝐸𝑋) = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘(𝐸𝑋))) ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋)))
751 ne0i 4294 . . . . . 6 (if((𝐸𝑋) = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘(𝐸𝑋))) ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋)) → ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋)) ≠ ∅)
752750, 751syl 17 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋)) ≠ ∅)
753377, 752eqnetrd 3011 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝐹 ↾ (-∞(,)(𝐸𝑋))) lim (𝐸𝑋)) ≠ ∅)
754753rexlimdv3a 3156 . . 3 (𝜑 → (∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1))) → ((𝐹 ↾ (-∞(,)(𝐸𝑋))) lim (𝐸𝑋)) ≠ ∅))
755173, 754mpd 15 . 2 (𝜑 → ((𝐹 ↾ (-∞(,)(𝐸𝑋))) lim (𝐸𝑋)) ≠ ∅)
756740, 755eqnetrd 3011 1 (𝜑 → ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943  wral 3064  wrex 3073  {crab 3407  Vcvv 3445  cun 3908  cin 3909  wss 3910  c0 4282  ifcif 4486  {csn 4586   class class class wbr 5105  cmpt 5188  dom cdm 5633  ran crn 5634  cres 5635  Rel wrel 5638   Fn wfn 6491  wf 6492  cfv 6496  (class class class)co 7357  m cmap 8765  supcsup 9376  cc 11049  cr 11050  0cc0 11051  1c1 11052   + caddc 11054   · cmul 11056  +∞cpnf 11186  -∞cmnf 11187  *cxr 11188   < clt 11189  cle 11190  cmin 11385  -cneg 11386   / cdiv 11812  cn 12153  0cn0 12413  cz 12499  cuz 12763  (,)cioo 13264  (,]cioc 13265  [,]cicc 13267  ...cfz 13424  ..^cfzo 13567  cfl 13695  t crest 17302  TopOpenctopn 17303  topGenctg 17319  fldccnfld 20796  Topctop 22242  intcnt 22368  cnccncf 24239   lim climc 25226
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-pm 8768  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fi 9347  df-sup 9378  df-inf 9379  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ioc 13269  df-icc 13271  df-fz 13425  df-fzo 13568  df-fl 13697  df-seq 13907  df-exp 13968  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-struct 17019  df-slot 17054  df-ndx 17066  df-base 17084  df-plusg 17146  df-mulr 17147  df-starv 17148  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-rest 17304  df-topn 17305  df-topgen 17325  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-cnfld 20797  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-ntr 22371  df-cn 22578  df-cnp 22579  df-xms 23673  df-ms 23674  df-cncf 24241  df-limc 25230
This theorem is referenced by:  fourierdlem94  44431  fourierdlem113  44450
  Copyright terms: Public domain W3C validator