Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem49 Structured version   Visualization version   GIF version

Theorem fourierdlem49 45182
Description: The given periodic function 𝐹 has a left limit at every point in the reals. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem49.a (𝜑𝐴 ∈ ℝ)
fourierdlem49.b (𝜑𝐵 ∈ ℝ)
fourierdlem49.altb (𝜑𝐴 < 𝐵)
fourierdlem49.p 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem49.t 𝑇 = (𝐵𝐴)
fourierdlem49.m (𝜑𝑀 ∈ ℕ)
fourierdlem49.q (𝜑𝑄 ∈ (𝑃𝑀))
fourierdlem49.d (𝜑𝐷 ⊆ ℝ)
fourierdlem49.f (𝜑𝐹:𝐷⟶ℝ)
fourierdlem49.dper ((𝜑𝑥𝐷𝑘 ∈ ℤ) → (𝑥 + (𝑘 · 𝑇)) ∈ 𝐷)
fourierdlem49.per ((𝜑𝑥𝐷𝑘 ∈ ℤ) → (𝐹‘(𝑥 + (𝑘 · 𝑇))) = (𝐹𝑥))
fourierdlem49.cn ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
fourierdlem49.l ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
fourierdlem49.x (𝜑𝑋 ∈ ℝ)
fourierdlem49.z 𝑍 = (𝑥 ∈ ℝ ↦ ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇))
fourierdlem49.e 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + (𝑍𝑥)))
Assertion
Ref Expression
fourierdlem49 (𝜑 → ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋) ≠ ∅)
Distinct variable groups:   𝐴,𝑖,𝑚,𝑝   𝑥,𝐴,𝑖   𝐵,𝑖,𝑘   𝐵,𝑚,𝑝   𝑥,𝐵,𝑘   𝐷,𝑘,𝑥   𝑖,𝐸,𝑘,𝑥   𝑖,𝐹,𝑘,𝑥   𝑖,𝑀,𝑘   𝑚,𝑀,𝑝   𝑥,𝑀   𝑄,𝑖,𝑘   𝑄,𝑝   𝑥,𝑄   𝑇,𝑘,𝑥   𝑖,𝑋,𝑘,𝑥   𝑘,𝑍,𝑥   𝜑,𝑖,𝑘,𝑥
Allowed substitution hints:   𝜑(𝑚,𝑝)   𝐴(𝑘)   𝐷(𝑖,𝑚,𝑝)   𝑃(𝑥,𝑖,𝑘,𝑚,𝑝)   𝑄(𝑚)   𝑇(𝑖,𝑚,𝑝)   𝐸(𝑚,𝑝)   𝐹(𝑚,𝑝)   𝐿(𝑥,𝑖,𝑘,𝑚,𝑝)   𝑋(𝑚,𝑝)   𝑍(𝑖,𝑚,𝑝)

Proof of Theorem fourierdlem49
Dummy variables 𝑗 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fourierdlem49.a . . . . . 6 (𝜑𝐴 ∈ ℝ)
2 fourierdlem49.b . . . . . 6 (𝜑𝐵 ∈ ℝ)
3 fourierdlem49.altb . . . . . 6 (𝜑𝐴 < 𝐵)
4 fourierdlem49.t . . . . . 6 𝑇 = (𝐵𝐴)
5 fourierdlem49.e . . . . . . 7 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + (𝑍𝑥)))
6 ovex 7445 . . . . . . . . . 10 ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇) ∈ V
7 fourierdlem49.z . . . . . . . . . . 11 𝑍 = (𝑥 ∈ ℝ ↦ ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇))
87fvmpt2 7009 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇) ∈ V) → (𝑍𝑥) = ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇))
96, 8mpan2 688 . . . . . . . . 9 (𝑥 ∈ ℝ → (𝑍𝑥) = ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇))
109oveq2d 7428 . . . . . . . 8 (𝑥 ∈ ℝ → (𝑥 + (𝑍𝑥)) = (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
1110mpteq2ia 5251 . . . . . . 7 (𝑥 ∈ ℝ ↦ (𝑥 + (𝑍𝑥))) = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
125, 11eqtri 2759 . . . . . 6 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
131, 2, 3, 4, 12fourierdlem4 45138 . . . . 5 (𝜑𝐸:ℝ⟶(𝐴(,]𝐵))
14 fourierdlem49.x . . . . 5 (𝜑𝑋 ∈ ℝ)
1513, 14ffvelcdmd 7087 . . . 4 (𝜑 → (𝐸𝑋) ∈ (𝐴(,]𝐵))
16 simpr 484 . . . . . . 7 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ (𝐸𝑋) ∈ ran 𝑄) → (𝐸𝑋) ∈ ran 𝑄)
17 fourierdlem49.q . . . . . . . . . . . . 13 (𝜑𝑄 ∈ (𝑃𝑀))
18 fourierdlem49.m . . . . . . . . . . . . . 14 (𝜑𝑀 ∈ ℕ)
19 fourierdlem49.p . . . . . . . . . . . . . . 15 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
2019fourierdlem2 45136 . . . . . . . . . . . . . 14 (𝑀 ∈ ℕ → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
2118, 20syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
2217, 21mpbid 231 . . . . . . . . . . . 12 (𝜑 → (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))))
2322simpld 494 . . . . . . . . . . 11 (𝜑𝑄 ∈ (ℝ ↑m (0...𝑀)))
24 elmapi 8849 . . . . . . . . . . 11 (𝑄 ∈ (ℝ ↑m (0...𝑀)) → 𝑄:(0...𝑀)⟶ℝ)
2523, 24syl 17 . . . . . . . . . 10 (𝜑𝑄:(0...𝑀)⟶ℝ)
26 ffn 6717 . . . . . . . . . 10 (𝑄:(0...𝑀)⟶ℝ → 𝑄 Fn (0...𝑀))
2725, 26syl 17 . . . . . . . . 9 (𝜑𝑄 Fn (0...𝑀))
2827ad2antrr 723 . . . . . . . 8 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ (𝐸𝑋) ∈ ran 𝑄) → 𝑄 Fn (0...𝑀))
29 fvelrnb 6952 . . . . . . . 8 (𝑄 Fn (0...𝑀) → ((𝐸𝑋) ∈ ran 𝑄 ↔ ∃𝑗 ∈ (0...𝑀)(𝑄𝑗) = (𝐸𝑋)))
3028, 29syl 17 . . . . . . 7 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ (𝐸𝑋) ∈ ran 𝑄) → ((𝐸𝑋) ∈ ran 𝑄 ↔ ∃𝑗 ∈ (0...𝑀)(𝑄𝑗) = (𝐸𝑋)))
3116, 30mpbid 231 . . . . . 6 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ (𝐸𝑋) ∈ ran 𝑄) → ∃𝑗 ∈ (0...𝑀)(𝑄𝑗) = (𝐸𝑋))
32 1zzd 12600 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 1 ∈ ℤ)
33 elfzelz 13508 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℤ)
3433ad2antlr 724 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 𝑗 ∈ ℤ)
35 1e0p1 12726 . . . . . . . . . . . . . . . . 17 1 = (0 + 1)
3635a1i 11 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 1 = (0 + 1))
3734zred 12673 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 𝑗 ∈ ℝ)
38 elfzle1 13511 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ (0...𝑀) → 0 ≤ 𝑗)
3938ad2antlr 724 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 0 ≤ 𝑗)
40 id 22 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑄𝑗) = (𝐸𝑋) → (𝑄𝑗) = (𝐸𝑋))
4140eqcomd 2737 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑄𝑗) = (𝐸𝑋) → (𝐸𝑋) = (𝑄𝑗))
4241ad2antlr 724 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑄𝑗) = (𝐸𝑋)) ∧ 𝑗 = 0) → (𝐸𝑋) = (𝑄𝑗))
43 fveq2 6891 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑗 = 0 → (𝑄𝑗) = (𝑄‘0))
4443adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑄𝑗) = (𝐸𝑋)) ∧ 𝑗 = 0) → (𝑄𝑗) = (𝑄‘0))
4522simprld 769 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → ((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵))
4645simpld 494 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝑄‘0) = 𝐴)
4746ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑄𝑗) = (𝐸𝑋)) ∧ 𝑗 = 0) → (𝑄‘0) = 𝐴)
4842, 44, 473eqtrd 2775 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑄𝑗) = (𝐸𝑋)) ∧ 𝑗 = 0) → (𝐸𝑋) = 𝐴)
4948adantllr 716 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ (𝑄𝑗) = (𝐸𝑋)) ∧ 𝑗 = 0) → (𝐸𝑋) = 𝐴)
5049adantllr 716 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) ∧ 𝑗 = 0) → (𝐸𝑋) = 𝐴)
511adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) → 𝐴 ∈ ℝ)
521rexrd 11271 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐴 ∈ ℝ*)
5352adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) → 𝐴 ∈ ℝ*)
542rexrd 11271 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐵 ∈ ℝ*)
5554adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) → 𝐵 ∈ ℝ*)
56 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) → (𝐸𝑋) ∈ (𝐴(,]𝐵))
57 iocgtlb 44526 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) → 𝐴 < (𝐸𝑋))
5853, 55, 56, 57syl3anc 1370 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) → 𝐴 < (𝐸𝑋))
5951, 58gtned 11356 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) → (𝐸𝑋) ≠ 𝐴)
6059neneqd 2944 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) → ¬ (𝐸𝑋) = 𝐴)
6160ad3antrrr 727 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) ∧ 𝑗 = 0) → ¬ (𝐸𝑋) = 𝐴)
6250, 61pm2.65da 814 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → ¬ 𝑗 = 0)
6362neqned 2946 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 𝑗 ≠ 0)
6437, 39, 63ne0gt0d 11358 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 0 < 𝑗)
65 0zd 12577 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 0 ∈ ℤ)
66 zltp1le 12619 . . . . . . . . . . . . . . . . . 18 ((0 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (0 < 𝑗 ↔ (0 + 1) ≤ 𝑗))
6765, 34, 66syl2anc 583 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (0 < 𝑗 ↔ (0 + 1) ≤ 𝑗))
6864, 67mpbid 231 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (0 + 1) ≤ 𝑗)
6936, 68eqbrtrd 5170 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 1 ≤ 𝑗)
70 eluz2 12835 . . . . . . . . . . . . . . 15 (𝑗 ∈ (ℤ‘1) ↔ (1 ∈ ℤ ∧ 𝑗 ∈ ℤ ∧ 1 ≤ 𝑗))
7132, 34, 69, 70syl3anbrc 1342 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 𝑗 ∈ (ℤ‘1))
72 nnuz 12872 . . . . . . . . . . . . . 14 ℕ = (ℤ‘1)
7371, 72eleqtrrdi 2843 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 𝑗 ∈ ℕ)
74 nnm1nn0 12520 . . . . . . . . . . . . 13 (𝑗 ∈ ℕ → (𝑗 − 1) ∈ ℕ0)
7573, 74syl 17 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑗 − 1) ∈ ℕ0)
76 nn0uz 12871 . . . . . . . . . . . . 13 0 = (ℤ‘0)
7776a1i 11 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → ℕ0 = (ℤ‘0))
7875, 77eleqtrd 2834 . . . . . . . . . . 11 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑗 − 1) ∈ (ℤ‘0))
7918nnzd 12592 . . . . . . . . . . . 12 (𝜑𝑀 ∈ ℤ)
8079ad3antrrr 727 . . . . . . . . . . 11 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 𝑀 ∈ ℤ)
81 peano2zm 12612 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℤ → (𝑗 − 1) ∈ ℤ)
8233, 81syl 17 . . . . . . . . . . . . . 14 (𝑗 ∈ (0...𝑀) → (𝑗 − 1) ∈ ℤ)
8382zred 12673 . . . . . . . . . . . . 13 (𝑗 ∈ (0...𝑀) → (𝑗 − 1) ∈ ℝ)
8433zred 12673 . . . . . . . . . . . . 13 (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℝ)
85 elfzel2 13506 . . . . . . . . . . . . . 14 (𝑗 ∈ (0...𝑀) → 𝑀 ∈ ℤ)
8685zred 12673 . . . . . . . . . . . . 13 (𝑗 ∈ (0...𝑀) → 𝑀 ∈ ℝ)
8784ltm1d 12153 . . . . . . . . . . . . 13 (𝑗 ∈ (0...𝑀) → (𝑗 − 1) < 𝑗)
88 elfzle2 13512 . . . . . . . . . . . . 13 (𝑗 ∈ (0...𝑀) → 𝑗𝑀)
8983, 84, 86, 87, 88ltletrd 11381 . . . . . . . . . . . 12 (𝑗 ∈ (0...𝑀) → (𝑗 − 1) < 𝑀)
9089ad2antlr 724 . . . . . . . . . . 11 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑗 − 1) < 𝑀)
91 elfzo2 13642 . . . . . . . . . . 11 ((𝑗 − 1) ∈ (0..^𝑀) ↔ ((𝑗 − 1) ∈ (ℤ‘0) ∧ 𝑀 ∈ ℤ ∧ (𝑗 − 1) < 𝑀))
9278, 80, 90, 91syl3anbrc 1342 . . . . . . . . . 10 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑗 − 1) ∈ (0..^𝑀))
9325ad3antrrr 727 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 𝑄:(0...𝑀)⟶ℝ)
9434, 81syl 17 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑗 − 1) ∈ ℤ)
9575nn0ge0d 12542 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 0 ≤ (𝑗 − 1))
9683, 86, 89ltled 11369 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (0...𝑀) → (𝑗 − 1) ≤ 𝑀)
9796ad2antlr 724 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑗 − 1) ≤ 𝑀)
9865, 80, 94, 95, 97elfzd 13499 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑗 − 1) ∈ (0...𝑀))
9993, 98ffvelcdmd 7087 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑄‘(𝑗 − 1)) ∈ ℝ)
10099rexrd 11271 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑄‘(𝑗 − 1)) ∈ ℝ*)
10125ffvelcdmda 7086 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (0...𝑀)) → (𝑄𝑗) ∈ ℝ)
102101rexrd 11271 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (0...𝑀)) → (𝑄𝑗) ∈ ℝ*)
103102adantlr 712 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) → (𝑄𝑗) ∈ ℝ*)
104103adantr 480 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑄𝑗) ∈ ℝ*)
105 iocssre 13411 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐴(,]𝐵) ⊆ ℝ)
10652, 2, 105syl2anc 583 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴(,]𝐵) ⊆ ℝ)
107106sselda 3982 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) → (𝐸𝑋) ∈ ℝ)
108107rexrd 11271 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) → (𝐸𝑋) ∈ ℝ*)
109108ad2antrr 723 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝐸𝑋) ∈ ℝ*)
110 simplll 772 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 𝜑)
111 ovex 7445 . . . . . . . . . . . . . . . 16 (𝑗 − 1) ∈ V
112 eleq1 2820 . . . . . . . . . . . . . . . . . 18 (𝑖 = (𝑗 − 1) → (𝑖 ∈ (0..^𝑀) ↔ (𝑗 − 1) ∈ (0..^𝑀)))
113112anbi2d 628 . . . . . . . . . . . . . . . . 17 (𝑖 = (𝑗 − 1) → ((𝜑𝑖 ∈ (0..^𝑀)) ↔ (𝜑 ∧ (𝑗 − 1) ∈ (0..^𝑀))))
114 fveq2 6891 . . . . . . . . . . . . . . . . . 18 (𝑖 = (𝑗 − 1) → (𝑄𝑖) = (𝑄‘(𝑗 − 1)))
115 oveq1 7419 . . . . . . . . . . . . . . . . . . 19 (𝑖 = (𝑗 − 1) → (𝑖 + 1) = ((𝑗 − 1) + 1))
116115fveq2d 6895 . . . . . . . . . . . . . . . . . 18 (𝑖 = (𝑗 − 1) → (𝑄‘(𝑖 + 1)) = (𝑄‘((𝑗 − 1) + 1)))
117114, 116breq12d 5161 . . . . . . . . . . . . . . . . 17 (𝑖 = (𝑗 − 1) → ((𝑄𝑖) < (𝑄‘(𝑖 + 1)) ↔ (𝑄‘(𝑗 − 1)) < (𝑄‘((𝑗 − 1) + 1))))
118113, 117imbi12d 344 . . . . . . . . . . . . . . . 16 (𝑖 = (𝑗 − 1) → (((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) < (𝑄‘(𝑖 + 1))) ↔ ((𝜑 ∧ (𝑗 − 1) ∈ (0..^𝑀)) → (𝑄‘(𝑗 − 1)) < (𝑄‘((𝑗 − 1) + 1)))))
11922simprrd 771 . . . . . . . . . . . . . . . . 17 (𝜑 → ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))
120119r19.21bi 3247 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) < (𝑄‘(𝑖 + 1)))
121111, 118, 120vtocl 3545 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑗 − 1) ∈ (0..^𝑀)) → (𝑄‘(𝑗 − 1)) < (𝑄‘((𝑗 − 1) + 1)))
122110, 92, 121syl2anc 583 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑄‘(𝑗 − 1)) < (𝑄‘((𝑗 − 1) + 1)))
12333zcnd 12674 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℂ)
124 1cnd 11216 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ (0...𝑀) → 1 ∈ ℂ)
125123, 124npcand 11582 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ (0...𝑀) → ((𝑗 − 1) + 1) = 𝑗)
126125eqcomd 2737 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (0...𝑀) → 𝑗 = ((𝑗 − 1) + 1))
127126fveq2d 6895 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (0...𝑀) → (𝑄𝑗) = (𝑄‘((𝑗 − 1) + 1)))
128127eqcomd 2737 . . . . . . . . . . . . . . 15 (𝑗 ∈ (0...𝑀) → (𝑄‘((𝑗 − 1) + 1)) = (𝑄𝑗))
129128ad2antlr 724 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑄‘((𝑗 − 1) + 1)) = (𝑄𝑗))
130122, 129breqtrd 5174 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑄‘(𝑗 − 1)) < (𝑄𝑗))
131 simpr 484 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑄𝑗) = (𝐸𝑋))
132130, 131breqtrd 5174 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑄‘(𝑗 − 1)) < (𝐸𝑋))
133106, 15sseldd 3983 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐸𝑋) ∈ ℝ)
134133leidd 11787 . . . . . . . . . . . . . . 15 (𝜑 → (𝐸𝑋) ≤ (𝐸𝑋))
135134ad2antrr 723 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝐸𝑋) ≤ (𝐸𝑋))
13641adantl 481 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝐸𝑋) = (𝑄𝑗))
137135, 136breqtrd 5174 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝐸𝑋) ≤ (𝑄𝑗))
138137adantllr 716 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝐸𝑋) ≤ (𝑄𝑗))
139100, 104, 109, 132, 138eliocd 44531 . . . . . . . . . . 11 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝐸𝑋) ∈ ((𝑄‘(𝑗 − 1))(,](𝑄𝑗)))
140127oveq2d 7428 . . . . . . . . . . . 12 (𝑗 ∈ (0...𝑀) → ((𝑄‘(𝑗 − 1))(,](𝑄𝑗)) = ((𝑄‘(𝑗 − 1))(,](𝑄‘((𝑗 − 1) + 1))))
141140ad2antlr 724 . . . . . . . . . . 11 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → ((𝑄‘(𝑗 − 1))(,](𝑄𝑗)) = ((𝑄‘(𝑗 − 1))(,](𝑄‘((𝑗 − 1) + 1))))
142139, 141eleqtrd 2834 . . . . . . . . . 10 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝐸𝑋) ∈ ((𝑄‘(𝑗 − 1))(,](𝑄‘((𝑗 − 1) + 1))))
143114, 116oveq12d 7430 . . . . . . . . . . . 12 (𝑖 = (𝑗 − 1) → ((𝑄𝑖)(,](𝑄‘(𝑖 + 1))) = ((𝑄‘(𝑗 − 1))(,](𝑄‘((𝑗 − 1) + 1))))
144143eleq2d 2818 . . . . . . . . . . 11 (𝑖 = (𝑗 − 1) → ((𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1))) ↔ (𝐸𝑋) ∈ ((𝑄‘(𝑗 − 1))(,](𝑄‘((𝑗 − 1) + 1)))))
145144rspcev 3612 . . . . . . . . . 10 (((𝑗 − 1) ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄‘(𝑗 − 1))(,](𝑄‘((𝑗 − 1) + 1)))) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1))))
14692, 142, 145syl2anc 583 . . . . . . . . 9 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1))))
147146ex 412 . . . . . . . 8 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) → ((𝑄𝑗) = (𝐸𝑋) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))))
148147adantlr 712 . . . . . . 7 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ (𝐸𝑋) ∈ ran 𝑄) ∧ 𝑗 ∈ (0...𝑀)) → ((𝑄𝑗) = (𝐸𝑋) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))))
149148rexlimdva 3154 . . . . . 6 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ (𝐸𝑋) ∈ ran 𝑄) → (∃𝑗 ∈ (0...𝑀)(𝑄𝑗) = (𝐸𝑋) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))))
15031, 149mpd 15 . . . . 5 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ (𝐸𝑋) ∈ ran 𝑄) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1))))
15118ad2antrr 723 . . . . . . 7 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ ¬ (𝐸𝑋) ∈ ran 𝑄) → 𝑀 ∈ ℕ)
15225ad2antrr 723 . . . . . . 7 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ ¬ (𝐸𝑋) ∈ ran 𝑄) → 𝑄:(0...𝑀)⟶ℝ)
153 iocssicc 13421 . . . . . . . . . 10 (𝐴(,]𝐵) ⊆ (𝐴[,]𝐵)
15446eqcomd 2737 . . . . . . . . . . 11 (𝜑𝐴 = (𝑄‘0))
15545simprd 495 . . . . . . . . . . . 12 (𝜑 → (𝑄𝑀) = 𝐵)
156155eqcomd 2737 . . . . . . . . . . 11 (𝜑𝐵 = (𝑄𝑀))
157154, 156oveq12d 7430 . . . . . . . . . 10 (𝜑 → (𝐴[,]𝐵) = ((𝑄‘0)[,](𝑄𝑀)))
158153, 157sseqtrid 4034 . . . . . . . . 9 (𝜑 → (𝐴(,]𝐵) ⊆ ((𝑄‘0)[,](𝑄𝑀)))
159158sselda 3982 . . . . . . . 8 ((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) → (𝐸𝑋) ∈ ((𝑄‘0)[,](𝑄𝑀)))
160159adantr 480 . . . . . . 7 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ ¬ (𝐸𝑋) ∈ ran 𝑄) → (𝐸𝑋) ∈ ((𝑄‘0)[,](𝑄𝑀)))
161 simpr 484 . . . . . . 7 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ ¬ (𝐸𝑋) ∈ ran 𝑄) → ¬ (𝐸𝑋) ∈ ran 𝑄)
162 fveq2 6891 . . . . . . . . . 10 (𝑘 = 𝑗 → (𝑄𝑘) = (𝑄𝑗))
163162breq1d 5158 . . . . . . . . 9 (𝑘 = 𝑗 → ((𝑄𝑘) < (𝐸𝑋) ↔ (𝑄𝑗) < (𝐸𝑋)))
164163cbvrabv 3441 . . . . . . . 8 {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < (𝐸𝑋)} = {𝑗 ∈ (0..^𝑀) ∣ (𝑄𝑗) < (𝐸𝑋)}
165164supeq1i 9448 . . . . . . 7 sup({𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < (𝐸𝑋)}, ℝ, < ) = sup({𝑗 ∈ (0..^𝑀) ∣ (𝑄𝑗) < (𝐸𝑋)}, ℝ, < )
166151, 152, 160, 161, 165fourierdlem25 45159 . . . . . 6 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ ¬ (𝐸𝑋) ∈ ran 𝑄) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
167 ioossioc 44516 . . . . . . . . 9 ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))
168167sseli 3978 . . . . . . . 8 ((𝐸𝑋) ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) → (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1))))
169168a1i 11 . . . . . . 7 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ ¬ (𝐸𝑋) ∈ ran 𝑄) ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐸𝑋) ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) → (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))))
170169reximdva 3167 . . . . . 6 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ ¬ (𝐸𝑋) ∈ ran 𝑄) → (∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))))
171166, 170mpd 15 . . . . 5 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ ¬ (𝐸𝑋) ∈ ran 𝑄) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1))))
172150, 171pm2.61dan 810 . . . 4 ((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1))))
17315, 172mpdan 684 . . 3 (𝜑 → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1))))
174 fourierdlem49.f . . . . . . . . . . 11 (𝜑𝐹:𝐷⟶ℝ)
175 frel 6722 . . . . . . . . . . 11 (𝐹:𝐷⟶ℝ → Rel 𝐹)
176174, 175syl 17 . . . . . . . . . 10 (𝜑 → Rel 𝐹)
177 resindm 6030 . . . . . . . . . . 11 (Rel 𝐹 → (𝐹 ↾ ((-∞(,)(𝐸𝑋)) ∩ dom 𝐹)) = (𝐹 ↾ (-∞(,)(𝐸𝑋))))
178177eqcomd 2737 . . . . . . . . . 10 (Rel 𝐹 → (𝐹 ↾ (-∞(,)(𝐸𝑋))) = (𝐹 ↾ ((-∞(,)(𝐸𝑋)) ∩ dom 𝐹)))
179176, 178syl 17 . . . . . . . . 9 (𝜑 → (𝐹 ↾ (-∞(,)(𝐸𝑋))) = (𝐹 ↾ ((-∞(,)(𝐸𝑋)) ∩ dom 𝐹)))
180 fdm 6726 . . . . . . . . . . . 12 (𝐹:𝐷⟶ℝ → dom 𝐹 = 𝐷)
181174, 180syl 17 . . . . . . . . . . 11 (𝜑 → dom 𝐹 = 𝐷)
182181ineq2d 4212 . . . . . . . . . 10 (𝜑 → ((-∞(,)(𝐸𝑋)) ∩ dom 𝐹) = ((-∞(,)(𝐸𝑋)) ∩ 𝐷))
183182reseq2d 5981 . . . . . . . . 9 (𝜑 → (𝐹 ↾ ((-∞(,)(𝐸𝑋)) ∩ dom 𝐹)) = (𝐹 ↾ ((-∞(,)(𝐸𝑋)) ∩ 𝐷)))
184179, 183eqtrd 2771 . . . . . . . 8 (𝜑 → (𝐹 ↾ (-∞(,)(𝐸𝑋))) = (𝐹 ↾ ((-∞(,)(𝐸𝑋)) ∩ 𝐷)))
1851843ad2ant1 1132 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝐹 ↾ (-∞(,)(𝐸𝑋))) = (𝐹 ↾ ((-∞(,)(𝐸𝑋)) ∩ 𝐷)))
186185oveq1d 7427 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝐹 ↾ (-∞(,)(𝐸𝑋))) lim (𝐸𝑋)) = ((𝐹 ↾ ((-∞(,)(𝐸𝑋)) ∩ 𝐷)) lim (𝐸𝑋)))
187 ax-resscn 11173 . . . . . . . . . . 11 ℝ ⊆ ℂ
188187a1i 11 . . . . . . . . . 10 (𝜑 → ℝ ⊆ ℂ)
189174, 188fssd 6735 . . . . . . . . 9 (𝜑𝐹:𝐷⟶ℂ)
1901893ad2ant1 1132 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → 𝐹:𝐷⟶ℂ)
191 inss2 4229 . . . . . . . . 9 ((-∞(,)(𝐸𝑋)) ∩ 𝐷) ⊆ 𝐷
192191a1i 11 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((-∞(,)(𝐸𝑋)) ∩ 𝐷) ⊆ 𝐷)
193190, 192fssresd 6758 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝐹 ↾ ((-∞(,)(𝐸𝑋)) ∩ 𝐷)):((-∞(,)(𝐸𝑋)) ∩ 𝐷)⟶ℂ)
194 mnfxr 11278 . . . . . . . . . 10 -∞ ∈ ℝ*
195194a1i 11 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → -∞ ∈ ℝ*)
19625adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶ℝ)
197 elfzofz 13655 . . . . . . . . . . . . . 14 (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ (0...𝑀))
198197adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0...𝑀))
199196, 198ffvelcdmd 7087 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ ℝ)
200199rexrd 11271 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ ℝ*)
201199mnfltd 13111 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → -∞ < (𝑄𝑖))
202195, 200, 201xrltled 13136 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → -∞ ≤ (𝑄𝑖))
203 iooss1 13366 . . . . . . . . . 10 ((-∞ ∈ ℝ* ∧ -∞ ≤ (𝑄𝑖)) → ((𝑄𝑖)(,)(𝐸𝑋)) ⊆ (-∞(,)(𝐸𝑋)))
204194, 202, 203sylancr 586 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)(,)(𝐸𝑋)) ⊆ (-∞(,)(𝐸𝑋)))
2052043adant3 1131 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝑄𝑖)(,)(𝐸𝑋)) ⊆ (-∞(,)(𝐸𝑋)))
206 fzofzp1 13736 . . . . . . . . . . . . . 14 (𝑖 ∈ (0..^𝑀) → (𝑖 + 1) ∈ (0...𝑀))
207206adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑖 + 1) ∈ (0...𝑀))
208196, 207ffvelcdmd 7087 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ℝ)
2092083adant3 1131 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝑄‘(𝑖 + 1)) ∈ ℝ)
210209rexrd 11271 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝑄‘(𝑖 + 1)) ∈ ℝ*)
2111993adant3 1131 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝑄𝑖) ∈ ℝ)
212211rexrd 11271 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝑄𝑖) ∈ ℝ*)
213 simp3 1137 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1))))
214 iocleub 44527 . . . . . . . . . . 11 (((𝑄𝑖) ∈ ℝ* ∧ (𝑄‘(𝑖 + 1)) ∈ ℝ* ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝐸𝑋) ≤ (𝑄‘(𝑖 + 1)))
215212, 210, 213, 214syl3anc 1370 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝐸𝑋) ≤ (𝑄‘(𝑖 + 1)))
216 iooss2 13367 . . . . . . . . . 10 (((𝑄‘(𝑖 + 1)) ∈ ℝ* ∧ (𝐸𝑋) ≤ (𝑄‘(𝑖 + 1))) → ((𝑄𝑖)(,)(𝐸𝑋)) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
217210, 215, 216syl2anc 583 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝑄𝑖)(,)(𝐸𝑋)) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
218 fourierdlem49.cn . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
219 cncff 24646 . . . . . . . . . . . . 13 ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ)
220 fdm 6726 . . . . . . . . . . . . 13 ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ → dom (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
221218, 219, 2203syl 18 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → dom (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
222 ssdmres 6004 . . . . . . . . . . . 12 (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ dom 𝐹 ↔ dom (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
223221, 222sylibr 233 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ dom 𝐹)
224181adantr 480 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → dom 𝐹 = 𝐷)
225223, 224sseqtrd 4022 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ 𝐷)
2262253adant3 1131 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ 𝐷)
227217, 226sstrd 3992 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝑄𝑖)(,)(𝐸𝑋)) ⊆ 𝐷)
228205, 227ssind 4232 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝑄𝑖)(,)(𝐸𝑋)) ⊆ ((-∞(,)(𝐸𝑋)) ∩ 𝐷))
229 fourierdlem49.d . . . . . . . . . 10 (𝜑𝐷 ⊆ ℝ)
230229, 188sstrd 3992 . . . . . . . . 9 (𝜑𝐷 ⊆ ℂ)
2312303ad2ant1 1132 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → 𝐷 ⊆ ℂ)
232191, 231sstrid 3993 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((-∞(,)(𝐸𝑋)) ∩ 𝐷) ⊆ ℂ)
233 eqid 2731 . . . . . . 7 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
234 eqid 2731 . . . . . . 7 ((TopOpen‘ℂfld) ↾t (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})) = ((TopOpen‘ℂfld) ↾t (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}))
2351333ad2ant1 1132 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝐸𝑋) ∈ ℝ)
236235rexrd 11271 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝐸𝑋) ∈ ℝ*)
237 iocgtlb 44526 . . . . . . . . . 10 (((𝑄𝑖) ∈ ℝ* ∧ (𝑄‘(𝑖 + 1)) ∈ ℝ* ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝑄𝑖) < (𝐸𝑋))
238212, 210, 213, 237syl3anc 1370 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝑄𝑖) < (𝐸𝑋))
239235leidd 11787 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝐸𝑋) ≤ (𝐸𝑋))
240212, 236, 236, 238, 239eliocd 44531 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝐸𝑋)))
241 ioounsn 13461 . . . . . . . . . . 11 (((𝑄𝑖) ∈ ℝ* ∧ (𝐸𝑋) ∈ ℝ* ∧ (𝑄𝑖) < (𝐸𝑋)) → (((𝑄𝑖)(,)(𝐸𝑋)) ∪ {(𝐸𝑋)}) = ((𝑄𝑖)(,](𝐸𝑋)))
242212, 236, 238, 241syl3anc 1370 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (((𝑄𝑖)(,)(𝐸𝑋)) ∪ {(𝐸𝑋)}) = ((𝑄𝑖)(,](𝐸𝑋)))
243242fveq2d 6895 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((int‘((TopOpen‘ℂfld) ↾t (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})))‘(((𝑄𝑖)(,)(𝐸𝑋)) ∪ {(𝐸𝑋)})) = ((int‘((TopOpen‘ℂfld) ↾t (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})))‘((𝑄𝑖)(,](𝐸𝑋))))
244233cnfldtop 24533 . . . . . . . . . . 11 (TopOpen‘ℂfld) ∈ Top
245 ovex 7445 . . . . . . . . . . . . 13 (-∞(,)(𝐸𝑋)) ∈ V
246245inex1 5317 . . . . . . . . . . . 12 ((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∈ V
247 snex 5431 . . . . . . . . . . . 12 {(𝐸𝑋)} ∈ V
248246, 247unex 7737 . . . . . . . . . . 11 (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}) ∈ V
249 resttop 22897 . . . . . . . . . . 11 (((TopOpen‘ℂfld) ∈ Top ∧ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}) ∈ V) → ((TopOpen‘ℂfld) ↾t (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})) ∈ Top)
250244, 248, 249mp2an 689 . . . . . . . . . 10 ((TopOpen‘ℂfld) ↾t (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})) ∈ Top
251 retop 24511 . . . . . . . . . . . . 13 (topGen‘ran (,)) ∈ Top
252251a1i 11 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (topGen‘ran (,)) ∈ Top)
253248a1i 11 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}) ∈ V)
254 iooretop 24515 . . . . . . . . . . . . 13 ((𝑄𝑖)(,)+∞) ∈ (topGen‘ran (,))
255254a1i 11 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝑄𝑖)(,)+∞) ∈ (topGen‘ran (,)))
256 elrestr 17381 . . . . . . . . . . . 12 (((topGen‘ran (,)) ∈ Top ∧ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}) ∈ V ∧ ((𝑄𝑖)(,)+∞) ∈ (topGen‘ran (,))) → (((𝑄𝑖)(,)+∞) ∩ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})) ∈ ((topGen‘ran (,)) ↾t (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})))
257252, 253, 255, 256syl3anc 1370 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (((𝑄𝑖)(,)+∞) ∩ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})) ∈ ((topGen‘ran (,)) ↾t (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})))
258 simpr 484 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 = (𝐸𝑋)) → 𝑥 = (𝐸𝑋))
259 pnfxr 11275 . . . . . . . . . . . . . . . . . . . 20 +∞ ∈ ℝ*
260259a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → +∞ ∈ ℝ*)
261235ltpnfd 13108 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝐸𝑋) < +∞)
262212, 260, 235, 238, 261eliood 44522 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝐸𝑋) ∈ ((𝑄𝑖)(,)+∞))
263 snidg 4662 . . . . . . . . . . . . . . . . . . . . 21 ((𝐸𝑋) ∈ ℝ → (𝐸𝑋) ∈ {(𝐸𝑋)})
264 elun2 4177 . . . . . . . . . . . . . . . . . . . . 21 ((𝐸𝑋) ∈ {(𝐸𝑋)} → (𝐸𝑋) ∈ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}))
265263, 264syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝐸𝑋) ∈ ℝ → (𝐸𝑋) ∈ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}))
266133, 265syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐸𝑋) ∈ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}))
2672663ad2ant1 1132 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝐸𝑋) ∈ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}))
268262, 267elind 4194 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝐸𝑋) ∈ (((𝑄𝑖)(,)+∞) ∩ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})))
269268adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 = (𝐸𝑋)) → (𝐸𝑋) ∈ (((𝑄𝑖)(,)+∞) ∩ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})))
270258, 269eqeltrd 2832 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 = (𝐸𝑋)) → 𝑥 ∈ (((𝑄𝑖)(,)+∞) ∩ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})))
271270adantlr 712 . . . . . . . . . . . . . 14 ((((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ 𝑥 = (𝐸𝑋)) → 𝑥 ∈ (((𝑄𝑖)(,)+∞) ∩ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})))
272212adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) → (𝑄𝑖) ∈ ℝ*)
273259a1i 11 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) → +∞ ∈ ℝ*)
274200adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) → (𝑄𝑖) ∈ ℝ*)
275133adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐸𝑋) ∈ ℝ)
276275adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) → (𝐸𝑋) ∈ ℝ)
277 iocssre 13411 . . . . . . . . . . . . . . . . . . . 20 (((𝑄𝑖) ∈ ℝ* ∧ (𝐸𝑋) ∈ ℝ) → ((𝑄𝑖)(,](𝐸𝑋)) ⊆ ℝ)
278274, 276, 277syl2anc 583 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) → ((𝑄𝑖)(,](𝐸𝑋)) ⊆ ℝ)
279 simpr 484 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) → 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋)))
280278, 279sseldd 3983 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) → 𝑥 ∈ ℝ)
2812803adantl3 1167 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) → 𝑥 ∈ ℝ)
282276rexrd 11271 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) → (𝐸𝑋) ∈ ℝ*)
283 iocgtlb 44526 . . . . . . . . . . . . . . . . . . 19 (((𝑄𝑖) ∈ ℝ* ∧ (𝐸𝑋) ∈ ℝ*𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) → (𝑄𝑖) < 𝑥)
284274, 282, 279, 283syl3anc 1370 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) → (𝑄𝑖) < 𝑥)
2852843adantl3 1167 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) → (𝑄𝑖) < 𝑥)
286281ltpnfd 13108 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) → 𝑥 < +∞)
287272, 273, 281, 285, 286eliood 44522 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) → 𝑥 ∈ ((𝑄𝑖)(,)+∞))
288287adantr 480 . . . . . . . . . . . . . . 15 ((((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ ¬ 𝑥 = (𝐸𝑋)) → 𝑥 ∈ ((𝑄𝑖)(,)+∞))
289194a1i 11 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ ¬ 𝑥 = (𝐸𝑋)) → -∞ ∈ ℝ*)
290282adantr 480 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ ¬ 𝑥 = (𝐸𝑋)) → (𝐸𝑋) ∈ ℝ*)
291280adantr 480 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ ¬ 𝑥 = (𝐸𝑋)) → 𝑥 ∈ ℝ)
292291mnfltd 13111 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ ¬ 𝑥 = (𝐸𝑋)) → -∞ < 𝑥)
293133ad3antrrr 727 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ ¬ 𝑥 = (𝐸𝑋)) → (𝐸𝑋) ∈ ℝ)
294 iocleub 44527 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑄𝑖) ∈ ℝ* ∧ (𝐸𝑋) ∈ ℝ*𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) → 𝑥 ≤ (𝐸𝑋))
295274, 282, 279, 294syl3anc 1370 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) → 𝑥 ≤ (𝐸𝑋))
296295adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ ¬ 𝑥 = (𝐸𝑋)) → 𝑥 ≤ (𝐸𝑋))
297 neqne 2947 . . . . . . . . . . . . . . . . . . . . . 22 𝑥 = (𝐸𝑋) → 𝑥 ≠ (𝐸𝑋))
298297necomd 2995 . . . . . . . . . . . . . . . . . . . . 21 𝑥 = (𝐸𝑋) → (𝐸𝑋) ≠ 𝑥)
299298adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ ¬ 𝑥 = (𝐸𝑋)) → (𝐸𝑋) ≠ 𝑥)
300291, 293, 296, 299leneltd 11375 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ ¬ 𝑥 = (𝐸𝑋)) → 𝑥 < (𝐸𝑋))
301289, 290, 291, 292, 300eliood 44522 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ ¬ 𝑥 = (𝐸𝑋)) → 𝑥 ∈ (-∞(,)(𝐸𝑋)))
3023013adantll3 44041 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ ¬ 𝑥 = (𝐸𝑋)) → 𝑥 ∈ (-∞(,)(𝐸𝑋)))
303226ad2antrr 723 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ ¬ 𝑥 = (𝐸𝑋)) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ 𝐷)
304272adantr 480 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ ¬ 𝑥 = (𝐸𝑋)) → (𝑄𝑖) ∈ ℝ*)
305210ad2antrr 723 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ ¬ 𝑥 = (𝐸𝑋)) → (𝑄‘(𝑖 + 1)) ∈ ℝ*)
306281adantr 480 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ ¬ 𝑥 = (𝐸𝑋)) → 𝑥 ∈ ℝ)
307285adantr 480 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ ¬ 𝑥 = (𝐸𝑋)) → (𝑄𝑖) < 𝑥)
308235ad2antrr 723 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ ¬ 𝑥 = (𝐸𝑋)) → (𝐸𝑋) ∈ ℝ)
309209ad2antrr 723 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ ¬ 𝑥 = (𝐸𝑋)) → (𝑄‘(𝑖 + 1)) ∈ ℝ)
3103003adantll3 44041 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ ¬ 𝑥 = (𝐸𝑋)) → 𝑥 < (𝐸𝑋))
311215ad2antrr 723 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ ¬ 𝑥 = (𝐸𝑋)) → (𝐸𝑋) ≤ (𝑄‘(𝑖 + 1)))
312306, 308, 309, 310, 311ltletrd 11381 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ ¬ 𝑥 = (𝐸𝑋)) → 𝑥 < (𝑄‘(𝑖 + 1)))
313304, 305, 306, 307, 312eliood 44522 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ ¬ 𝑥 = (𝐸𝑋)) → 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
314303, 313sseldd 3983 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ ¬ 𝑥 = (𝐸𝑋)) → 𝑥𝐷)
315302, 314elind 4194 . . . . . . . . . . . . . . . 16 ((((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ ¬ 𝑥 = (𝐸𝑋)) → 𝑥 ∈ ((-∞(,)(𝐸𝑋)) ∩ 𝐷))
316 elun1 4176 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ((-∞(,)(𝐸𝑋)) ∩ 𝐷) → 𝑥 ∈ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}))
317315, 316syl 17 . . . . . . . . . . . . . . 15 ((((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ ¬ 𝑥 = (𝐸𝑋)) → 𝑥 ∈ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}))
318288, 317elind 4194 . . . . . . . . . . . . . 14 ((((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ ¬ 𝑥 = (𝐸𝑋)) → 𝑥 ∈ (((𝑄𝑖)(,)+∞) ∩ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})))
319271, 318pm2.61dan 810 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) → 𝑥 ∈ (((𝑄𝑖)(,)+∞) ∩ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})))
320212adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ (((𝑄𝑖)(,)+∞) ∩ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}))) → (𝑄𝑖) ∈ ℝ*)
321236adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ (((𝑄𝑖)(,)+∞) ∩ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}))) → (𝐸𝑋) ∈ ℝ*)
322 elinel1 4195 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (((𝑄𝑖)(,)+∞) ∩ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})) → 𝑥 ∈ ((𝑄𝑖)(,)+∞))
323 elioore 13361 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ((𝑄𝑖)(,)+∞) → 𝑥 ∈ ℝ)
324323rexrd 11271 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ((𝑄𝑖)(,)+∞) → 𝑥 ∈ ℝ*)
325322, 324syl 17 . . . . . . . . . . . . . . 15 (𝑥 ∈ (((𝑄𝑖)(,)+∞) ∩ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})) → 𝑥 ∈ ℝ*)
326325adantl 481 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ (((𝑄𝑖)(,)+∞) ∩ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}))) → 𝑥 ∈ ℝ*)
327200adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄𝑖)(,)+∞) ∩ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}))) → (𝑄𝑖) ∈ ℝ*)
328259a1i 11 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄𝑖)(,)+∞) ∩ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}))) → +∞ ∈ ℝ*)
329322adantl 481 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄𝑖)(,)+∞) ∩ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}))) → 𝑥 ∈ ((𝑄𝑖)(,)+∞))
330 ioogtlb 44519 . . . . . . . . . . . . . . . 16 (((𝑄𝑖) ∈ ℝ* ∧ +∞ ∈ ℝ*𝑥 ∈ ((𝑄𝑖)(,)+∞)) → (𝑄𝑖) < 𝑥)
331327, 328, 329, 330syl3anc 1370 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄𝑖)(,)+∞) ∩ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}))) → (𝑄𝑖) < 𝑥)
3323313adantl3 1167 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ (((𝑄𝑖)(,)+∞) ∩ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}))) → (𝑄𝑖) < 𝑥)
333 elinel2 4196 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (((𝑄𝑖)(,)+∞) ∩ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})) → 𝑥 ∈ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}))
334 elsni 4645 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ {(𝐸𝑋)} → 𝑥 = (𝐸𝑋))
335334adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ {(𝐸𝑋)}) → 𝑥 = (𝐸𝑋))
336134adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ {(𝐸𝑋)}) → (𝐸𝑋) ≤ (𝐸𝑋))
337335, 336eqbrtrd 5170 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ {(𝐸𝑋)}) → 𝑥 ≤ (𝐸𝑋))
338337adantlr 712 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})) ∧ 𝑥 ∈ {(𝐸𝑋)}) → 𝑥 ≤ (𝐸𝑋))
339 simpll 764 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})) ∧ ¬ 𝑥 ∈ {(𝐸𝑋)}) → 𝜑)
340 elunnel2 4150 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}) ∧ ¬ 𝑥 ∈ {(𝐸𝑋)}) → 𝑥 ∈ ((-∞(,)(𝐸𝑋)) ∩ 𝐷))
341340adantll 711 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})) ∧ ¬ 𝑥 ∈ {(𝐸𝑋)}) → 𝑥 ∈ ((-∞(,)(𝐸𝑋)) ∩ 𝐷))
342 elinel1 4195 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ((-∞(,)(𝐸𝑋)) ∩ 𝐷) → 𝑥 ∈ (-∞(,)(𝐸𝑋)))
343 elioore 13361 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ (-∞(,)(𝐸𝑋)) → 𝑥 ∈ ℝ)
344343adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (-∞(,)(𝐸𝑋))) → 𝑥 ∈ ℝ)
345133adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (-∞(,)(𝐸𝑋))) → (𝐸𝑋) ∈ ℝ)
346194a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑥 ∈ (-∞(,)(𝐸𝑋))) → -∞ ∈ ℝ*)
347345rexrd 11271 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑥 ∈ (-∞(,)(𝐸𝑋))) → (𝐸𝑋) ∈ ℝ*)
348 simpr 484 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑥 ∈ (-∞(,)(𝐸𝑋))) → 𝑥 ∈ (-∞(,)(𝐸𝑋)))
349 iooltub 44534 . . . . . . . . . . . . . . . . . . . . . 22 ((-∞ ∈ ℝ* ∧ (𝐸𝑋) ∈ ℝ*𝑥 ∈ (-∞(,)(𝐸𝑋))) → 𝑥 < (𝐸𝑋))
350346, 347, 348, 349syl3anc 1370 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (-∞(,)(𝐸𝑋))) → 𝑥 < (𝐸𝑋))
351344, 345, 350ltled 11369 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (-∞(,)(𝐸𝑋))) → 𝑥 ≤ (𝐸𝑋))
352342, 351sylan2 592 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ ((-∞(,)(𝐸𝑋)) ∩ 𝐷)) → 𝑥 ≤ (𝐸𝑋))
353339, 341, 352syl2anc 583 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})) ∧ ¬ 𝑥 ∈ {(𝐸𝑋)}) → 𝑥 ≤ (𝐸𝑋))
354338, 353pm2.61dan 810 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})) → 𝑥 ≤ (𝐸𝑋))
355354adantlr 712 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})) → 𝑥 ≤ (𝐸𝑋))
356333, 355sylan2 592 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄𝑖)(,)+∞) ∩ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}))) → 𝑥 ≤ (𝐸𝑋))
3573563adantl3 1167 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ (((𝑄𝑖)(,)+∞) ∩ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}))) → 𝑥 ≤ (𝐸𝑋))
358320, 321, 326, 332, 357eliocd 44531 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ (((𝑄𝑖)(,)+∞) ∩ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}))) → 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋)))
359319, 358impbida 798 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋)) ↔ 𝑥 ∈ (((𝑄𝑖)(,)+∞) ∩ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}))))
360359eqrdv 2729 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝑄𝑖)(,](𝐸𝑋)) = (((𝑄𝑖)(,)+∞) ∩ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})))
361 ioossre 13392 . . . . . . . . . . . . . 14 (-∞(,)(𝐸𝑋)) ⊆ ℝ
362 ssinss1 4237 . . . . . . . . . . . . . 14 ((-∞(,)(𝐸𝑋)) ⊆ ℝ → ((-∞(,)(𝐸𝑋)) ∩ 𝐷) ⊆ ℝ)
363361, 362mp1i 13 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((-∞(,)(𝐸𝑋)) ∩ 𝐷) ⊆ ℝ)
364235snssd 4812 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → {(𝐸𝑋)} ⊆ ℝ)
365363, 364unssd 4186 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}) ⊆ ℝ)
366 eqid 2731 . . . . . . . . . . . . 13 (topGen‘ran (,)) = (topGen‘ran (,))
367233, 366rerest 24553 . . . . . . . . . . . 12 ((((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}) ⊆ ℝ → ((TopOpen‘ℂfld) ↾t (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})) = ((topGen‘ran (,)) ↾t (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})))
368365, 367syl 17 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((TopOpen‘ℂfld) ↾t (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})) = ((topGen‘ran (,)) ↾t (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})))
369257, 360, 3683eltr4d 2847 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝑄𝑖)(,](𝐸𝑋)) ∈ ((TopOpen‘ℂfld) ↾t (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})))
370 isopn3i 22819 . . . . . . . . . 10 ((((TopOpen‘ℂfld) ↾t (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})) ∈ Top ∧ ((𝑄𝑖)(,](𝐸𝑋)) ∈ ((TopOpen‘ℂfld) ↾t (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}))) → ((int‘((TopOpen‘ℂfld) ↾t (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})))‘((𝑄𝑖)(,](𝐸𝑋))) = ((𝑄𝑖)(,](𝐸𝑋)))
371250, 369, 370sylancr 586 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((int‘((TopOpen‘ℂfld) ↾t (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})))‘((𝑄𝑖)(,](𝐸𝑋))) = ((𝑄𝑖)(,](𝐸𝑋)))
372243, 371eqtr2d 2772 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝑄𝑖)(,](𝐸𝑋)) = ((int‘((TopOpen‘ℂfld) ↾t (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})))‘(((𝑄𝑖)(,)(𝐸𝑋)) ∪ {(𝐸𝑋)})))
373240, 372eleqtrd 2834 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝐸𝑋) ∈ ((int‘((TopOpen‘ℂfld) ↾t (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})))‘(((𝑄𝑖)(,)(𝐸𝑋)) ∪ {(𝐸𝑋)})))
374193, 228, 232, 233, 234, 373limcres 25648 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (((𝐹 ↾ ((-∞(,)(𝐸𝑋)) ∩ 𝐷)) ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋)) = ((𝐹 ↾ ((-∞(,)(𝐸𝑋)) ∩ 𝐷)) lim (𝐸𝑋)))
375228resabs1d 6012 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝐹 ↾ ((-∞(,)(𝐸𝑋)) ∩ 𝐷)) ↾ ((𝑄𝑖)(,)(𝐸𝑋))) = (𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))))
376375oveq1d 7427 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (((𝐹 ↾ ((-∞(,)(𝐸𝑋)) ∩ 𝐷)) ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋)) = ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋)))
377186, 374, 3763eqtr2d 2777 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝐹 ↾ (-∞(,)(𝐸𝑋))) lim (𝐸𝑋)) = ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋)))
378181feq2d 6703 . . . . . . . . . . . 12 (𝜑 → (𝐹:dom 𝐹⟶ℂ ↔ 𝐹:𝐷⟶ℂ))
379189, 378mpbird 257 . . . . . . . . . . 11 (𝜑𝐹:dom 𝐹⟶ℂ)
380379adantr 480 . . . . . . . . . 10 ((𝜑𝑦 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋))) → 𝐹:dom 𝐹⟶ℂ)
3813803ad2antl1 1184 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋))) → 𝐹:dom 𝐹⟶ℂ)
382 ioosscn 13393 . . . . . . . . . 10 ((𝑄𝑖)(,)(𝐸𝑋)) ⊆ ℂ
383382a1i 11 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋))) → ((𝑄𝑖)(,)(𝐸𝑋)) ⊆ ℂ)
384181eqcomd 2737 . . . . . . . . . . . 12 (𝜑𝐷 = dom 𝐹)
3853843ad2ant1 1132 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → 𝐷 = dom 𝐹)
386227, 385sseqtrd 4022 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝑄𝑖)(,)(𝐸𝑋)) ⊆ dom 𝐹)
387386adantr 480 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋))) → ((𝑄𝑖)(,)(𝐸𝑋)) ⊆ dom 𝐹)
3887a1i 11 . . . . . . . . . . . . . . 15 (𝜑𝑍 = (𝑥 ∈ ℝ ↦ ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
389 oveq2 7420 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑋 → (𝐵𝑥) = (𝐵𝑋))
390389oveq1d 7427 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑋 → ((𝐵𝑥) / 𝑇) = ((𝐵𝑋) / 𝑇))
391390fveq2d 6895 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑋 → (⌊‘((𝐵𝑥) / 𝑇)) = (⌊‘((𝐵𝑋) / 𝑇)))
392391oveq1d 7427 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑋 → ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇) = ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))
393392adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑥 = 𝑋) → ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇) = ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))
3942, 14resubcld 11649 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐵𝑋) ∈ ℝ)
3952, 1resubcld 11649 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐵𝐴) ∈ ℝ)
3964, 395eqeltrid 2836 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑇 ∈ ℝ)
3971, 2posdifd 11808 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝐴 < 𝐵 ↔ 0 < (𝐵𝐴)))
3983, 397mpbid 231 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → 0 < (𝐵𝐴))
3994eqcomi 2740 . . . . . . . . . . . . . . . . . . . . . 22 (𝐵𝐴) = 𝑇
400399a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐵𝐴) = 𝑇)
401398, 400breqtrd 5174 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → 0 < 𝑇)
402401gt0ne0d 11785 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑇 ≠ 0)
403394, 396, 402redivcld 12049 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝐵𝑋) / 𝑇) ∈ ℝ)
404403flcld 13770 . . . . . . . . . . . . . . . . 17 (𝜑 → (⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ)
405404zred 12673 . . . . . . . . . . . . . . . 16 (𝜑 → (⌊‘((𝐵𝑋) / 𝑇)) ∈ ℝ)
406405, 396remulcld 11251 . . . . . . . . . . . . . . 15 (𝜑 → ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇) ∈ ℝ)
407388, 393, 14, 406fvmptd 7005 . . . . . . . . . . . . . 14 (𝜑 → (𝑍𝑋) = ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))
408407, 406eqeltrd 2832 . . . . . . . . . . . . 13 (𝜑 → (𝑍𝑋) ∈ ℝ)
409408recnd 11249 . . . . . . . . . . . 12 (𝜑 → (𝑍𝑋) ∈ ℂ)
410409adantr 480 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋))) → (𝑍𝑋) ∈ ℂ)
4114103ad2antl1 1184 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋))) → (𝑍𝑋) ∈ ℂ)
412411negcld 11565 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋))) → -(𝑍𝑋) ∈ ℂ)
413 eqid 2731 . . . . . . . . 9 {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ ((𝑄𝑖)(,)(𝐸𝑋))𝑧 = (𝑥 + -(𝑍𝑋))} = {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ ((𝑄𝑖)(,)(𝐸𝑋))𝑧 = (𝑥 + -(𝑍𝑋))}
414 ioosscn 13393 . . . . . . . . . . . . . . . . . . 19 (((𝑄𝑖) − (𝑍𝑋))(,)𝑋) ⊆ ℂ
415414sseli 3978 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋) → 𝑦 ∈ ℂ)
416415adantl 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → 𝑦 ∈ ℂ)
417409adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → (𝑍𝑋) ∈ ℂ)
418416, 417pncand 11579 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → ((𝑦 + (𝑍𝑋)) − (𝑍𝑋)) = 𝑦)
419418eqcomd 2737 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → 𝑦 = ((𝑦 + (𝑍𝑋)) − (𝑍𝑋)))
4204193ad2antl1 1184 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → 𝑦 = ((𝑦 + (𝑍𝑋)) − (𝑍𝑋)))
421407oveq2d 7428 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝑦 + (𝑍𝑋)) − (𝑍𝑋)) = ((𝑦 + (𝑍𝑋)) − ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)))
422421adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → ((𝑦 + (𝑍𝑋)) − (𝑍𝑋)) = ((𝑦 + (𝑍𝑋)) − ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)))
423416, 417addcld 11240 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → (𝑦 + (𝑍𝑋)) ∈ ℂ)
424406recnd 11249 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇) ∈ ℂ)
425424adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇) ∈ ℂ)
426423, 425negsubd 11584 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → ((𝑦 + (𝑍𝑋)) + -((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)) = ((𝑦 + (𝑍𝑋)) − ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)))
427404zcnd 12674 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (⌊‘((𝐵𝑋) / 𝑇)) ∈ ℂ)
428396recnd 11249 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑇 ∈ ℂ)
429427, 428mulneg1d 11674 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (-(⌊‘((𝐵𝑋) / 𝑇)) · 𝑇) = -((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))
430429eqcomd 2737 . . . . . . . . . . . . . . . . . . 19 (𝜑 → -((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇) = (-(⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))
431430oveq2d 7428 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝑦 + (𝑍𝑋)) + -((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)) = ((𝑦 + (𝑍𝑋)) + (-(⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)))
432431adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → ((𝑦 + (𝑍𝑋)) + -((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)) = ((𝑦 + (𝑍𝑋)) + (-(⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)))
433422, 426, 4323eqtr2d 2777 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → ((𝑦 + (𝑍𝑋)) − (𝑍𝑋)) = ((𝑦 + (𝑍𝑋)) + (-(⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)))
4344333ad2antl1 1184 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → ((𝑦 + (𝑍𝑋)) − (𝑍𝑋)) = ((𝑦 + (𝑍𝑋)) + (-(⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)))
435404znegcld 12675 . . . . . . . . . . . . . . . . . 18 (𝜑 → -(⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ)
436435adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → -(⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ)
4374363ad2antl1 1184 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → -(⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ)
438 simpl1 1190 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → 𝜑)
439227adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → ((𝑄𝑖)(,)(𝐸𝑋)) ⊆ 𝐷)
440200adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → (𝑄𝑖) ∈ ℝ*)
441133rexrd 11271 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐸𝑋) ∈ ℝ*)
442441ad2antrr 723 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → (𝐸𝑋) ∈ ℝ*)
443 elioore 13361 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋) → 𝑦 ∈ ℝ)
444443adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → 𝑦 ∈ ℝ)
445408adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → (𝑍𝑋) ∈ ℝ)
446444, 445readdcld 11250 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → (𝑦 + (𝑍𝑋)) ∈ ℝ)
447446adantlr 712 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → (𝑦 + (𝑍𝑋)) ∈ ℝ)
448408adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑍𝑋) ∈ ℝ)
449199, 448resubcld 11649 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖) − (𝑍𝑋)) ∈ ℝ)
450449rexrd 11271 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖) − (𝑍𝑋)) ∈ ℝ*)
451450adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → ((𝑄𝑖) − (𝑍𝑋)) ∈ ℝ*)
45214rexrd 11271 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑋 ∈ ℝ*)
453452ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → 𝑋 ∈ ℝ*)
454 simpr 484 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋))
455 ioogtlb 44519 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑄𝑖) − (𝑍𝑋)) ∈ ℝ*𝑋 ∈ ℝ*𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → ((𝑄𝑖) − (𝑍𝑋)) < 𝑦)
456451, 453, 454, 455syl3anc 1370 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → ((𝑄𝑖) − (𝑍𝑋)) < 𝑦)
457199adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → (𝑄𝑖) ∈ ℝ)
458448adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → (𝑍𝑋) ∈ ℝ)
459443adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → 𝑦 ∈ ℝ)
460457, 458, 459ltsubaddd 11817 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → (((𝑄𝑖) − (𝑍𝑋)) < 𝑦 ↔ (𝑄𝑖) < (𝑦 + (𝑍𝑋))))
461456, 460mpbid 231 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → (𝑄𝑖) < (𝑦 + (𝑍𝑋)))
46214ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → 𝑋 ∈ ℝ)
463 iooltub 44534 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑄𝑖) − (𝑍𝑋)) ∈ ℝ*𝑋 ∈ ℝ*𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → 𝑦 < 𝑋)
464451, 453, 454, 463syl3anc 1370 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → 𝑦 < 𝑋)
465459, 462, 458, 464ltadd1dd 11832 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → (𝑦 + (𝑍𝑋)) < (𝑋 + (𝑍𝑋)))
4665a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + (𝑍𝑥))))
467 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 = 𝑋𝑥 = 𝑋)
468 fveq2 6891 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 = 𝑋 → (𝑍𝑥) = (𝑍𝑋))
469467, 468oveq12d 7430 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 = 𝑋 → (𝑥 + (𝑍𝑥)) = (𝑋 + (𝑍𝑋)))
470469adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑥 = 𝑋) → (𝑥 + (𝑍𝑥)) = (𝑋 + (𝑍𝑋)))
47114, 408readdcld 11250 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝑋 + (𝑍𝑋)) ∈ ℝ)
472466, 470, 14, 471fvmptd 7005 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝐸𝑋) = (𝑋 + (𝑍𝑋)))
473472eqcomd 2737 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑋 + (𝑍𝑋)) = (𝐸𝑋))
474473ad2antrr 723 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → (𝑋 + (𝑍𝑋)) = (𝐸𝑋))
475465, 474breqtrd 5174 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → (𝑦 + (𝑍𝑋)) < (𝐸𝑋))
476440, 442, 447, 461, 475eliood 44522 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → (𝑦 + (𝑍𝑋)) ∈ ((𝑄𝑖)(,)(𝐸𝑋)))
4774763adantl3 1167 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → (𝑦 + (𝑍𝑋)) ∈ ((𝑄𝑖)(,)(𝐸𝑋)))
478439, 477sseldd 3983 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → (𝑦 + (𝑍𝑋)) ∈ 𝐷)
479438, 478, 4373jca 1127 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → (𝜑 ∧ (𝑦 + (𝑍𝑋)) ∈ 𝐷 ∧ -(⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ))
480 eleq1 2820 . . . . . . . . . . . . . . . . . . 19 (𝑘 = -(⌊‘((𝐵𝑋) / 𝑇)) → (𝑘 ∈ ℤ ↔ -(⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ))
4814803anbi3d 1441 . . . . . . . . . . . . . . . . . 18 (𝑘 = -(⌊‘((𝐵𝑋) / 𝑇)) → ((𝜑 ∧ (𝑦 + (𝑍𝑋)) ∈ 𝐷𝑘 ∈ ℤ) ↔ (𝜑 ∧ (𝑦 + (𝑍𝑋)) ∈ 𝐷 ∧ -(⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ)))
482 oveq1 7419 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = -(⌊‘((𝐵𝑋) / 𝑇)) → (𝑘 · 𝑇) = (-(⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))
483482oveq2d 7428 . . . . . . . . . . . . . . . . . . 19 (𝑘 = -(⌊‘((𝐵𝑋) / 𝑇)) → ((𝑦 + (𝑍𝑋)) + (𝑘 · 𝑇)) = ((𝑦 + (𝑍𝑋)) + (-(⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)))
484483eleq1d 2817 . . . . . . . . . . . . . . . . . 18 (𝑘 = -(⌊‘((𝐵𝑋) / 𝑇)) → (((𝑦 + (𝑍𝑋)) + (𝑘 · 𝑇)) ∈ 𝐷 ↔ ((𝑦 + (𝑍𝑋)) + (-(⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)) ∈ 𝐷))
485481, 484imbi12d 344 . . . . . . . . . . . . . . . . 17 (𝑘 = -(⌊‘((𝐵𝑋) / 𝑇)) → (((𝜑 ∧ (𝑦 + (𝑍𝑋)) ∈ 𝐷𝑘 ∈ ℤ) → ((𝑦 + (𝑍𝑋)) + (𝑘 · 𝑇)) ∈ 𝐷) ↔ ((𝜑 ∧ (𝑦 + (𝑍𝑋)) ∈ 𝐷 ∧ -(⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ) → ((𝑦 + (𝑍𝑋)) + (-(⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)) ∈ 𝐷)))
486 ovex 7445 . . . . . . . . . . . . . . . . . 18 (𝑦 + (𝑍𝑋)) ∈ V
487 eleq1 2820 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = (𝑦 + (𝑍𝑋)) → (𝑥𝐷 ↔ (𝑦 + (𝑍𝑋)) ∈ 𝐷))
4884873anbi2d 1440 . . . . . . . . . . . . . . . . . . 19 (𝑥 = (𝑦 + (𝑍𝑋)) → ((𝜑𝑥𝐷𝑘 ∈ ℤ) ↔ (𝜑 ∧ (𝑦 + (𝑍𝑋)) ∈ 𝐷𝑘 ∈ ℤ)))
489 oveq1 7419 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = (𝑦 + (𝑍𝑋)) → (𝑥 + (𝑘 · 𝑇)) = ((𝑦 + (𝑍𝑋)) + (𝑘 · 𝑇)))
490489eleq1d 2817 . . . . . . . . . . . . . . . . . . 19 (𝑥 = (𝑦 + (𝑍𝑋)) → ((𝑥 + (𝑘 · 𝑇)) ∈ 𝐷 ↔ ((𝑦 + (𝑍𝑋)) + (𝑘 · 𝑇)) ∈ 𝐷))
491488, 490imbi12d 344 . . . . . . . . . . . . . . . . . 18 (𝑥 = (𝑦 + (𝑍𝑋)) → (((𝜑𝑥𝐷𝑘 ∈ ℤ) → (𝑥 + (𝑘 · 𝑇)) ∈ 𝐷) ↔ ((𝜑 ∧ (𝑦 + (𝑍𝑋)) ∈ 𝐷𝑘 ∈ ℤ) → ((𝑦 + (𝑍𝑋)) + (𝑘 · 𝑇)) ∈ 𝐷)))
492 fourierdlem49.dper . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐷𝑘 ∈ ℤ) → (𝑥 + (𝑘 · 𝑇)) ∈ 𝐷)
493486, 491, 492vtocl 3545 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑦 + (𝑍𝑋)) ∈ 𝐷𝑘 ∈ ℤ) → ((𝑦 + (𝑍𝑋)) + (𝑘 · 𝑇)) ∈ 𝐷)
494485, 493vtoclg 3542 . . . . . . . . . . . . . . . 16 (-(⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ → ((𝜑 ∧ (𝑦 + (𝑍𝑋)) ∈ 𝐷 ∧ -(⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ) → ((𝑦 + (𝑍𝑋)) + (-(⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)) ∈ 𝐷))
495437, 479, 494sylc 65 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → ((𝑦 + (𝑍𝑋)) + (-(⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)) ∈ 𝐷)
496434, 495eqeltrd 2832 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → ((𝑦 + (𝑍𝑋)) − (𝑍𝑋)) ∈ 𝐷)
497420, 496eqeltrd 2832 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → 𝑦𝐷)
498497ralrimiva 3145 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ∀𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)𝑦𝐷)
499 dfss3 3970 . . . . . . . . . . . 12 ((((𝑄𝑖) − (𝑍𝑋))(,)𝑋) ⊆ 𝐷 ↔ ∀𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)𝑦𝐷)
500498, 499sylibr 233 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (((𝑄𝑖) − (𝑍𝑋))(,)𝑋) ⊆ 𝐷)
501199recnd 11249 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ ℂ)
502409adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑍𝑋) ∈ ℂ)
503501, 502negsubd 11584 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖) + -(𝑍𝑋)) = ((𝑄𝑖) − (𝑍𝑋)))
504503eqcomd 2737 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖) − (𝑍𝑋)) = ((𝑄𝑖) + -(𝑍𝑋)))
505472oveq1d 7427 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐸𝑋) + -(𝑍𝑋)) = ((𝑋 + (𝑍𝑋)) + -(𝑍𝑋)))
506471recnd 11249 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑋 + (𝑍𝑋)) ∈ ℂ)
507506, 409negsubd 11584 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑋 + (𝑍𝑋)) + -(𝑍𝑋)) = ((𝑋 + (𝑍𝑋)) − (𝑍𝑋)))
50814recnd 11249 . . . . . . . . . . . . . . . . 17 (𝜑𝑋 ∈ ℂ)
509508, 409pncand 11579 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑋 + (𝑍𝑋)) − (𝑍𝑋)) = 𝑋)
510505, 507, 5093eqtrrd 2776 . . . . . . . . . . . . . . 15 (𝜑𝑋 = ((𝐸𝑋) + -(𝑍𝑋)))
511510adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑋 = ((𝐸𝑋) + -(𝑍𝑋)))
512504, 511oveq12d 7430 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → (((𝑄𝑖) − (𝑍𝑋))(,)𝑋) = (((𝑄𝑖) + -(𝑍𝑋))(,)((𝐸𝑋) + -(𝑍𝑋))))
513448renegcld 11648 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → -(𝑍𝑋) ∈ ℝ)
514199, 275, 513iooshift 44546 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → (((𝑄𝑖) + -(𝑍𝑋))(,)((𝐸𝑋) + -(𝑍𝑋))) = {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ ((𝑄𝑖)(,)(𝐸𝑋))𝑧 = (𝑥 + -(𝑍𝑋))})
515512, 514eqtr2d 2772 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ ((𝑄𝑖)(,)(𝐸𝑋))𝑧 = (𝑥 + -(𝑍𝑋))} = (((𝑄𝑖) − (𝑍𝑋))(,)𝑋))
5165153adant3 1131 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ ((𝑄𝑖)(,)(𝐸𝑋))𝑧 = (𝑥 + -(𝑍𝑋))} = (((𝑄𝑖) − (𝑍𝑋))(,)𝑋))
5171813ad2ant1 1132 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → dom 𝐹 = 𝐷)
518500, 516, 5173sstr4d 4029 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ ((𝑄𝑖)(,)(𝐸𝑋))𝑧 = (𝑥 + -(𝑍𝑋))} ⊆ dom 𝐹)
519518adantr 480 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋))) → {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ ((𝑄𝑖)(,)(𝐸𝑋))𝑧 = (𝑥 + -(𝑍𝑋))} ⊆ dom 𝐹)
520407negeqd 11461 . . . . . . . . . . . . . . . 16 (𝜑 → -(𝑍𝑋) = -((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))
521520, 430eqtrd 2771 . . . . . . . . . . . . . . 15 (𝜑 → -(𝑍𝑋) = (-(⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))
522521oveq2d 7428 . . . . . . . . . . . . . 14 (𝜑 → (𝑥 + -(𝑍𝑋)) = (𝑥 + (-(⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)))
523522fveq2d 6895 . . . . . . . . . . . . 13 (𝜑 → (𝐹‘(𝑥 + -(𝑍𝑋))) = (𝐹‘(𝑥 + (-(⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))))
524523adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ((𝑄𝑖)(,)(𝐸𝑋))) → (𝐹‘(𝑥 + -(𝑍𝑋))) = (𝐹‘(𝑥 + (-(⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))))
5255243ad2antl1 1184 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝐸𝑋))) → (𝐹‘(𝑥 + -(𝑍𝑋))) = (𝐹‘(𝑥 + (-(⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))))
526435adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ((𝑄𝑖)(,)(𝐸𝑋))) → -(⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ)
5275263ad2antl1 1184 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝐸𝑋))) → -(⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ)
528 simpl1 1190 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝐸𝑋))) → 𝜑)
529227sselda 3982 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝐸𝑋))) → 𝑥𝐷)
530528, 529, 5273jca 1127 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝐸𝑋))) → (𝜑𝑥𝐷 ∧ -(⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ))
5314803anbi3d 1441 . . . . . . . . . . . . . 14 (𝑘 = -(⌊‘((𝐵𝑋) / 𝑇)) → ((𝜑𝑥𝐷𝑘 ∈ ℤ) ↔ (𝜑𝑥𝐷 ∧ -(⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ)))
532482oveq2d 7428 . . . . . . . . . . . . . . . 16 (𝑘 = -(⌊‘((𝐵𝑋) / 𝑇)) → (𝑥 + (𝑘 · 𝑇)) = (𝑥 + (-(⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)))
533532fveq2d 6895 . . . . . . . . . . . . . . 15 (𝑘 = -(⌊‘((𝐵𝑋) / 𝑇)) → (𝐹‘(𝑥 + (𝑘 · 𝑇))) = (𝐹‘(𝑥 + (-(⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))))
534533eqeq1d 2733 . . . . . . . . . . . . . 14 (𝑘 = -(⌊‘((𝐵𝑋) / 𝑇)) → ((𝐹‘(𝑥 + (𝑘 · 𝑇))) = (𝐹𝑥) ↔ (𝐹‘(𝑥 + (-(⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))) = (𝐹𝑥)))
535531, 534imbi12d 344 . . . . . . . . . . . . 13 (𝑘 = -(⌊‘((𝐵𝑋) / 𝑇)) → (((𝜑𝑥𝐷𝑘 ∈ ℤ) → (𝐹‘(𝑥 + (𝑘 · 𝑇))) = (𝐹𝑥)) ↔ ((𝜑𝑥𝐷 ∧ -(⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ) → (𝐹‘(𝑥 + (-(⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))) = (𝐹𝑥))))
536 fourierdlem49.per . . . . . . . . . . . . 13 ((𝜑𝑥𝐷𝑘 ∈ ℤ) → (𝐹‘(𝑥 + (𝑘 · 𝑇))) = (𝐹𝑥))
537535, 536vtoclg 3542 . . . . . . . . . . . 12 (-(⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ → ((𝜑𝑥𝐷 ∧ -(⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ) → (𝐹‘(𝑥 + (-(⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))) = (𝐹𝑥)))
538527, 530, 537sylc 65 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝐸𝑋))) → (𝐹‘(𝑥 + (-(⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))) = (𝐹𝑥))
539525, 538eqtrd 2771 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝐸𝑋))) → (𝐹‘(𝑥 + -(𝑍𝑋))) = (𝐹𝑥))
540539adantlr 712 . . . . . . . . 9 ((((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋))) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝐸𝑋))) → (𝐹‘(𝑥 + -(𝑍𝑋))) = (𝐹𝑥))
541 simpr 484 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋))) → 𝑦 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋)))
542381, 383, 387, 412, 413, 519, 540, 541limcperiod 44655 . . . . . . . 8 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋))) → 𝑦 ∈ ((𝐹 ↾ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ ((𝑄𝑖)(,)(𝐸𝑋))𝑧 = (𝑥 + -(𝑍𝑋))}) lim ((𝐸𝑋) + -(𝑍𝑋))))
543515reseq2d 5981 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ ((𝑄𝑖)(,)(𝐸𝑋))𝑧 = (𝑥 + -(𝑍𝑋))}) = (𝐹 ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)))
544511eqcomd 2737 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐸𝑋) + -(𝑍𝑋)) = 𝑋)
545543, 544oveq12d 7430 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ ((𝑄𝑖)(,)(𝐸𝑋))𝑧 = (𝑥 + -(𝑍𝑋))}) lim ((𝐸𝑋) + -(𝑍𝑋))) = ((𝐹 ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) lim 𝑋))
5465453adant3 1131 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝐹 ↾ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ ((𝑄𝑖)(,)(𝐸𝑋))𝑧 = (𝑥 + -(𝑍𝑋))}) lim ((𝐸𝑋) + -(𝑍𝑋))) = ((𝐹 ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) lim 𝑋))
547546adantr 480 . . . . . . . 8 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋))) → ((𝐹 ↾ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ ((𝑄𝑖)(,)(𝐸𝑋))𝑧 = (𝑥 + -(𝑍𝑋))}) lim ((𝐸𝑋) + -(𝑍𝑋))) = ((𝐹 ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) lim 𝑋))
548542, 547eleqtrd 2834 . . . . . . 7 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋))) → 𝑦 ∈ ((𝐹 ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) lim 𝑋))
549379adantr 480 . . . . . . . . . 10 ((𝜑𝑦 ∈ ((𝐹 ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) lim 𝑋)) → 𝐹:dom 𝐹⟶ℂ)
5505493ad2antl1 1184 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ ((𝐹 ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) lim 𝑋)) → 𝐹:dom 𝐹⟶ℂ)
551414a1i 11 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ ((𝐹 ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) lim 𝑋)) → (((𝑄𝑖) − (𝑍𝑋))(,)𝑋) ⊆ ℂ)
552500, 517sseqtrrd 4023 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (((𝑄𝑖) − (𝑍𝑋))(,)𝑋) ⊆ dom 𝐹)
553552adantr 480 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ ((𝐹 ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) lim 𝑋)) → (((𝑄𝑖) − (𝑍𝑋))(,)𝑋) ⊆ dom 𝐹)
554409adantr 480 . . . . . . . . . 10 ((𝜑𝑦 ∈ ((𝐹 ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) lim 𝑋)) → (𝑍𝑋) ∈ ℂ)
5555543ad2antl1 1184 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ ((𝐹 ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) lim 𝑋)) → (𝑍𝑋) ∈ ℂ)
556 eqid 2731 . . . . . . . . 9 {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)𝑧 = (𝑥 + (𝑍𝑋))} = {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)𝑧 = (𝑥 + (𝑍𝑋))}
557501, 502npcand 11582 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → (((𝑄𝑖) − (𝑍𝑋)) + (𝑍𝑋)) = (𝑄𝑖))
558557eqcomd 2737 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) = (((𝑄𝑖) − (𝑍𝑋)) + (𝑍𝑋)))
559472adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐸𝑋) = (𝑋 + (𝑍𝑋)))
560558, 559oveq12d 7430 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)(,)(𝐸𝑋)) = ((((𝑄𝑖) − (𝑍𝑋)) + (𝑍𝑋))(,)(𝑋 + (𝑍𝑋))))
56114adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑋 ∈ ℝ)
562449, 561, 448iooshift 44546 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → ((((𝑄𝑖) − (𝑍𝑋)) + (𝑍𝑋))(,)(𝑋 + (𝑍𝑋))) = {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)𝑧 = (𝑥 + (𝑍𝑋))})
563560, 562eqtr2d 2772 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)𝑧 = (𝑥 + (𝑍𝑋))} = ((𝑄𝑖)(,)(𝐸𝑋)))
5645633adant3 1131 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)𝑧 = (𝑥 + (𝑍𝑋))} = ((𝑄𝑖)(,)(𝐸𝑋)))
565227, 564, 5173sstr4d 4029 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)𝑧 = (𝑥 + (𝑍𝑋))} ⊆ dom 𝐹)
566565adantr 480 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ ((𝐹 ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) lim 𝑋)) → {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)𝑧 = (𝑥 + (𝑍𝑋))} ⊆ dom 𝐹)
567407oveq2d 7428 . . . . . . . . . . . . . 14 (𝜑 → (𝑥 + (𝑍𝑋)) = (𝑥 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)))
568567fveq2d 6895 . . . . . . . . . . . . 13 (𝜑 → (𝐹‘(𝑥 + (𝑍𝑋))) = (𝐹‘(𝑥 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))))
569568adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → (𝐹‘(𝑥 + (𝑍𝑋))) = (𝐹‘(𝑥 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))))
5705693ad2antl1 1184 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → (𝐹‘(𝑥 + (𝑍𝑋))) = (𝐹‘(𝑥 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))))
571404adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → (⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ)
5725713ad2antl1 1184 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → (⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ)
573 simpl1 1190 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → 𝜑)
574500sselda 3982 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → 𝑥𝐷)
575573, 574, 5723jca 1127 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → (𝜑𝑥𝐷 ∧ (⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ))
576 eleq1 2820 . . . . . . . . . . . . . . 15 (𝑘 = (⌊‘((𝐵𝑋) / 𝑇)) → (𝑘 ∈ ℤ ↔ (⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ))
5775763anbi3d 1441 . . . . . . . . . . . . . 14 (𝑘 = (⌊‘((𝐵𝑋) / 𝑇)) → ((𝜑𝑥𝐷𝑘 ∈ ℤ) ↔ (𝜑𝑥𝐷 ∧ (⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ)))
578 oveq1 7419 . . . . . . . . . . . . . . . . 17 (𝑘 = (⌊‘((𝐵𝑋) / 𝑇)) → (𝑘 · 𝑇) = ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))
579578oveq2d 7428 . . . . . . . . . . . . . . . 16 (𝑘 = (⌊‘((𝐵𝑋) / 𝑇)) → (𝑥 + (𝑘 · 𝑇)) = (𝑥 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)))
580579fveq2d 6895 . . . . . . . . . . . . . . 15 (𝑘 = (⌊‘((𝐵𝑋) / 𝑇)) → (𝐹‘(𝑥 + (𝑘 · 𝑇))) = (𝐹‘(𝑥 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))))
581580eqeq1d 2733 . . . . . . . . . . . . . 14 (𝑘 = (⌊‘((𝐵𝑋) / 𝑇)) → ((𝐹‘(𝑥 + (𝑘 · 𝑇))) = (𝐹𝑥) ↔ (𝐹‘(𝑥 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))) = (𝐹𝑥)))
582577, 581imbi12d 344 . . . . . . . . . . . . 13 (𝑘 = (⌊‘((𝐵𝑋) / 𝑇)) → (((𝜑𝑥𝐷𝑘 ∈ ℤ) → (𝐹‘(𝑥 + (𝑘 · 𝑇))) = (𝐹𝑥)) ↔ ((𝜑𝑥𝐷 ∧ (⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ) → (𝐹‘(𝑥 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))) = (𝐹𝑥))))
583582, 536vtoclg 3542 . . . . . . . . . . . 12 ((⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ → ((𝜑𝑥𝐷 ∧ (⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ) → (𝐹‘(𝑥 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))) = (𝐹𝑥)))
584572, 575, 583sylc 65 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → (𝐹‘(𝑥 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))) = (𝐹𝑥))
585570, 584eqtrd 2771 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → (𝐹‘(𝑥 + (𝑍𝑋))) = (𝐹𝑥))
586585adantlr 712 . . . . . . . . 9 ((((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ ((𝐹 ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) lim 𝑋)) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → (𝐹‘(𝑥 + (𝑍𝑋))) = (𝐹𝑥))
587 simpr 484 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ ((𝐹 ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) lim 𝑋)) → 𝑦 ∈ ((𝐹 ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) lim 𝑋))
588550, 551, 553, 555, 556, 566, 586, 587limcperiod 44655 . . . . . . . 8 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ ((𝐹 ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) lim 𝑋)) → 𝑦 ∈ ((𝐹 ↾ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)𝑧 = (𝑥 + (𝑍𝑋))}) lim (𝑋 + (𝑍𝑋))))
589563reseq2d 5981 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)𝑧 = (𝑥 + (𝑍𝑋))}) = (𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))))
590473adantr 480 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑋 + (𝑍𝑋)) = (𝐸𝑋))
591589, 590oveq12d 7430 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)𝑧 = (𝑥 + (𝑍𝑋))}) lim (𝑋 + (𝑍𝑋))) = ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋)))
5925913adant3 1131 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝐹 ↾ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)𝑧 = (𝑥 + (𝑍𝑋))}) lim (𝑋 + (𝑍𝑋))) = ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋)))
593592adantr 480 . . . . . . . 8 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ ((𝐹 ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) lim 𝑋)) → ((𝐹 ↾ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)𝑧 = (𝑥 + (𝑍𝑋))}) lim (𝑋 + (𝑍𝑋))) = ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋)))
594588, 593eleqtrd 2834 . . . . . . 7 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ ((𝐹 ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) lim 𝑋)) → 𝑦 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋)))
595548, 594impbida 798 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝑦 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋)) ↔ 𝑦 ∈ ((𝐹 ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) lim 𝑋)))
596595eqrdv 2729 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋)) = ((𝐹 ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) lim 𝑋))
597 resindm 6030 . . . . . . . . . . 11 (Rel 𝐹 → (𝐹 ↾ ((-∞(,)𝑋) ∩ dom 𝐹)) = (𝐹 ↾ (-∞(,)𝑋)))
598597eqcomd 2737 . . . . . . . . . 10 (Rel 𝐹 → (𝐹 ↾ (-∞(,)𝑋)) = (𝐹 ↾ ((-∞(,)𝑋) ∩ dom 𝐹)))
599176, 598syl 17 . . . . . . . . 9 (𝜑 → (𝐹 ↾ (-∞(,)𝑋)) = (𝐹 ↾ ((-∞(,)𝑋) ∩ dom 𝐹)))
600181ineq2d 4212 . . . . . . . . . 10 (𝜑 → ((-∞(,)𝑋) ∩ dom 𝐹) = ((-∞(,)𝑋) ∩ 𝐷))
601600reseq2d 5981 . . . . . . . . 9 (𝜑 → (𝐹 ↾ ((-∞(,)𝑋) ∩ dom 𝐹)) = (𝐹 ↾ ((-∞(,)𝑋) ∩ 𝐷)))
602599, 601eqtrd 2771 . . . . . . . 8 (𝜑 → (𝐹 ↾ (-∞(,)𝑋)) = (𝐹 ↾ ((-∞(,)𝑋) ∩ 𝐷)))
603602oveq1d 7427 . . . . . . 7 (𝜑 → ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋) = ((𝐹 ↾ ((-∞(,)𝑋) ∩ 𝐷)) lim 𝑋))
6046033ad2ant1 1132 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋) = ((𝐹 ↾ ((-∞(,)𝑋) ∩ 𝐷)) lim 𝑋))
605 inss2 4229 . . . . . . . . . 10 ((-∞(,)𝑋) ∩ 𝐷) ⊆ 𝐷
606605a1i 11 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((-∞(,)𝑋) ∩ 𝐷) ⊆ 𝐷)
607190, 606fssresd 6758 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝐹 ↾ ((-∞(,)𝑋) ∩ 𝐷)):((-∞(,)𝑋) ∩ 𝐷)⟶ℂ)
608449mnfltd 13111 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → -∞ < ((𝑄𝑖) − (𝑍𝑋)))
609195, 450, 608xrltled 13136 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → -∞ ≤ ((𝑄𝑖) − (𝑍𝑋)))
610 iooss1 13366 . . . . . . . . . . 11 ((-∞ ∈ ℝ* ∧ -∞ ≤ ((𝑄𝑖) − (𝑍𝑋))) → (((𝑄𝑖) − (𝑍𝑋))(,)𝑋) ⊆ (-∞(,)𝑋))
611194, 609, 610sylancr 586 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → (((𝑄𝑖) − (𝑍𝑋))(,)𝑋) ⊆ (-∞(,)𝑋))
6126113adant3 1131 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (((𝑄𝑖) − (𝑍𝑋))(,)𝑋) ⊆ (-∞(,)𝑋))
613612, 500ssind 4232 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (((𝑄𝑖) − (𝑍𝑋))(,)𝑋) ⊆ ((-∞(,)𝑋) ∩ 𝐷))
614605, 231sstrid 3993 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((-∞(,)𝑋) ∩ 𝐷) ⊆ ℂ)
615 eqid 2731 . . . . . . . 8 ((TopOpen‘ℂfld) ↾t (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})) = ((TopOpen‘ℂfld) ↾t (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}))
6164503adant3 1131 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝑄𝑖) − (𝑍𝑋)) ∈ ℝ*)
6174523ad2ant1 1132 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → 𝑋 ∈ ℝ*)
6184723ad2ant1 1132 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝐸𝑋) = (𝑋 + (𝑍𝑋)))
619238, 618breqtrd 5174 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝑄𝑖) < (𝑋 + (𝑍𝑋)))
6204083ad2ant1 1132 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝑍𝑋) ∈ ℝ)
621143ad2ant1 1132 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → 𝑋 ∈ ℝ)
622211, 620, 621ltsubaddd 11817 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (((𝑄𝑖) − (𝑍𝑋)) < 𝑋 ↔ (𝑄𝑖) < (𝑋 + (𝑍𝑋))))
623619, 622mpbird 257 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝑄𝑖) − (𝑍𝑋)) < 𝑋)
62414leidd 11787 . . . . . . . . . . 11 (𝜑𝑋𝑋)
6256243ad2ant1 1132 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → 𝑋𝑋)
626616, 617, 617, 623, 625eliocd 44531 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → 𝑋 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋))
627 ioounsn 13461 . . . . . . . . . . . 12 ((((𝑄𝑖) − (𝑍𝑋)) ∈ ℝ*𝑋 ∈ ℝ* ∧ ((𝑄𝑖) − (𝑍𝑋)) < 𝑋) → ((((𝑄𝑖) − (𝑍𝑋))(,)𝑋) ∪ {𝑋}) = (((𝑄𝑖) − (𝑍𝑋))(,]𝑋))
628616, 617, 623, 627syl3anc 1370 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((((𝑄𝑖) − (𝑍𝑋))(,)𝑋) ∪ {𝑋}) = (((𝑄𝑖) − (𝑍𝑋))(,]𝑋))
629628fveq2d 6895 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((int‘((TopOpen‘ℂfld) ↾t (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})))‘((((𝑄𝑖) − (𝑍𝑋))(,)𝑋) ∪ {𝑋})) = ((int‘((TopOpen‘ℂfld) ↾t (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})))‘(((𝑄𝑖) − (𝑍𝑋))(,]𝑋)))
630 ovex 7445 . . . . . . . . . . . . . 14 (-∞(,)𝑋) ∈ V
631630inex1 5317 . . . . . . . . . . . . 13 ((-∞(,)𝑋) ∩ 𝐷) ∈ V
632 snex 5431 . . . . . . . . . . . . 13 {𝑋} ∈ V
633631, 632unex 7737 . . . . . . . . . . . 12 (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}) ∈ V
634 resttop 22897 . . . . . . . . . . . 12 (((TopOpen‘ℂfld) ∈ Top ∧ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}) ∈ V) → ((TopOpen‘ℂfld) ↾t (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})) ∈ Top)
635244, 633, 634mp2an 689 . . . . . . . . . . 11 ((TopOpen‘ℂfld) ↾t (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})) ∈ Top
636633a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}) ∈ V)
637 iooretop 24515 . . . . . . . . . . . . . 14 (((𝑄𝑖) − (𝑍𝑋))(,)+∞) ∈ (topGen‘ran (,))
638637a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (((𝑄𝑖) − (𝑍𝑋))(,)+∞) ∈ (topGen‘ran (,)))
639 elrestr 17381 . . . . . . . . . . . . 13 (((topGen‘ran (,)) ∈ Top ∧ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}) ∈ V ∧ (((𝑄𝑖) − (𝑍𝑋))(,)+∞) ∈ (topGen‘ran (,))) → ((((𝑄𝑖) − (𝑍𝑋))(,)+∞) ∩ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})) ∈ ((topGen‘ran (,)) ↾t (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})))
640252, 636, 638, 639syl3anc 1370 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((((𝑄𝑖) − (𝑍𝑋))(,)+∞) ∩ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})) ∈ ((topGen‘ran (,)) ↾t (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})))
641450adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) → ((𝑄𝑖) − (𝑍𝑋)) ∈ ℝ*)
642259a1i 11 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) → +∞ ∈ ℝ*)
64314ad2antrr 723 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) → 𝑋 ∈ ℝ)
644 iocssre 13411 . . . . . . . . . . . . . . . . . . 19 ((((𝑄𝑖) − (𝑍𝑋)) ∈ ℝ*𝑋 ∈ ℝ) → (((𝑄𝑖) − (𝑍𝑋))(,]𝑋) ⊆ ℝ)
645641, 643, 644syl2anc 583 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) → (((𝑄𝑖) − (𝑍𝑋))(,]𝑋) ⊆ ℝ)
646 simpr 484 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) → 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋))
647645, 646sseldd 3983 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) → 𝑥 ∈ ℝ)
648452ad2antrr 723 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) → 𝑋 ∈ ℝ*)
649 iocgtlb 44526 . . . . . . . . . . . . . . . . . 18 ((((𝑄𝑖) − (𝑍𝑋)) ∈ ℝ*𝑋 ∈ ℝ*𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) → ((𝑄𝑖) − (𝑍𝑋)) < 𝑥)
650641, 648, 646, 649syl3anc 1370 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) → ((𝑄𝑖) − (𝑍𝑋)) < 𝑥)
651647ltpnfd 13108 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) → 𝑥 < +∞)
652641, 642, 647, 650, 651eliood 44522 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) → 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)+∞))
6536523adantl3 1167 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) → 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)+∞))
654 eqvisset 3491 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑋𝑋 ∈ V)
655 snidg 4662 . . . . . . . . . . . . . . . . . . . 20 (𝑋 ∈ V → 𝑋 ∈ {𝑋})
656654, 655syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑋𝑋 ∈ {𝑋})
657467, 656eqeltrd 2832 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑋𝑥 ∈ {𝑋})
658 elun2 4177 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ {𝑋} → 𝑥 ∈ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}))
659657, 658syl 17 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑋𝑥 ∈ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}))
660659adantl 481 . . . . . . . . . . . . . . . 16 ((((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) ∧ 𝑥 = 𝑋) → 𝑥 ∈ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}))
661 simpll 764 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) ∧ ¬ 𝑥 = 𝑋) → (𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))))
662641adantr 480 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) ∧ ¬ 𝑥 = 𝑋) → ((𝑄𝑖) − (𝑍𝑋)) ∈ ℝ*)
663452ad3antrrr 727 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) ∧ ¬ 𝑥 = 𝑋) → 𝑋 ∈ ℝ*)
664647adantr 480 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) ∧ ¬ 𝑥 = 𝑋) → 𝑥 ∈ ℝ)
665650adantr 480 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) ∧ ¬ 𝑥 = 𝑋) → ((𝑄𝑖) − (𝑍𝑋)) < 𝑥)
66614ad3antrrr 727 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) ∧ ¬ 𝑥 = 𝑋) → 𝑋 ∈ ℝ)
667 iocleub 44527 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑄𝑖) − (𝑍𝑋)) ∈ ℝ*𝑋 ∈ ℝ*𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) → 𝑥𝑋)
668641, 648, 646, 667syl3anc 1370 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) → 𝑥𝑋)
669668adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) ∧ ¬ 𝑥 = 𝑋) → 𝑥𝑋)
670467eqcoms 2739 . . . . . . . . . . . . . . . . . . . . . 22 (𝑋 = 𝑥𝑥 = 𝑋)
671670necon3bi 2966 . . . . . . . . . . . . . . . . . . . . 21 𝑥 = 𝑋𝑋𝑥)
672671adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) ∧ ¬ 𝑥 = 𝑋) → 𝑋𝑥)
673664, 666, 669, 672leneltd 11375 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) ∧ ¬ 𝑥 = 𝑋) → 𝑥 < 𝑋)
674662, 663, 664, 665, 673eliood 44522 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) ∧ ¬ 𝑥 = 𝑋) → 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋))
6756743adantll3 44041 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) ∧ ¬ 𝑥 = 𝑋) → 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋))
676613sselda 3982 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → 𝑥 ∈ ((-∞(,)𝑋) ∩ 𝐷))
677 elun1 4176 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ((-∞(,)𝑋) ∩ 𝐷) → 𝑥 ∈ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}))
678676, 677syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → 𝑥 ∈ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}))
679661, 675, 678syl2anc 583 . . . . . . . . . . . . . . . 16 ((((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) ∧ ¬ 𝑥 = 𝑋) → 𝑥 ∈ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}))
680660, 679pm2.61dan 810 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) → 𝑥 ∈ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}))
681653, 680elind 4194 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) → 𝑥 ∈ ((((𝑄𝑖) − (𝑍𝑋))(,)+∞) ∩ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})))
682616adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((((𝑄𝑖) − (𝑍𝑋))(,)+∞) ∩ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}))) → ((𝑄𝑖) − (𝑍𝑋)) ∈ ℝ*)
683617adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((((𝑄𝑖) − (𝑍𝑋))(,)+∞) ∩ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}))) → 𝑋 ∈ ℝ*)
684 elinel1 4195 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ((((𝑄𝑖) − (𝑍𝑋))(,)+∞) ∩ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})) → 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)+∞))
685 elioore 13361 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)+∞) → 𝑥 ∈ ℝ)
686684, 685syl 17 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ((((𝑄𝑖) − (𝑍𝑋))(,)+∞) ∩ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})) → 𝑥 ∈ ℝ)
687686rexrd 11271 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ((((𝑄𝑖) − (𝑍𝑋))(,)+∞) ∩ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})) → 𝑥 ∈ ℝ*)
688687adantl 481 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((((𝑄𝑖) − (𝑍𝑋))(,)+∞) ∩ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}))) → 𝑥 ∈ ℝ*)
689450adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((((𝑄𝑖) − (𝑍𝑋))(,)+∞) ∩ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}))) → ((𝑄𝑖) − (𝑍𝑋)) ∈ ℝ*)
690259a1i 11 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((((𝑄𝑖) − (𝑍𝑋))(,)+∞) ∩ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}))) → +∞ ∈ ℝ*)
691684adantl 481 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((((𝑄𝑖) − (𝑍𝑋))(,)+∞) ∩ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}))) → 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)+∞))
692 ioogtlb 44519 . . . . . . . . . . . . . . . . 17 ((((𝑄𝑖) − (𝑍𝑋)) ∈ ℝ* ∧ +∞ ∈ ℝ*𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)+∞)) → ((𝑄𝑖) − (𝑍𝑋)) < 𝑥)
693689, 690, 691, 692syl3anc 1370 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((((𝑄𝑖) − (𝑍𝑋))(,)+∞) ∩ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}))) → ((𝑄𝑖) − (𝑍𝑋)) < 𝑥)
6946933adantl3 1167 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((((𝑄𝑖) − (𝑍𝑋))(,)+∞) ∩ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}))) → ((𝑄𝑖) − (𝑍𝑋)) < 𝑥)
695 elinel2 4196 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ((((𝑄𝑖) − (𝑍𝑋))(,)+∞) ∩ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})) → 𝑥 ∈ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}))
696 elsni 4645 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ {𝑋} → 𝑥 = 𝑋)
697696adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ {𝑋}) → 𝑥 = 𝑋)
698624adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ {𝑋}) → 𝑋𝑋)
699697, 698eqbrtrd 5170 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ {𝑋}) → 𝑥𝑋)
700699adantlr 712 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})) ∧ 𝑥 ∈ {𝑋}) → 𝑥𝑋)
701 simpll 764 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})) ∧ ¬ 𝑥 ∈ {𝑋}) → 𝜑)
702 elunnel2 4150 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}) ∧ ¬ 𝑥 ∈ {𝑋}) → 𝑥 ∈ ((-∞(,)𝑋) ∩ 𝐷))
703702adantll 711 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})) ∧ ¬ 𝑥 ∈ {𝑋}) → 𝑥 ∈ ((-∞(,)𝑋) ∩ 𝐷))
704 elinel1 4195 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ((-∞(,)𝑋) ∩ 𝐷) → 𝑥 ∈ (-∞(,)𝑋))
705703, 704syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})) ∧ ¬ 𝑥 ∈ {𝑋}) → 𝑥 ∈ (-∞(,)𝑋))
706 elioore 13361 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (-∞(,)𝑋) → 𝑥 ∈ ℝ)
707706adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (-∞(,)𝑋)) → 𝑥 ∈ ℝ)
70814adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (-∞(,)𝑋)) → 𝑋 ∈ ℝ)
709194a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (-∞(,)𝑋)) → -∞ ∈ ℝ*)
710452adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (-∞(,)𝑋)) → 𝑋 ∈ ℝ*)
711 simpr 484 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (-∞(,)𝑋)) → 𝑥 ∈ (-∞(,)𝑋))
712 iooltub 44534 . . . . . . . . . . . . . . . . . . . . 21 ((-∞ ∈ ℝ*𝑋 ∈ ℝ*𝑥 ∈ (-∞(,)𝑋)) → 𝑥 < 𝑋)
713709, 710, 711, 712syl3anc 1370 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (-∞(,)𝑋)) → 𝑥 < 𝑋)
714707, 708, 713ltled 11369 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (-∞(,)𝑋)) → 𝑥𝑋)
715701, 705, 714syl2anc 583 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})) ∧ ¬ 𝑥 ∈ {𝑋}) → 𝑥𝑋)
716700, 715pm2.61dan 810 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})) → 𝑥𝑋)
717695, 716sylan2 592 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ((((𝑄𝑖) − (𝑍𝑋))(,)+∞) ∩ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}))) → 𝑥𝑋)
7187173ad2antl1 1184 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((((𝑄𝑖) − (𝑍𝑋))(,)+∞) ∩ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}))) → 𝑥𝑋)
719682, 683, 688, 694, 718eliocd 44531 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((((𝑄𝑖) − (𝑍𝑋))(,)+∞) ∩ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}))) → 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋))
720681, 719impbida 798 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋) ↔ 𝑥 ∈ ((((𝑄𝑖) − (𝑍𝑋))(,)+∞) ∩ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}))))
721720eqrdv 2729 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (((𝑄𝑖) − (𝑍𝑋))(,]𝑋) = ((((𝑄𝑖) − (𝑍𝑋))(,)+∞) ∩ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})))
722605, 229sstrid 3993 . . . . . . . . . . . . . . 15 (𝜑 → ((-∞(,)𝑋) ∩ 𝐷) ⊆ ℝ)
72314snssd 4812 . . . . . . . . . . . . . . 15 (𝜑 → {𝑋} ⊆ ℝ)
724722, 723unssd 4186 . . . . . . . . . . . . . 14 (𝜑 → (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}) ⊆ ℝ)
7257243ad2ant1 1132 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}) ⊆ ℝ)
726233, 366rerest 24553 . . . . . . . . . . . . 13 ((((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}) ⊆ ℝ → ((TopOpen‘ℂfld) ↾t (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})) = ((topGen‘ran (,)) ↾t (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})))
727725, 726syl 17 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((TopOpen‘ℂfld) ↾t (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})) = ((topGen‘ran (,)) ↾t (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})))
728640, 721, 7273eltr4d 2847 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (((𝑄𝑖) − (𝑍𝑋))(,]𝑋) ∈ ((TopOpen‘ℂfld) ↾t (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})))
729 isopn3i 22819 . . . . . . . . . . 11 ((((TopOpen‘ℂfld) ↾t (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})) ∈ Top ∧ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋) ∈ ((TopOpen‘ℂfld) ↾t (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}))) → ((int‘((TopOpen‘ℂfld) ↾t (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})))‘(((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) = (((𝑄𝑖) − (𝑍𝑋))(,]𝑋))
730635, 728, 729sylancr 586 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((int‘((TopOpen‘ℂfld) ↾t (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})))‘(((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) = (((𝑄𝑖) − (𝑍𝑋))(,]𝑋))
731629, 730eqtr2d 2772 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (((𝑄𝑖) − (𝑍𝑋))(,]𝑋) = ((int‘((TopOpen‘ℂfld) ↾t (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})))‘((((𝑄𝑖) − (𝑍𝑋))(,)𝑋) ∪ {𝑋})))
732626, 731eleqtrd 2834 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → 𝑋 ∈ ((int‘((TopOpen‘ℂfld) ↾t (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})))‘((((𝑄𝑖) − (𝑍𝑋))(,)𝑋) ∪ {𝑋})))
733607, 613, 614, 233, 615, 732limcres 25648 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (((𝐹 ↾ ((-∞(,)𝑋) ∩ 𝐷)) ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) lim 𝑋) = ((𝐹 ↾ ((-∞(,)𝑋) ∩ 𝐷)) lim 𝑋))
734733eqcomd 2737 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝐹 ↾ ((-∞(,)𝑋) ∩ 𝐷)) lim 𝑋) = (((𝐹 ↾ ((-∞(,)𝑋) ∩ 𝐷)) ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) lim 𝑋))
735613resabs1d 6012 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝐹 ↾ ((-∞(,)𝑋) ∩ 𝐷)) ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) = (𝐹 ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)))
736735oveq1d 7427 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (((𝐹 ↾ ((-∞(,)𝑋) ∩ 𝐷)) ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) lim 𝑋) = ((𝐹 ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) lim 𝑋))
737604, 734, 7363eqtrrd 2776 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝐹 ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) lim 𝑋) = ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋))
738377, 596, 7373eqtrrd 2776 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋) = ((𝐹 ↾ (-∞(,)(𝐸𝑋))) lim (𝐸𝑋)))
739738rexlimdv3a 3158 . . 3 (𝜑 → (∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1))) → ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋) = ((𝐹 ↾ (-∞(,)(𝐸𝑋))) lim (𝐸𝑋))))
740173, 739mpd 15 . 2 (𝜑 → ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋) = ((𝐹 ↾ (-∞(,)(𝐸𝑋))) lim (𝐸𝑋)))
7411203adant3 1131 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝑄𝑖) < (𝑄‘(𝑖 + 1)))
7422183adant3 1131 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
743 fourierdlem49.l . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
7447433adant3 1131 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
745 eqid 2731 . . . . . . . 8 if((𝐸𝑋) = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘(𝐸𝑋))) = if((𝐸𝑋) = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘(𝐸𝑋)))
746 eqid 2731 . . . . . . . 8 ((TopOpen‘ℂfld) ↾t (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) = ((TopOpen‘ℂfld) ↾t (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))}))
747211, 209, 741, 742, 744, 211, 235, 238, 217, 745, 746fourierdlem33 45167 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → if((𝐸𝑋) = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘(𝐸𝑋))) ∈ (((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋)))
748217resabs1d 6012 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ↾ ((𝑄𝑖)(,)(𝐸𝑋))) = (𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))))
749748oveq1d 7427 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋)) = ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋)))
750747, 749eleqtrd 2834 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → if((𝐸𝑋) = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘(𝐸𝑋))) ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋)))
751 ne0i 4334 . . . . . 6 (if((𝐸𝑋) = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘(𝐸𝑋))) ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋)) → ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋)) ≠ ∅)
752750, 751syl 17 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋)) ≠ ∅)
753377, 752eqnetrd 3007 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝐹 ↾ (-∞(,)(𝐸𝑋))) lim (𝐸𝑋)) ≠ ∅)
754753rexlimdv3a 3158 . . 3 (𝜑 → (∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1))) → ((𝐹 ↾ (-∞(,)(𝐸𝑋))) lim (𝐸𝑋)) ≠ ∅))
755173, 754mpd 15 . 2 (𝜑 → ((𝐹 ↾ (-∞(,)(𝐸𝑋))) lim (𝐸𝑋)) ≠ ∅)
756740, 755eqnetrd 3007 1 (𝜑 → ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1086   = wceq 1540  wcel 2105  wne 2939  wral 3060  wrex 3069  {crab 3431  Vcvv 3473  cun 3946  cin 3947  wss 3948  c0 4322  ifcif 4528  {csn 4628   class class class wbr 5148  cmpt 5231  dom cdm 5676  ran crn 5677  cres 5678  Rel wrel 5681   Fn wfn 6538  wf 6539  cfv 6543  (class class class)co 7412  m cmap 8826  supcsup 9441  cc 11114  cr 11115  0cc0 11116  1c1 11117   + caddc 11119   · cmul 11121  +∞cpnf 11252  -∞cmnf 11253  *cxr 11254   < clt 11255  cle 11256  cmin 11451  -cneg 11452   / cdiv 11878  cn 12219  0cn0 12479  cz 12565  cuz 12829  (,)cioo 13331  (,]cioc 13332  [,]cicc 13334  ...cfz 13491  ..^cfzo 13634  cfl 13762  t crest 17373  TopOpenctopn 17374  topGenctg 17390  fldccnfld 21148  Topctop 22628  intcnt 22754  cnccncf 24629   lim climc 25624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11172  ax-resscn 11173  ax-1cn 11174  ax-icn 11175  ax-addcl 11176  ax-addrcl 11177  ax-mulcl 11178  ax-mulrcl 11179  ax-mulcom 11180  ax-addass 11181  ax-mulass 11182  ax-distr 11183  ax-i2m1 11184  ax-1ne0 11185  ax-1rid 11186  ax-rnegex 11187  ax-rrecex 11188  ax-cnre 11189  ax-pre-lttri 11190  ax-pre-lttrn 11191  ax-pre-ltadd 11192  ax-pre-mulgt0 11193  ax-pre-sup 11194
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-1st 7979  df-2nd 7980  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-1o 8472  df-er 8709  df-map 8828  df-pm 8829  df-en 8946  df-dom 8947  df-sdom 8948  df-fin 8949  df-fi 9412  df-sup 9443  df-inf 9444  df-pnf 11257  df-mnf 11258  df-xr 11259  df-ltxr 11260  df-le 11261  df-sub 11453  df-neg 11454  df-div 11879  df-nn 12220  df-2 12282  df-3 12283  df-4 12284  df-5 12285  df-6 12286  df-7 12287  df-8 12288  df-9 12289  df-n0 12480  df-z 12566  df-dec 12685  df-uz 12830  df-q 12940  df-rp 12982  df-xneg 13099  df-xadd 13100  df-xmul 13101  df-ioo 13335  df-ioc 13336  df-icc 13338  df-fz 13492  df-fzo 13635  df-fl 13764  df-seq 13974  df-exp 14035  df-cj 15053  df-re 15054  df-im 15055  df-sqrt 15189  df-abs 15190  df-struct 17087  df-slot 17122  df-ndx 17134  df-base 17152  df-plusg 17217  df-mulr 17218  df-starv 17219  df-tset 17223  df-ple 17224  df-ds 17226  df-unif 17227  df-rest 17375  df-topn 17376  df-topgen 17396  df-psmet 21140  df-xmet 21141  df-met 21142  df-bl 21143  df-mopn 21144  df-cnfld 21149  df-top 22629  df-topon 22646  df-topsp 22668  df-bases 22682  df-ntr 22757  df-cn 22964  df-cnp 22965  df-xms 24059  df-ms 24060  df-cncf 24631  df-limc 25628
This theorem is referenced by:  fourierdlem94  45227  fourierdlem113  45246
  Copyright terms: Public domain W3C validator