Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem49 Structured version   Visualization version   GIF version

Theorem fourierdlem49 46160
Description: The given periodic function 𝐹 has a left limit at every point in the reals. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem49.a (𝜑𝐴 ∈ ℝ)
fourierdlem49.b (𝜑𝐵 ∈ ℝ)
fourierdlem49.altb (𝜑𝐴 < 𝐵)
fourierdlem49.p 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem49.t 𝑇 = (𝐵𝐴)
fourierdlem49.m (𝜑𝑀 ∈ ℕ)
fourierdlem49.q (𝜑𝑄 ∈ (𝑃𝑀))
fourierdlem49.d (𝜑𝐷 ⊆ ℝ)
fourierdlem49.f (𝜑𝐹:𝐷⟶ℝ)
fourierdlem49.dper ((𝜑𝑥𝐷𝑘 ∈ ℤ) → (𝑥 + (𝑘 · 𝑇)) ∈ 𝐷)
fourierdlem49.per ((𝜑𝑥𝐷𝑘 ∈ ℤ) → (𝐹‘(𝑥 + (𝑘 · 𝑇))) = (𝐹𝑥))
fourierdlem49.cn ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
fourierdlem49.l ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
fourierdlem49.x (𝜑𝑋 ∈ ℝ)
fourierdlem49.z 𝑍 = (𝑥 ∈ ℝ ↦ ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇))
fourierdlem49.e 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + (𝑍𝑥)))
Assertion
Ref Expression
fourierdlem49 (𝜑 → ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋) ≠ ∅)
Distinct variable groups:   𝐴,𝑖,𝑚,𝑝   𝑥,𝐴,𝑖   𝐵,𝑖,𝑘   𝐵,𝑚,𝑝   𝑥,𝐵,𝑘   𝐷,𝑘,𝑥   𝑖,𝐸,𝑘,𝑥   𝑖,𝐹,𝑘,𝑥   𝑖,𝑀,𝑘   𝑚,𝑀,𝑝   𝑥,𝑀   𝑄,𝑖,𝑘   𝑄,𝑝   𝑥,𝑄   𝑇,𝑘,𝑥   𝑖,𝑋,𝑘,𝑥   𝑘,𝑍,𝑥   𝜑,𝑖,𝑘,𝑥
Allowed substitution hints:   𝜑(𝑚,𝑝)   𝐴(𝑘)   𝐷(𝑖,𝑚,𝑝)   𝑃(𝑥,𝑖,𝑘,𝑚,𝑝)   𝑄(𝑚)   𝑇(𝑖,𝑚,𝑝)   𝐸(𝑚,𝑝)   𝐹(𝑚,𝑝)   𝐿(𝑥,𝑖,𝑘,𝑚,𝑝)   𝑋(𝑚,𝑝)   𝑍(𝑖,𝑚,𝑝)

Proof of Theorem fourierdlem49
Dummy variables 𝑗 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fourierdlem49.a . . . . . 6 (𝜑𝐴 ∈ ℝ)
2 fourierdlem49.b . . . . . 6 (𝜑𝐵 ∈ ℝ)
3 fourierdlem49.altb . . . . . 6 (𝜑𝐴 < 𝐵)
4 fourierdlem49.t . . . . . 6 𝑇 = (𝐵𝐴)
5 fourierdlem49.e . . . . . . 7 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + (𝑍𝑥)))
6 ovex 7423 . . . . . . . . . 10 ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇) ∈ V
7 fourierdlem49.z . . . . . . . . . . 11 𝑍 = (𝑥 ∈ ℝ ↦ ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇))
87fvmpt2 6982 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇) ∈ V) → (𝑍𝑥) = ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇))
96, 8mpan2 691 . . . . . . . . 9 (𝑥 ∈ ℝ → (𝑍𝑥) = ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇))
109oveq2d 7406 . . . . . . . 8 (𝑥 ∈ ℝ → (𝑥 + (𝑍𝑥)) = (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
1110mpteq2ia 5205 . . . . . . 7 (𝑥 ∈ ℝ ↦ (𝑥 + (𝑍𝑥))) = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
125, 11eqtri 2753 . . . . . 6 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
131, 2, 3, 4, 12fourierdlem4 46116 . . . . 5 (𝜑𝐸:ℝ⟶(𝐴(,]𝐵))
14 fourierdlem49.x . . . . 5 (𝜑𝑋 ∈ ℝ)
1513, 14ffvelcdmd 7060 . . . 4 (𝜑 → (𝐸𝑋) ∈ (𝐴(,]𝐵))
16 simpr 484 . . . . . . 7 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ (𝐸𝑋) ∈ ran 𝑄) → (𝐸𝑋) ∈ ran 𝑄)
17 fourierdlem49.q . . . . . . . . . . . . 13 (𝜑𝑄 ∈ (𝑃𝑀))
18 fourierdlem49.m . . . . . . . . . . . . . 14 (𝜑𝑀 ∈ ℕ)
19 fourierdlem49.p . . . . . . . . . . . . . . 15 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
2019fourierdlem2 46114 . . . . . . . . . . . . . 14 (𝑀 ∈ ℕ → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
2118, 20syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
2217, 21mpbid 232 . . . . . . . . . . . 12 (𝜑 → (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))))
2322simpld 494 . . . . . . . . . . 11 (𝜑𝑄 ∈ (ℝ ↑m (0...𝑀)))
24 elmapi 8825 . . . . . . . . . . 11 (𝑄 ∈ (ℝ ↑m (0...𝑀)) → 𝑄:(0...𝑀)⟶ℝ)
2523, 24syl 17 . . . . . . . . . 10 (𝜑𝑄:(0...𝑀)⟶ℝ)
26 ffn 6691 . . . . . . . . . 10 (𝑄:(0...𝑀)⟶ℝ → 𝑄 Fn (0...𝑀))
2725, 26syl 17 . . . . . . . . 9 (𝜑𝑄 Fn (0...𝑀))
2827ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ (𝐸𝑋) ∈ ran 𝑄) → 𝑄 Fn (0...𝑀))
29 fvelrnb 6924 . . . . . . . 8 (𝑄 Fn (0...𝑀) → ((𝐸𝑋) ∈ ran 𝑄 ↔ ∃𝑗 ∈ (0...𝑀)(𝑄𝑗) = (𝐸𝑋)))
3028, 29syl 17 . . . . . . 7 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ (𝐸𝑋) ∈ ran 𝑄) → ((𝐸𝑋) ∈ ran 𝑄 ↔ ∃𝑗 ∈ (0...𝑀)(𝑄𝑗) = (𝐸𝑋)))
3116, 30mpbid 232 . . . . . 6 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ (𝐸𝑋) ∈ ran 𝑄) → ∃𝑗 ∈ (0...𝑀)(𝑄𝑗) = (𝐸𝑋))
32 1zzd 12571 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 1 ∈ ℤ)
33 elfzelz 13492 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℤ)
3433ad2antlr 727 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 𝑗 ∈ ℤ)
35 1e0p1 12698 . . . . . . . . . . . . . . . . 17 1 = (0 + 1)
3635a1i 11 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 1 = (0 + 1))
3734zred 12645 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 𝑗 ∈ ℝ)
38 elfzle1 13495 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ (0...𝑀) → 0 ≤ 𝑗)
3938ad2antlr 727 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 0 ≤ 𝑗)
40 id 22 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑄𝑗) = (𝐸𝑋) → (𝑄𝑗) = (𝐸𝑋))
4140eqcomd 2736 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑄𝑗) = (𝐸𝑋) → (𝐸𝑋) = (𝑄𝑗))
4241ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑄𝑗) = (𝐸𝑋)) ∧ 𝑗 = 0) → (𝐸𝑋) = (𝑄𝑗))
43 fveq2 6861 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑗 = 0 → (𝑄𝑗) = (𝑄‘0))
4443adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑄𝑗) = (𝐸𝑋)) ∧ 𝑗 = 0) → (𝑄𝑗) = (𝑄‘0))
4522simprld 771 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → ((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵))
4645simpld 494 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝑄‘0) = 𝐴)
4746ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑄𝑗) = (𝐸𝑋)) ∧ 𝑗 = 0) → (𝑄‘0) = 𝐴)
4842, 44, 473eqtrd 2769 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑄𝑗) = (𝐸𝑋)) ∧ 𝑗 = 0) → (𝐸𝑋) = 𝐴)
4948adantllr 719 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ (𝑄𝑗) = (𝐸𝑋)) ∧ 𝑗 = 0) → (𝐸𝑋) = 𝐴)
5049adantllr 719 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) ∧ 𝑗 = 0) → (𝐸𝑋) = 𝐴)
511adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) → 𝐴 ∈ ℝ)
521rexrd 11231 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐴 ∈ ℝ*)
5352adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) → 𝐴 ∈ ℝ*)
542rexrd 11231 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐵 ∈ ℝ*)
5554adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) → 𝐵 ∈ ℝ*)
56 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) → (𝐸𝑋) ∈ (𝐴(,]𝐵))
57 iocgtlb 45507 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) → 𝐴 < (𝐸𝑋))
5853, 55, 56, 57syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) → 𝐴 < (𝐸𝑋))
5951, 58gtned 11316 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) → (𝐸𝑋) ≠ 𝐴)
6059neneqd 2931 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) → ¬ (𝐸𝑋) = 𝐴)
6160ad3antrrr 730 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) ∧ 𝑗 = 0) → ¬ (𝐸𝑋) = 𝐴)
6250, 61pm2.65da 816 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → ¬ 𝑗 = 0)
6362neqned 2933 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 𝑗 ≠ 0)
6437, 39, 63ne0gt0d 11318 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 0 < 𝑗)
65 0zd 12548 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 0 ∈ ℤ)
66 zltp1le 12590 . . . . . . . . . . . . . . . . . 18 ((0 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (0 < 𝑗 ↔ (0 + 1) ≤ 𝑗))
6765, 34, 66syl2anc 584 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (0 < 𝑗 ↔ (0 + 1) ≤ 𝑗))
6864, 67mpbid 232 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (0 + 1) ≤ 𝑗)
6936, 68eqbrtrd 5132 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 1 ≤ 𝑗)
70 eluz2 12806 . . . . . . . . . . . . . . 15 (𝑗 ∈ (ℤ‘1) ↔ (1 ∈ ℤ ∧ 𝑗 ∈ ℤ ∧ 1 ≤ 𝑗))
7132, 34, 69, 70syl3anbrc 1344 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 𝑗 ∈ (ℤ‘1))
72 nnuz 12843 . . . . . . . . . . . . . 14 ℕ = (ℤ‘1)
7371, 72eleqtrrdi 2840 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 𝑗 ∈ ℕ)
74 nnm1nn0 12490 . . . . . . . . . . . . 13 (𝑗 ∈ ℕ → (𝑗 − 1) ∈ ℕ0)
7573, 74syl 17 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑗 − 1) ∈ ℕ0)
76 nn0uz 12842 . . . . . . . . . . . . 13 0 = (ℤ‘0)
7776a1i 11 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → ℕ0 = (ℤ‘0))
7875, 77eleqtrd 2831 . . . . . . . . . . 11 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑗 − 1) ∈ (ℤ‘0))
7918nnzd 12563 . . . . . . . . . . . 12 (𝜑𝑀 ∈ ℤ)
8079ad3antrrr 730 . . . . . . . . . . 11 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 𝑀 ∈ ℤ)
81 peano2zm 12583 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℤ → (𝑗 − 1) ∈ ℤ)
8233, 81syl 17 . . . . . . . . . . . . . 14 (𝑗 ∈ (0...𝑀) → (𝑗 − 1) ∈ ℤ)
8382zred 12645 . . . . . . . . . . . . 13 (𝑗 ∈ (0...𝑀) → (𝑗 − 1) ∈ ℝ)
8433zred 12645 . . . . . . . . . . . . 13 (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℝ)
85 elfzel2 13490 . . . . . . . . . . . . . 14 (𝑗 ∈ (0...𝑀) → 𝑀 ∈ ℤ)
8685zred 12645 . . . . . . . . . . . . 13 (𝑗 ∈ (0...𝑀) → 𝑀 ∈ ℝ)
8784ltm1d 12122 . . . . . . . . . . . . 13 (𝑗 ∈ (0...𝑀) → (𝑗 − 1) < 𝑗)
88 elfzle2 13496 . . . . . . . . . . . . 13 (𝑗 ∈ (0...𝑀) → 𝑗𝑀)
8983, 84, 86, 87, 88ltletrd 11341 . . . . . . . . . . . 12 (𝑗 ∈ (0...𝑀) → (𝑗 − 1) < 𝑀)
9089ad2antlr 727 . . . . . . . . . . 11 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑗 − 1) < 𝑀)
91 elfzo2 13630 . . . . . . . . . . 11 ((𝑗 − 1) ∈ (0..^𝑀) ↔ ((𝑗 − 1) ∈ (ℤ‘0) ∧ 𝑀 ∈ ℤ ∧ (𝑗 − 1) < 𝑀))
9278, 80, 90, 91syl3anbrc 1344 . . . . . . . . . 10 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑗 − 1) ∈ (0..^𝑀))
9325ad3antrrr 730 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 𝑄:(0...𝑀)⟶ℝ)
9434, 81syl 17 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑗 − 1) ∈ ℤ)
9575nn0ge0d 12513 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 0 ≤ (𝑗 − 1))
9683, 86, 89ltled 11329 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (0...𝑀) → (𝑗 − 1) ≤ 𝑀)
9796ad2antlr 727 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑗 − 1) ≤ 𝑀)
9865, 80, 94, 95, 97elfzd 13483 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑗 − 1) ∈ (0...𝑀))
9993, 98ffvelcdmd 7060 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑄‘(𝑗 − 1)) ∈ ℝ)
10099rexrd 11231 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑄‘(𝑗 − 1)) ∈ ℝ*)
10125ffvelcdmda 7059 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (0...𝑀)) → (𝑄𝑗) ∈ ℝ)
102101rexrd 11231 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (0...𝑀)) → (𝑄𝑗) ∈ ℝ*)
103102adantlr 715 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) → (𝑄𝑗) ∈ ℝ*)
104103adantr 480 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑄𝑗) ∈ ℝ*)
105 iocssre 13395 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐴(,]𝐵) ⊆ ℝ)
10652, 2, 105syl2anc 584 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴(,]𝐵) ⊆ ℝ)
107106sselda 3949 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) → (𝐸𝑋) ∈ ℝ)
108107rexrd 11231 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) → (𝐸𝑋) ∈ ℝ*)
109108ad2antrr 726 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝐸𝑋) ∈ ℝ*)
110 simplll 774 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → 𝜑)
111 ovex 7423 . . . . . . . . . . . . . . . 16 (𝑗 − 1) ∈ V
112 eleq1 2817 . . . . . . . . . . . . . . . . . 18 (𝑖 = (𝑗 − 1) → (𝑖 ∈ (0..^𝑀) ↔ (𝑗 − 1) ∈ (0..^𝑀)))
113112anbi2d 630 . . . . . . . . . . . . . . . . 17 (𝑖 = (𝑗 − 1) → ((𝜑𝑖 ∈ (0..^𝑀)) ↔ (𝜑 ∧ (𝑗 − 1) ∈ (0..^𝑀))))
114 fveq2 6861 . . . . . . . . . . . . . . . . . 18 (𝑖 = (𝑗 − 1) → (𝑄𝑖) = (𝑄‘(𝑗 − 1)))
115 oveq1 7397 . . . . . . . . . . . . . . . . . . 19 (𝑖 = (𝑗 − 1) → (𝑖 + 1) = ((𝑗 − 1) + 1))
116115fveq2d 6865 . . . . . . . . . . . . . . . . . 18 (𝑖 = (𝑗 − 1) → (𝑄‘(𝑖 + 1)) = (𝑄‘((𝑗 − 1) + 1)))
117114, 116breq12d 5123 . . . . . . . . . . . . . . . . 17 (𝑖 = (𝑗 − 1) → ((𝑄𝑖) < (𝑄‘(𝑖 + 1)) ↔ (𝑄‘(𝑗 − 1)) < (𝑄‘((𝑗 − 1) + 1))))
118113, 117imbi12d 344 . . . . . . . . . . . . . . . 16 (𝑖 = (𝑗 − 1) → (((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) < (𝑄‘(𝑖 + 1))) ↔ ((𝜑 ∧ (𝑗 − 1) ∈ (0..^𝑀)) → (𝑄‘(𝑗 − 1)) < (𝑄‘((𝑗 − 1) + 1)))))
11922simprrd 773 . . . . . . . . . . . . . . . . 17 (𝜑 → ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))
120119r19.21bi 3230 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) < (𝑄‘(𝑖 + 1)))
121111, 118, 120vtocl 3527 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑗 − 1) ∈ (0..^𝑀)) → (𝑄‘(𝑗 − 1)) < (𝑄‘((𝑗 − 1) + 1)))
122110, 92, 121syl2anc 584 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑄‘(𝑗 − 1)) < (𝑄‘((𝑗 − 1) + 1)))
12333zcnd 12646 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℂ)
124 1cnd 11176 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ (0...𝑀) → 1 ∈ ℂ)
125123, 124npcand 11544 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ (0...𝑀) → ((𝑗 − 1) + 1) = 𝑗)
126125eqcomd 2736 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (0...𝑀) → 𝑗 = ((𝑗 − 1) + 1))
127126fveq2d 6865 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (0...𝑀) → (𝑄𝑗) = (𝑄‘((𝑗 − 1) + 1)))
128127eqcomd 2736 . . . . . . . . . . . . . . 15 (𝑗 ∈ (0...𝑀) → (𝑄‘((𝑗 − 1) + 1)) = (𝑄𝑗))
129128ad2antlr 727 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑄‘((𝑗 − 1) + 1)) = (𝑄𝑗))
130122, 129breqtrd 5136 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑄‘(𝑗 − 1)) < (𝑄𝑗))
131 simpr 484 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑄𝑗) = (𝐸𝑋))
132130, 131breqtrd 5136 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝑄‘(𝑗 − 1)) < (𝐸𝑋))
133106, 15sseldd 3950 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐸𝑋) ∈ ℝ)
134133leidd 11751 . . . . . . . . . . . . . . 15 (𝜑 → (𝐸𝑋) ≤ (𝐸𝑋))
135134ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝐸𝑋) ≤ (𝐸𝑋))
13641adantl 481 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝐸𝑋) = (𝑄𝑗))
137135, 136breqtrd 5136 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝐸𝑋) ≤ (𝑄𝑗))
138137adantllr 719 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝐸𝑋) ≤ (𝑄𝑗))
139100, 104, 109, 132, 138eliocd 45512 . . . . . . . . . . 11 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝐸𝑋) ∈ ((𝑄‘(𝑗 − 1))(,](𝑄𝑗)))
140127oveq2d 7406 . . . . . . . . . . . 12 (𝑗 ∈ (0...𝑀) → ((𝑄‘(𝑗 − 1))(,](𝑄𝑗)) = ((𝑄‘(𝑗 − 1))(,](𝑄‘((𝑗 − 1) + 1))))
141140ad2antlr 727 . . . . . . . . . . 11 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → ((𝑄‘(𝑗 − 1))(,](𝑄𝑗)) = ((𝑄‘(𝑗 − 1))(,](𝑄‘((𝑗 − 1) + 1))))
142139, 141eleqtrd 2831 . . . . . . . . . 10 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → (𝐸𝑋) ∈ ((𝑄‘(𝑗 − 1))(,](𝑄‘((𝑗 − 1) + 1))))
143114, 116oveq12d 7408 . . . . . . . . . . . 12 (𝑖 = (𝑗 − 1) → ((𝑄𝑖)(,](𝑄‘(𝑖 + 1))) = ((𝑄‘(𝑗 − 1))(,](𝑄‘((𝑗 − 1) + 1))))
144143eleq2d 2815 . . . . . . . . . . 11 (𝑖 = (𝑗 − 1) → ((𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1))) ↔ (𝐸𝑋) ∈ ((𝑄‘(𝑗 − 1))(,](𝑄‘((𝑗 − 1) + 1)))))
145144rspcev 3591 . . . . . . . . . 10 (((𝑗 − 1) ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄‘(𝑗 − 1))(,](𝑄‘((𝑗 − 1) + 1)))) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1))))
14692, 142, 145syl2anc 584 . . . . . . . . 9 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑗) = (𝐸𝑋)) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1))))
147146ex 412 . . . . . . . 8 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ 𝑗 ∈ (0...𝑀)) → ((𝑄𝑗) = (𝐸𝑋) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))))
148147adantlr 715 . . . . . . 7 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ (𝐸𝑋) ∈ ran 𝑄) ∧ 𝑗 ∈ (0...𝑀)) → ((𝑄𝑗) = (𝐸𝑋) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))))
149148rexlimdva 3135 . . . . . 6 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ (𝐸𝑋) ∈ ran 𝑄) → (∃𝑗 ∈ (0...𝑀)(𝑄𝑗) = (𝐸𝑋) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))))
15031, 149mpd 15 . . . . 5 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ (𝐸𝑋) ∈ ran 𝑄) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1))))
15118ad2antrr 726 . . . . . . 7 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ ¬ (𝐸𝑋) ∈ ran 𝑄) → 𝑀 ∈ ℕ)
15225ad2antrr 726 . . . . . . 7 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ ¬ (𝐸𝑋) ∈ ran 𝑄) → 𝑄:(0...𝑀)⟶ℝ)
153 iocssicc 13405 . . . . . . . . . 10 (𝐴(,]𝐵) ⊆ (𝐴[,]𝐵)
15446eqcomd 2736 . . . . . . . . . . 11 (𝜑𝐴 = (𝑄‘0))
15545simprd 495 . . . . . . . . . . . 12 (𝜑 → (𝑄𝑀) = 𝐵)
156155eqcomd 2736 . . . . . . . . . . 11 (𝜑𝐵 = (𝑄𝑀))
157154, 156oveq12d 7408 . . . . . . . . . 10 (𝜑 → (𝐴[,]𝐵) = ((𝑄‘0)[,](𝑄𝑀)))
158153, 157sseqtrid 3992 . . . . . . . . 9 (𝜑 → (𝐴(,]𝐵) ⊆ ((𝑄‘0)[,](𝑄𝑀)))
159158sselda 3949 . . . . . . . 8 ((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) → (𝐸𝑋) ∈ ((𝑄‘0)[,](𝑄𝑀)))
160159adantr 480 . . . . . . 7 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ ¬ (𝐸𝑋) ∈ ran 𝑄) → (𝐸𝑋) ∈ ((𝑄‘0)[,](𝑄𝑀)))
161 simpr 484 . . . . . . 7 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ ¬ (𝐸𝑋) ∈ ran 𝑄) → ¬ (𝐸𝑋) ∈ ran 𝑄)
162 fveq2 6861 . . . . . . . . . 10 (𝑘 = 𝑗 → (𝑄𝑘) = (𝑄𝑗))
163162breq1d 5120 . . . . . . . . 9 (𝑘 = 𝑗 → ((𝑄𝑘) < (𝐸𝑋) ↔ (𝑄𝑗) < (𝐸𝑋)))
164163cbvrabv 3419 . . . . . . . 8 {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < (𝐸𝑋)} = {𝑗 ∈ (0..^𝑀) ∣ (𝑄𝑗) < (𝐸𝑋)}
165164supeq1i 9405 . . . . . . 7 sup({𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < (𝐸𝑋)}, ℝ, < ) = sup({𝑗 ∈ (0..^𝑀) ∣ (𝑄𝑗) < (𝐸𝑋)}, ℝ, < )
166151, 152, 160, 161, 165fourierdlem25 46137 . . . . . 6 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ ¬ (𝐸𝑋) ∈ ran 𝑄) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
167 ioossioc 45497 . . . . . . . . 9 ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))
168167sseli 3945 . . . . . . . 8 ((𝐸𝑋) ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) → (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1))))
169168a1i 11 . . . . . . 7 ((((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ ¬ (𝐸𝑋) ∈ ran 𝑄) ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐸𝑋) ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) → (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))))
170169reximdva 3147 . . . . . 6 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ ¬ (𝐸𝑋) ∈ ran 𝑄) → (∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))))
171166, 170mpd 15 . . . . 5 (((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) ∧ ¬ (𝐸𝑋) ∈ ran 𝑄) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1))))
172150, 171pm2.61dan 812 . . . 4 ((𝜑 ∧ (𝐸𝑋) ∈ (𝐴(,]𝐵)) → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1))))
17315, 172mpdan 687 . . 3 (𝜑 → ∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1))))
174 fourierdlem49.f . . . . . . . . . . 11 (𝜑𝐹:𝐷⟶ℝ)
175 frel 6696 . . . . . . . . . . 11 (𝐹:𝐷⟶ℝ → Rel 𝐹)
176174, 175syl 17 . . . . . . . . . 10 (𝜑 → Rel 𝐹)
177 resindm 6004 . . . . . . . . . . 11 (Rel 𝐹 → (𝐹 ↾ ((-∞(,)(𝐸𝑋)) ∩ dom 𝐹)) = (𝐹 ↾ (-∞(,)(𝐸𝑋))))
178177eqcomd 2736 . . . . . . . . . 10 (Rel 𝐹 → (𝐹 ↾ (-∞(,)(𝐸𝑋))) = (𝐹 ↾ ((-∞(,)(𝐸𝑋)) ∩ dom 𝐹)))
179176, 178syl 17 . . . . . . . . 9 (𝜑 → (𝐹 ↾ (-∞(,)(𝐸𝑋))) = (𝐹 ↾ ((-∞(,)(𝐸𝑋)) ∩ dom 𝐹)))
180 fdm 6700 . . . . . . . . . . . 12 (𝐹:𝐷⟶ℝ → dom 𝐹 = 𝐷)
181174, 180syl 17 . . . . . . . . . . 11 (𝜑 → dom 𝐹 = 𝐷)
182181ineq2d 4186 . . . . . . . . . 10 (𝜑 → ((-∞(,)(𝐸𝑋)) ∩ dom 𝐹) = ((-∞(,)(𝐸𝑋)) ∩ 𝐷))
183182reseq2d 5953 . . . . . . . . 9 (𝜑 → (𝐹 ↾ ((-∞(,)(𝐸𝑋)) ∩ dom 𝐹)) = (𝐹 ↾ ((-∞(,)(𝐸𝑋)) ∩ 𝐷)))
184179, 183eqtrd 2765 . . . . . . . 8 (𝜑 → (𝐹 ↾ (-∞(,)(𝐸𝑋))) = (𝐹 ↾ ((-∞(,)(𝐸𝑋)) ∩ 𝐷)))
1851843ad2ant1 1133 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝐹 ↾ (-∞(,)(𝐸𝑋))) = (𝐹 ↾ ((-∞(,)(𝐸𝑋)) ∩ 𝐷)))
186185oveq1d 7405 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝐹 ↾ (-∞(,)(𝐸𝑋))) lim (𝐸𝑋)) = ((𝐹 ↾ ((-∞(,)(𝐸𝑋)) ∩ 𝐷)) lim (𝐸𝑋)))
187 ax-resscn 11132 . . . . . . . . . . 11 ℝ ⊆ ℂ
188187a1i 11 . . . . . . . . . 10 (𝜑 → ℝ ⊆ ℂ)
189174, 188fssd 6708 . . . . . . . . 9 (𝜑𝐹:𝐷⟶ℂ)
1901893ad2ant1 1133 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → 𝐹:𝐷⟶ℂ)
191 inss2 4204 . . . . . . . . 9 ((-∞(,)(𝐸𝑋)) ∩ 𝐷) ⊆ 𝐷
192191a1i 11 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((-∞(,)(𝐸𝑋)) ∩ 𝐷) ⊆ 𝐷)
193190, 192fssresd 6730 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝐹 ↾ ((-∞(,)(𝐸𝑋)) ∩ 𝐷)):((-∞(,)(𝐸𝑋)) ∩ 𝐷)⟶ℂ)
194 mnfxr 11238 . . . . . . . . . 10 -∞ ∈ ℝ*
195194a1i 11 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → -∞ ∈ ℝ*)
19625adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶ℝ)
197 elfzofz 13643 . . . . . . . . . . . . . 14 (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ (0...𝑀))
198197adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0...𝑀))
199196, 198ffvelcdmd 7060 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ ℝ)
200199rexrd 11231 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ ℝ*)
201199mnfltd 13091 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → -∞ < (𝑄𝑖))
202195, 200, 201xrltled 13117 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → -∞ ≤ (𝑄𝑖))
203 iooss1 13348 . . . . . . . . . 10 ((-∞ ∈ ℝ* ∧ -∞ ≤ (𝑄𝑖)) → ((𝑄𝑖)(,)(𝐸𝑋)) ⊆ (-∞(,)(𝐸𝑋)))
204194, 202, 203sylancr 587 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)(,)(𝐸𝑋)) ⊆ (-∞(,)(𝐸𝑋)))
2052043adant3 1132 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝑄𝑖)(,)(𝐸𝑋)) ⊆ (-∞(,)(𝐸𝑋)))
206 fzofzp1 13732 . . . . . . . . . . . . . 14 (𝑖 ∈ (0..^𝑀) → (𝑖 + 1) ∈ (0...𝑀))
207206adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑖 + 1) ∈ (0...𝑀))
208196, 207ffvelcdmd 7060 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ℝ)
2092083adant3 1132 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝑄‘(𝑖 + 1)) ∈ ℝ)
210209rexrd 11231 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝑄‘(𝑖 + 1)) ∈ ℝ*)
2111993adant3 1132 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝑄𝑖) ∈ ℝ)
212211rexrd 11231 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝑄𝑖) ∈ ℝ*)
213 simp3 1138 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1))))
214 iocleub 45508 . . . . . . . . . . 11 (((𝑄𝑖) ∈ ℝ* ∧ (𝑄‘(𝑖 + 1)) ∈ ℝ* ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝐸𝑋) ≤ (𝑄‘(𝑖 + 1)))
215212, 210, 213, 214syl3anc 1373 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝐸𝑋) ≤ (𝑄‘(𝑖 + 1)))
216 iooss2 13349 . . . . . . . . . 10 (((𝑄‘(𝑖 + 1)) ∈ ℝ* ∧ (𝐸𝑋) ≤ (𝑄‘(𝑖 + 1))) → ((𝑄𝑖)(,)(𝐸𝑋)) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
217210, 215, 216syl2anc 584 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝑄𝑖)(,)(𝐸𝑋)) ⊆ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
218 fourierdlem49.cn . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
219 cncff 24793 . . . . . . . . . . . . 13 ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ)
220 fdm 6700 . . . . . . . . . . . . 13 ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))):((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))⟶ℂ → dom (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
221218, 219, 2203syl 18 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → dom (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
222 ssdmres 5987 . . . . . . . . . . . 12 (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ dom 𝐹 ↔ dom (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
223221, 222sylibr 234 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ dom 𝐹)
224181adantr 480 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → dom 𝐹 = 𝐷)
225223, 224sseqtrd 3986 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ 𝐷)
2262253adant3 1132 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ 𝐷)
227217, 226sstrd 3960 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝑄𝑖)(,)(𝐸𝑋)) ⊆ 𝐷)
228205, 227ssind 4207 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝑄𝑖)(,)(𝐸𝑋)) ⊆ ((-∞(,)(𝐸𝑋)) ∩ 𝐷))
229 fourierdlem49.d . . . . . . . . . 10 (𝜑𝐷 ⊆ ℝ)
230229, 188sstrd 3960 . . . . . . . . 9 (𝜑𝐷 ⊆ ℂ)
2312303ad2ant1 1133 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → 𝐷 ⊆ ℂ)
232191, 231sstrid 3961 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((-∞(,)(𝐸𝑋)) ∩ 𝐷) ⊆ ℂ)
233 eqid 2730 . . . . . . 7 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
234 eqid 2730 . . . . . . 7 ((TopOpen‘ℂfld) ↾t (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})) = ((TopOpen‘ℂfld) ↾t (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}))
2351333ad2ant1 1133 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝐸𝑋) ∈ ℝ)
236235rexrd 11231 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝐸𝑋) ∈ ℝ*)
237 iocgtlb 45507 . . . . . . . . . 10 (((𝑄𝑖) ∈ ℝ* ∧ (𝑄‘(𝑖 + 1)) ∈ ℝ* ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝑄𝑖) < (𝐸𝑋))
238212, 210, 213, 237syl3anc 1373 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝑄𝑖) < (𝐸𝑋))
239235leidd 11751 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝐸𝑋) ≤ (𝐸𝑋))
240212, 236, 236, 238, 239eliocd 45512 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝐸𝑋)))
241 ioounsn 13445 . . . . . . . . . . 11 (((𝑄𝑖) ∈ ℝ* ∧ (𝐸𝑋) ∈ ℝ* ∧ (𝑄𝑖) < (𝐸𝑋)) → (((𝑄𝑖)(,)(𝐸𝑋)) ∪ {(𝐸𝑋)}) = ((𝑄𝑖)(,](𝐸𝑋)))
242212, 236, 238, 241syl3anc 1373 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (((𝑄𝑖)(,)(𝐸𝑋)) ∪ {(𝐸𝑋)}) = ((𝑄𝑖)(,](𝐸𝑋)))
243242fveq2d 6865 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((int‘((TopOpen‘ℂfld) ↾t (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})))‘(((𝑄𝑖)(,)(𝐸𝑋)) ∪ {(𝐸𝑋)})) = ((int‘((TopOpen‘ℂfld) ↾t (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})))‘((𝑄𝑖)(,](𝐸𝑋))))
244233cnfldtop 24678 . . . . . . . . . . 11 (TopOpen‘ℂfld) ∈ Top
245 ovex 7423 . . . . . . . . . . . . 13 (-∞(,)(𝐸𝑋)) ∈ V
246245inex1 5275 . . . . . . . . . . . 12 ((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∈ V
247 snex 5394 . . . . . . . . . . . 12 {(𝐸𝑋)} ∈ V
248246, 247unex 7723 . . . . . . . . . . 11 (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}) ∈ V
249 resttop 23054 . . . . . . . . . . 11 (((TopOpen‘ℂfld) ∈ Top ∧ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}) ∈ V) → ((TopOpen‘ℂfld) ↾t (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})) ∈ Top)
250244, 248, 249mp2an 692 . . . . . . . . . 10 ((TopOpen‘ℂfld) ↾t (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})) ∈ Top
251 retop 24656 . . . . . . . . . . . . 13 (topGen‘ran (,)) ∈ Top
252251a1i 11 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (topGen‘ran (,)) ∈ Top)
253248a1i 11 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}) ∈ V)
254 iooretop 24660 . . . . . . . . . . . . 13 ((𝑄𝑖)(,)+∞) ∈ (topGen‘ran (,))
255254a1i 11 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝑄𝑖)(,)+∞) ∈ (topGen‘ran (,)))
256 elrestr 17398 . . . . . . . . . . . 12 (((topGen‘ran (,)) ∈ Top ∧ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}) ∈ V ∧ ((𝑄𝑖)(,)+∞) ∈ (topGen‘ran (,))) → (((𝑄𝑖)(,)+∞) ∩ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})) ∈ ((topGen‘ran (,)) ↾t (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})))
257252, 253, 255, 256syl3anc 1373 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (((𝑄𝑖)(,)+∞) ∩ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})) ∈ ((topGen‘ran (,)) ↾t (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})))
258 simpr 484 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 = (𝐸𝑋)) → 𝑥 = (𝐸𝑋))
259 pnfxr 11235 . . . . . . . . . . . . . . . . . . . 20 +∞ ∈ ℝ*
260259a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → +∞ ∈ ℝ*)
261235ltpnfd 13088 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝐸𝑋) < +∞)
262212, 260, 235, 238, 261eliood 45503 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝐸𝑋) ∈ ((𝑄𝑖)(,)+∞))
263 snidg 4627 . . . . . . . . . . . . . . . . . . . . 21 ((𝐸𝑋) ∈ ℝ → (𝐸𝑋) ∈ {(𝐸𝑋)})
264 elun2 4149 . . . . . . . . . . . . . . . . . . . . 21 ((𝐸𝑋) ∈ {(𝐸𝑋)} → (𝐸𝑋) ∈ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}))
265263, 264syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝐸𝑋) ∈ ℝ → (𝐸𝑋) ∈ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}))
266133, 265syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐸𝑋) ∈ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}))
2672663ad2ant1 1133 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝐸𝑋) ∈ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}))
268262, 267elind 4166 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝐸𝑋) ∈ (((𝑄𝑖)(,)+∞) ∩ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})))
269268adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 = (𝐸𝑋)) → (𝐸𝑋) ∈ (((𝑄𝑖)(,)+∞) ∩ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})))
270258, 269eqeltrd 2829 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 = (𝐸𝑋)) → 𝑥 ∈ (((𝑄𝑖)(,)+∞) ∩ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})))
271270adantlr 715 . . . . . . . . . . . . . 14 ((((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ 𝑥 = (𝐸𝑋)) → 𝑥 ∈ (((𝑄𝑖)(,)+∞) ∩ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})))
272212adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) → (𝑄𝑖) ∈ ℝ*)
273259a1i 11 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) → +∞ ∈ ℝ*)
274200adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) → (𝑄𝑖) ∈ ℝ*)
275133adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐸𝑋) ∈ ℝ)
276275adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) → (𝐸𝑋) ∈ ℝ)
277 iocssre 13395 . . . . . . . . . . . . . . . . . . . 20 (((𝑄𝑖) ∈ ℝ* ∧ (𝐸𝑋) ∈ ℝ) → ((𝑄𝑖)(,](𝐸𝑋)) ⊆ ℝ)
278274, 276, 277syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) → ((𝑄𝑖)(,](𝐸𝑋)) ⊆ ℝ)
279 simpr 484 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) → 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋)))
280278, 279sseldd 3950 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) → 𝑥 ∈ ℝ)
2812803adantl3 1169 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) → 𝑥 ∈ ℝ)
282276rexrd 11231 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) → (𝐸𝑋) ∈ ℝ*)
283 iocgtlb 45507 . . . . . . . . . . . . . . . . . . 19 (((𝑄𝑖) ∈ ℝ* ∧ (𝐸𝑋) ∈ ℝ*𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) → (𝑄𝑖) < 𝑥)
284274, 282, 279, 283syl3anc 1373 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) → (𝑄𝑖) < 𝑥)
2852843adantl3 1169 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) → (𝑄𝑖) < 𝑥)
286281ltpnfd 13088 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) → 𝑥 < +∞)
287272, 273, 281, 285, 286eliood 45503 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) → 𝑥 ∈ ((𝑄𝑖)(,)+∞))
288287adantr 480 . . . . . . . . . . . . . . 15 ((((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ ¬ 𝑥 = (𝐸𝑋)) → 𝑥 ∈ ((𝑄𝑖)(,)+∞))
289194a1i 11 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ ¬ 𝑥 = (𝐸𝑋)) → -∞ ∈ ℝ*)
290282adantr 480 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ ¬ 𝑥 = (𝐸𝑋)) → (𝐸𝑋) ∈ ℝ*)
291280adantr 480 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ ¬ 𝑥 = (𝐸𝑋)) → 𝑥 ∈ ℝ)
292291mnfltd 13091 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ ¬ 𝑥 = (𝐸𝑋)) → -∞ < 𝑥)
293133ad3antrrr 730 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ ¬ 𝑥 = (𝐸𝑋)) → (𝐸𝑋) ∈ ℝ)
294 iocleub 45508 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑄𝑖) ∈ ℝ* ∧ (𝐸𝑋) ∈ ℝ*𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) → 𝑥 ≤ (𝐸𝑋))
295274, 282, 279, 294syl3anc 1373 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) → 𝑥 ≤ (𝐸𝑋))
296295adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ ¬ 𝑥 = (𝐸𝑋)) → 𝑥 ≤ (𝐸𝑋))
297 neqne 2934 . . . . . . . . . . . . . . . . . . . . . 22 𝑥 = (𝐸𝑋) → 𝑥 ≠ (𝐸𝑋))
298297necomd 2981 . . . . . . . . . . . . . . . . . . . . 21 𝑥 = (𝐸𝑋) → (𝐸𝑋) ≠ 𝑥)
299298adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ ¬ 𝑥 = (𝐸𝑋)) → (𝐸𝑋) ≠ 𝑥)
300291, 293, 296, 299leneltd 11335 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ ¬ 𝑥 = (𝐸𝑋)) → 𝑥 < (𝐸𝑋))
301289, 290, 291, 292, 300eliood 45503 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ ¬ 𝑥 = (𝐸𝑋)) → 𝑥 ∈ (-∞(,)(𝐸𝑋)))
3023013adantll3 45043 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ ¬ 𝑥 = (𝐸𝑋)) → 𝑥 ∈ (-∞(,)(𝐸𝑋)))
303226ad2antrr 726 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ ¬ 𝑥 = (𝐸𝑋)) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ 𝐷)
304272adantr 480 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ ¬ 𝑥 = (𝐸𝑋)) → (𝑄𝑖) ∈ ℝ*)
305210ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ ¬ 𝑥 = (𝐸𝑋)) → (𝑄‘(𝑖 + 1)) ∈ ℝ*)
306281adantr 480 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ ¬ 𝑥 = (𝐸𝑋)) → 𝑥 ∈ ℝ)
307285adantr 480 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ ¬ 𝑥 = (𝐸𝑋)) → (𝑄𝑖) < 𝑥)
308235ad2antrr 726 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ ¬ 𝑥 = (𝐸𝑋)) → (𝐸𝑋) ∈ ℝ)
309209ad2antrr 726 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ ¬ 𝑥 = (𝐸𝑋)) → (𝑄‘(𝑖 + 1)) ∈ ℝ)
3103003adantll3 45043 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ ¬ 𝑥 = (𝐸𝑋)) → 𝑥 < (𝐸𝑋))
311215ad2antrr 726 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ ¬ 𝑥 = (𝐸𝑋)) → (𝐸𝑋) ≤ (𝑄‘(𝑖 + 1)))
312306, 308, 309, 310, 311ltletrd 11341 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ ¬ 𝑥 = (𝐸𝑋)) → 𝑥 < (𝑄‘(𝑖 + 1)))
313304, 305, 306, 307, 312eliood 45503 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ ¬ 𝑥 = (𝐸𝑋)) → 𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
314303, 313sseldd 3950 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ ¬ 𝑥 = (𝐸𝑋)) → 𝑥𝐷)
315302, 314elind 4166 . . . . . . . . . . . . . . . 16 ((((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ ¬ 𝑥 = (𝐸𝑋)) → 𝑥 ∈ ((-∞(,)(𝐸𝑋)) ∩ 𝐷))
316 elun1 4148 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ((-∞(,)(𝐸𝑋)) ∩ 𝐷) → 𝑥 ∈ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}))
317315, 316syl 17 . . . . . . . . . . . . . . 15 ((((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ ¬ 𝑥 = (𝐸𝑋)) → 𝑥 ∈ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}))
318288, 317elind 4166 . . . . . . . . . . . . . 14 ((((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) ∧ ¬ 𝑥 = (𝐸𝑋)) → 𝑥 ∈ (((𝑄𝑖)(,)+∞) ∩ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})))
319271, 318pm2.61dan 812 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋))) → 𝑥 ∈ (((𝑄𝑖)(,)+∞) ∩ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})))
320212adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ (((𝑄𝑖)(,)+∞) ∩ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}))) → (𝑄𝑖) ∈ ℝ*)
321236adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ (((𝑄𝑖)(,)+∞) ∩ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}))) → (𝐸𝑋) ∈ ℝ*)
322 elinel1 4167 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (((𝑄𝑖)(,)+∞) ∩ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})) → 𝑥 ∈ ((𝑄𝑖)(,)+∞))
323 elioore 13343 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ((𝑄𝑖)(,)+∞) → 𝑥 ∈ ℝ)
324323rexrd 11231 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ((𝑄𝑖)(,)+∞) → 𝑥 ∈ ℝ*)
325322, 324syl 17 . . . . . . . . . . . . . . 15 (𝑥 ∈ (((𝑄𝑖)(,)+∞) ∩ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})) → 𝑥 ∈ ℝ*)
326325adantl 481 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ (((𝑄𝑖)(,)+∞) ∩ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}))) → 𝑥 ∈ ℝ*)
327200adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄𝑖)(,)+∞) ∩ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}))) → (𝑄𝑖) ∈ ℝ*)
328259a1i 11 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄𝑖)(,)+∞) ∩ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}))) → +∞ ∈ ℝ*)
329322adantl 481 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄𝑖)(,)+∞) ∩ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}))) → 𝑥 ∈ ((𝑄𝑖)(,)+∞))
330 ioogtlb 45500 . . . . . . . . . . . . . . . 16 (((𝑄𝑖) ∈ ℝ* ∧ +∞ ∈ ℝ*𝑥 ∈ ((𝑄𝑖)(,)+∞)) → (𝑄𝑖) < 𝑥)
331327, 328, 329, 330syl3anc 1373 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄𝑖)(,)+∞) ∩ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}))) → (𝑄𝑖) < 𝑥)
3323313adantl3 1169 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ (((𝑄𝑖)(,)+∞) ∩ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}))) → (𝑄𝑖) < 𝑥)
333 elinel2 4168 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (((𝑄𝑖)(,)+∞) ∩ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})) → 𝑥 ∈ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}))
334 elsni 4609 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ {(𝐸𝑋)} → 𝑥 = (𝐸𝑋))
335334adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ {(𝐸𝑋)}) → 𝑥 = (𝐸𝑋))
336134adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ {(𝐸𝑋)}) → (𝐸𝑋) ≤ (𝐸𝑋))
337335, 336eqbrtrd 5132 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ {(𝐸𝑋)}) → 𝑥 ≤ (𝐸𝑋))
338337adantlr 715 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})) ∧ 𝑥 ∈ {(𝐸𝑋)}) → 𝑥 ≤ (𝐸𝑋))
339 simpll 766 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})) ∧ ¬ 𝑥 ∈ {(𝐸𝑋)}) → 𝜑)
340 elunnel2 4121 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}) ∧ ¬ 𝑥 ∈ {(𝐸𝑋)}) → 𝑥 ∈ ((-∞(,)(𝐸𝑋)) ∩ 𝐷))
341340adantll 714 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})) ∧ ¬ 𝑥 ∈ {(𝐸𝑋)}) → 𝑥 ∈ ((-∞(,)(𝐸𝑋)) ∩ 𝐷))
342 elinel1 4167 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ((-∞(,)(𝐸𝑋)) ∩ 𝐷) → 𝑥 ∈ (-∞(,)(𝐸𝑋)))
343 elioore 13343 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ (-∞(,)(𝐸𝑋)) → 𝑥 ∈ ℝ)
344343adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (-∞(,)(𝐸𝑋))) → 𝑥 ∈ ℝ)
345133adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (-∞(,)(𝐸𝑋))) → (𝐸𝑋) ∈ ℝ)
346194a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑥 ∈ (-∞(,)(𝐸𝑋))) → -∞ ∈ ℝ*)
347345rexrd 11231 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑥 ∈ (-∞(,)(𝐸𝑋))) → (𝐸𝑋) ∈ ℝ*)
348 simpr 484 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑥 ∈ (-∞(,)(𝐸𝑋))) → 𝑥 ∈ (-∞(,)(𝐸𝑋)))
349 iooltub 45515 . . . . . . . . . . . . . . . . . . . . . 22 ((-∞ ∈ ℝ* ∧ (𝐸𝑋) ∈ ℝ*𝑥 ∈ (-∞(,)(𝐸𝑋))) → 𝑥 < (𝐸𝑋))
350346, 347, 348, 349syl3anc 1373 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (-∞(,)(𝐸𝑋))) → 𝑥 < (𝐸𝑋))
351344, 345, 350ltled 11329 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (-∞(,)(𝐸𝑋))) → 𝑥 ≤ (𝐸𝑋))
352342, 351sylan2 593 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ ((-∞(,)(𝐸𝑋)) ∩ 𝐷)) → 𝑥 ≤ (𝐸𝑋))
353339, 341, 352syl2anc 584 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})) ∧ ¬ 𝑥 ∈ {(𝐸𝑋)}) → 𝑥 ≤ (𝐸𝑋))
354338, 353pm2.61dan 812 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})) → 𝑥 ≤ (𝐸𝑋))
355354adantlr 715 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})) → 𝑥 ≤ (𝐸𝑋))
356333, 355sylan2 593 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄𝑖)(,)+∞) ∩ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}))) → 𝑥 ≤ (𝐸𝑋))
3573563adantl3 1169 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ (((𝑄𝑖)(,)+∞) ∩ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}))) → 𝑥 ≤ (𝐸𝑋))
358320, 321, 326, 332, 357eliocd 45512 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ (((𝑄𝑖)(,)+∞) ∩ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}))) → 𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋)))
359319, 358impbida 800 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝑥 ∈ ((𝑄𝑖)(,](𝐸𝑋)) ↔ 𝑥 ∈ (((𝑄𝑖)(,)+∞) ∩ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}))))
360359eqrdv 2728 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝑄𝑖)(,](𝐸𝑋)) = (((𝑄𝑖)(,)+∞) ∩ (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})))
361 ioossre 13375 . . . . . . . . . . . . . 14 (-∞(,)(𝐸𝑋)) ⊆ ℝ
362 ssinss1 4212 . . . . . . . . . . . . . 14 ((-∞(,)(𝐸𝑋)) ⊆ ℝ → ((-∞(,)(𝐸𝑋)) ∩ 𝐷) ⊆ ℝ)
363361, 362mp1i 13 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((-∞(,)(𝐸𝑋)) ∩ 𝐷) ⊆ ℝ)
364235snssd 4776 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → {(𝐸𝑋)} ⊆ ℝ)
365363, 364unssd 4158 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}) ⊆ ℝ)
366 eqid 2730 . . . . . . . . . . . . 13 (topGen‘ran (,)) = (topGen‘ran (,))
367233, 366rerest 24699 . . . . . . . . . . . 12 ((((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}) ⊆ ℝ → ((TopOpen‘ℂfld) ↾t (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})) = ((topGen‘ran (,)) ↾t (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})))
368365, 367syl 17 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((TopOpen‘ℂfld) ↾t (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})) = ((topGen‘ran (,)) ↾t (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})))
369257, 360, 3683eltr4d 2844 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝑄𝑖)(,](𝐸𝑋)) ∈ ((TopOpen‘ℂfld) ↾t (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})))
370 isopn3i 22976 . . . . . . . . . 10 ((((TopOpen‘ℂfld) ↾t (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})) ∈ Top ∧ ((𝑄𝑖)(,](𝐸𝑋)) ∈ ((TopOpen‘ℂfld) ↾t (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)}))) → ((int‘((TopOpen‘ℂfld) ↾t (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})))‘((𝑄𝑖)(,](𝐸𝑋))) = ((𝑄𝑖)(,](𝐸𝑋)))
371250, 369, 370sylancr 587 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((int‘((TopOpen‘ℂfld) ↾t (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})))‘((𝑄𝑖)(,](𝐸𝑋))) = ((𝑄𝑖)(,](𝐸𝑋)))
372243, 371eqtr2d 2766 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝑄𝑖)(,](𝐸𝑋)) = ((int‘((TopOpen‘ℂfld) ↾t (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})))‘(((𝑄𝑖)(,)(𝐸𝑋)) ∪ {(𝐸𝑋)})))
373240, 372eleqtrd 2831 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝐸𝑋) ∈ ((int‘((TopOpen‘ℂfld) ↾t (((-∞(,)(𝐸𝑋)) ∩ 𝐷) ∪ {(𝐸𝑋)})))‘(((𝑄𝑖)(,)(𝐸𝑋)) ∪ {(𝐸𝑋)})))
374193, 228, 232, 233, 234, 373limcres 25794 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (((𝐹 ↾ ((-∞(,)(𝐸𝑋)) ∩ 𝐷)) ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋)) = ((𝐹 ↾ ((-∞(,)(𝐸𝑋)) ∩ 𝐷)) lim (𝐸𝑋)))
375228resabs1d 5982 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝐹 ↾ ((-∞(,)(𝐸𝑋)) ∩ 𝐷)) ↾ ((𝑄𝑖)(,)(𝐸𝑋))) = (𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))))
376375oveq1d 7405 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (((𝐹 ↾ ((-∞(,)(𝐸𝑋)) ∩ 𝐷)) ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋)) = ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋)))
377186, 374, 3763eqtr2d 2771 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝐹 ↾ (-∞(,)(𝐸𝑋))) lim (𝐸𝑋)) = ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋)))
378181feq2d 6675 . . . . . . . . . . . 12 (𝜑 → (𝐹:dom 𝐹⟶ℂ ↔ 𝐹:𝐷⟶ℂ))
379189, 378mpbird 257 . . . . . . . . . . 11 (𝜑𝐹:dom 𝐹⟶ℂ)
380379adantr 480 . . . . . . . . . 10 ((𝜑𝑦 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋))) → 𝐹:dom 𝐹⟶ℂ)
3813803ad2antl1 1186 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋))) → 𝐹:dom 𝐹⟶ℂ)
382 ioosscn 13376 . . . . . . . . . 10 ((𝑄𝑖)(,)(𝐸𝑋)) ⊆ ℂ
383382a1i 11 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋))) → ((𝑄𝑖)(,)(𝐸𝑋)) ⊆ ℂ)
384181eqcomd 2736 . . . . . . . . . . . 12 (𝜑𝐷 = dom 𝐹)
3853843ad2ant1 1133 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → 𝐷 = dom 𝐹)
386227, 385sseqtrd 3986 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝑄𝑖)(,)(𝐸𝑋)) ⊆ dom 𝐹)
387386adantr 480 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋))) → ((𝑄𝑖)(,)(𝐸𝑋)) ⊆ dom 𝐹)
3887a1i 11 . . . . . . . . . . . . . . 15 (𝜑𝑍 = (𝑥 ∈ ℝ ↦ ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
389 oveq2 7398 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑋 → (𝐵𝑥) = (𝐵𝑋))
390389oveq1d 7405 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑋 → ((𝐵𝑥) / 𝑇) = ((𝐵𝑋) / 𝑇))
391390fveq2d 6865 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑋 → (⌊‘((𝐵𝑥) / 𝑇)) = (⌊‘((𝐵𝑋) / 𝑇)))
392391oveq1d 7405 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑋 → ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇) = ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))
393392adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑥 = 𝑋) → ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇) = ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))
3942, 14resubcld 11613 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐵𝑋) ∈ ℝ)
3952, 1resubcld 11613 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐵𝐴) ∈ ℝ)
3964, 395eqeltrid 2833 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑇 ∈ ℝ)
3971, 2posdifd 11772 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝐴 < 𝐵 ↔ 0 < (𝐵𝐴)))
3983, 397mpbid 232 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → 0 < (𝐵𝐴))
3994eqcomi 2739 . . . . . . . . . . . . . . . . . . . . . 22 (𝐵𝐴) = 𝑇
400399a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐵𝐴) = 𝑇)
401398, 400breqtrd 5136 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → 0 < 𝑇)
402401gt0ne0d 11749 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑇 ≠ 0)
403394, 396, 402redivcld 12017 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝐵𝑋) / 𝑇) ∈ ℝ)
404403flcld 13767 . . . . . . . . . . . . . . . . 17 (𝜑 → (⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ)
405404zred 12645 . . . . . . . . . . . . . . . 16 (𝜑 → (⌊‘((𝐵𝑋) / 𝑇)) ∈ ℝ)
406405, 396remulcld 11211 . . . . . . . . . . . . . . 15 (𝜑 → ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇) ∈ ℝ)
407388, 393, 14, 406fvmptd 6978 . . . . . . . . . . . . . 14 (𝜑 → (𝑍𝑋) = ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))
408407, 406eqeltrd 2829 . . . . . . . . . . . . 13 (𝜑 → (𝑍𝑋) ∈ ℝ)
409408recnd 11209 . . . . . . . . . . . 12 (𝜑 → (𝑍𝑋) ∈ ℂ)
410409adantr 480 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋))) → (𝑍𝑋) ∈ ℂ)
4114103ad2antl1 1186 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋))) → (𝑍𝑋) ∈ ℂ)
412411negcld 11527 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋))) → -(𝑍𝑋) ∈ ℂ)
413 eqid 2730 . . . . . . . . 9 {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ ((𝑄𝑖)(,)(𝐸𝑋))𝑧 = (𝑥 + -(𝑍𝑋))} = {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ ((𝑄𝑖)(,)(𝐸𝑋))𝑧 = (𝑥 + -(𝑍𝑋))}
414 ioosscn 13376 . . . . . . . . . . . . . . . . . . 19 (((𝑄𝑖) − (𝑍𝑋))(,)𝑋) ⊆ ℂ
415414sseli 3945 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋) → 𝑦 ∈ ℂ)
416415adantl 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → 𝑦 ∈ ℂ)
417409adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → (𝑍𝑋) ∈ ℂ)
418416, 417pncand 11541 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → ((𝑦 + (𝑍𝑋)) − (𝑍𝑋)) = 𝑦)
419418eqcomd 2736 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → 𝑦 = ((𝑦 + (𝑍𝑋)) − (𝑍𝑋)))
4204193ad2antl1 1186 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → 𝑦 = ((𝑦 + (𝑍𝑋)) − (𝑍𝑋)))
421407oveq2d 7406 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝑦 + (𝑍𝑋)) − (𝑍𝑋)) = ((𝑦 + (𝑍𝑋)) − ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)))
422421adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → ((𝑦 + (𝑍𝑋)) − (𝑍𝑋)) = ((𝑦 + (𝑍𝑋)) − ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)))
423416, 417addcld 11200 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → (𝑦 + (𝑍𝑋)) ∈ ℂ)
424406recnd 11209 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇) ∈ ℂ)
425424adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇) ∈ ℂ)
426423, 425negsubd 11546 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → ((𝑦 + (𝑍𝑋)) + -((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)) = ((𝑦 + (𝑍𝑋)) − ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)))
427404zcnd 12646 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (⌊‘((𝐵𝑋) / 𝑇)) ∈ ℂ)
428396recnd 11209 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑇 ∈ ℂ)
429427, 428mulneg1d 11638 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (-(⌊‘((𝐵𝑋) / 𝑇)) · 𝑇) = -((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))
430429eqcomd 2736 . . . . . . . . . . . . . . . . . . 19 (𝜑 → -((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇) = (-(⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))
431430oveq2d 7406 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝑦 + (𝑍𝑋)) + -((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)) = ((𝑦 + (𝑍𝑋)) + (-(⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)))
432431adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → ((𝑦 + (𝑍𝑋)) + -((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)) = ((𝑦 + (𝑍𝑋)) + (-(⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)))
433422, 426, 4323eqtr2d 2771 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → ((𝑦 + (𝑍𝑋)) − (𝑍𝑋)) = ((𝑦 + (𝑍𝑋)) + (-(⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)))
4344333ad2antl1 1186 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → ((𝑦 + (𝑍𝑋)) − (𝑍𝑋)) = ((𝑦 + (𝑍𝑋)) + (-(⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)))
435404znegcld 12647 . . . . . . . . . . . . . . . . . 18 (𝜑 → -(⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ)
436435adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → -(⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ)
4374363ad2antl1 1186 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → -(⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ)
438 simpl1 1192 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → 𝜑)
439227adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → ((𝑄𝑖)(,)(𝐸𝑋)) ⊆ 𝐷)
440200adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → (𝑄𝑖) ∈ ℝ*)
441133rexrd 11231 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐸𝑋) ∈ ℝ*)
442441ad2antrr 726 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → (𝐸𝑋) ∈ ℝ*)
443 elioore 13343 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋) → 𝑦 ∈ ℝ)
444443adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → 𝑦 ∈ ℝ)
445408adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → (𝑍𝑋) ∈ ℝ)
446444, 445readdcld 11210 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → (𝑦 + (𝑍𝑋)) ∈ ℝ)
447446adantlr 715 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → (𝑦 + (𝑍𝑋)) ∈ ℝ)
448408adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑍𝑋) ∈ ℝ)
449199, 448resubcld 11613 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖) − (𝑍𝑋)) ∈ ℝ)
450449rexrd 11231 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖) − (𝑍𝑋)) ∈ ℝ*)
451450adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → ((𝑄𝑖) − (𝑍𝑋)) ∈ ℝ*)
45214rexrd 11231 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑋 ∈ ℝ*)
453452ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → 𝑋 ∈ ℝ*)
454 simpr 484 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋))
455 ioogtlb 45500 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑄𝑖) − (𝑍𝑋)) ∈ ℝ*𝑋 ∈ ℝ*𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → ((𝑄𝑖) − (𝑍𝑋)) < 𝑦)
456451, 453, 454, 455syl3anc 1373 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → ((𝑄𝑖) − (𝑍𝑋)) < 𝑦)
457199adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → (𝑄𝑖) ∈ ℝ)
458448adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → (𝑍𝑋) ∈ ℝ)
459443adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → 𝑦 ∈ ℝ)
460457, 458, 459ltsubaddd 11781 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → (((𝑄𝑖) − (𝑍𝑋)) < 𝑦 ↔ (𝑄𝑖) < (𝑦 + (𝑍𝑋))))
461456, 460mpbid 232 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → (𝑄𝑖) < (𝑦 + (𝑍𝑋)))
46214ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → 𝑋 ∈ ℝ)
463 iooltub 45515 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑄𝑖) − (𝑍𝑋)) ∈ ℝ*𝑋 ∈ ℝ*𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → 𝑦 < 𝑋)
464451, 453, 454, 463syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → 𝑦 < 𝑋)
465459, 462, 458, 464ltadd1dd 11796 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → (𝑦 + (𝑍𝑋)) < (𝑋 + (𝑍𝑋)))
4665a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + (𝑍𝑥))))
467 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 = 𝑋𝑥 = 𝑋)
468 fveq2 6861 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 = 𝑋 → (𝑍𝑥) = (𝑍𝑋))
469467, 468oveq12d 7408 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 = 𝑋 → (𝑥 + (𝑍𝑥)) = (𝑋 + (𝑍𝑋)))
470469adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑥 = 𝑋) → (𝑥 + (𝑍𝑥)) = (𝑋 + (𝑍𝑋)))
47114, 408readdcld 11210 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝑋 + (𝑍𝑋)) ∈ ℝ)
472466, 470, 14, 471fvmptd 6978 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝐸𝑋) = (𝑋 + (𝑍𝑋)))
473472eqcomd 2736 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑋 + (𝑍𝑋)) = (𝐸𝑋))
474473ad2antrr 726 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → (𝑋 + (𝑍𝑋)) = (𝐸𝑋))
475465, 474breqtrd 5136 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → (𝑦 + (𝑍𝑋)) < (𝐸𝑋))
476440, 442, 447, 461, 475eliood 45503 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → (𝑦 + (𝑍𝑋)) ∈ ((𝑄𝑖)(,)(𝐸𝑋)))
4774763adantl3 1169 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → (𝑦 + (𝑍𝑋)) ∈ ((𝑄𝑖)(,)(𝐸𝑋)))
478439, 477sseldd 3950 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → (𝑦 + (𝑍𝑋)) ∈ 𝐷)
479438, 478, 4373jca 1128 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → (𝜑 ∧ (𝑦 + (𝑍𝑋)) ∈ 𝐷 ∧ -(⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ))
480 eleq1 2817 . . . . . . . . . . . . . . . . . . 19 (𝑘 = -(⌊‘((𝐵𝑋) / 𝑇)) → (𝑘 ∈ ℤ ↔ -(⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ))
4814803anbi3d 1444 . . . . . . . . . . . . . . . . . 18 (𝑘 = -(⌊‘((𝐵𝑋) / 𝑇)) → ((𝜑 ∧ (𝑦 + (𝑍𝑋)) ∈ 𝐷𝑘 ∈ ℤ) ↔ (𝜑 ∧ (𝑦 + (𝑍𝑋)) ∈ 𝐷 ∧ -(⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ)))
482 oveq1 7397 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = -(⌊‘((𝐵𝑋) / 𝑇)) → (𝑘 · 𝑇) = (-(⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))
483482oveq2d 7406 . . . . . . . . . . . . . . . . . . 19 (𝑘 = -(⌊‘((𝐵𝑋) / 𝑇)) → ((𝑦 + (𝑍𝑋)) + (𝑘 · 𝑇)) = ((𝑦 + (𝑍𝑋)) + (-(⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)))
484483eleq1d 2814 . . . . . . . . . . . . . . . . . 18 (𝑘 = -(⌊‘((𝐵𝑋) / 𝑇)) → (((𝑦 + (𝑍𝑋)) + (𝑘 · 𝑇)) ∈ 𝐷 ↔ ((𝑦 + (𝑍𝑋)) + (-(⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)) ∈ 𝐷))
485481, 484imbi12d 344 . . . . . . . . . . . . . . . . 17 (𝑘 = -(⌊‘((𝐵𝑋) / 𝑇)) → (((𝜑 ∧ (𝑦 + (𝑍𝑋)) ∈ 𝐷𝑘 ∈ ℤ) → ((𝑦 + (𝑍𝑋)) + (𝑘 · 𝑇)) ∈ 𝐷) ↔ ((𝜑 ∧ (𝑦 + (𝑍𝑋)) ∈ 𝐷 ∧ -(⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ) → ((𝑦 + (𝑍𝑋)) + (-(⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)) ∈ 𝐷)))
486 ovex 7423 . . . . . . . . . . . . . . . . . 18 (𝑦 + (𝑍𝑋)) ∈ V
487 eleq1 2817 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = (𝑦 + (𝑍𝑋)) → (𝑥𝐷 ↔ (𝑦 + (𝑍𝑋)) ∈ 𝐷))
4884873anbi2d 1443 . . . . . . . . . . . . . . . . . . 19 (𝑥 = (𝑦 + (𝑍𝑋)) → ((𝜑𝑥𝐷𝑘 ∈ ℤ) ↔ (𝜑 ∧ (𝑦 + (𝑍𝑋)) ∈ 𝐷𝑘 ∈ ℤ)))
489 oveq1 7397 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = (𝑦 + (𝑍𝑋)) → (𝑥 + (𝑘 · 𝑇)) = ((𝑦 + (𝑍𝑋)) + (𝑘 · 𝑇)))
490489eleq1d 2814 . . . . . . . . . . . . . . . . . . 19 (𝑥 = (𝑦 + (𝑍𝑋)) → ((𝑥 + (𝑘 · 𝑇)) ∈ 𝐷 ↔ ((𝑦 + (𝑍𝑋)) + (𝑘 · 𝑇)) ∈ 𝐷))
491488, 490imbi12d 344 . . . . . . . . . . . . . . . . . 18 (𝑥 = (𝑦 + (𝑍𝑋)) → (((𝜑𝑥𝐷𝑘 ∈ ℤ) → (𝑥 + (𝑘 · 𝑇)) ∈ 𝐷) ↔ ((𝜑 ∧ (𝑦 + (𝑍𝑋)) ∈ 𝐷𝑘 ∈ ℤ) → ((𝑦 + (𝑍𝑋)) + (𝑘 · 𝑇)) ∈ 𝐷)))
492 fourierdlem49.dper . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐷𝑘 ∈ ℤ) → (𝑥 + (𝑘 · 𝑇)) ∈ 𝐷)
493486, 491, 492vtocl 3527 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑦 + (𝑍𝑋)) ∈ 𝐷𝑘 ∈ ℤ) → ((𝑦 + (𝑍𝑋)) + (𝑘 · 𝑇)) ∈ 𝐷)
494485, 493vtoclg 3523 . . . . . . . . . . . . . . . 16 (-(⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ → ((𝜑 ∧ (𝑦 + (𝑍𝑋)) ∈ 𝐷 ∧ -(⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ) → ((𝑦 + (𝑍𝑋)) + (-(⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)) ∈ 𝐷))
495437, 479, 494sylc 65 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → ((𝑦 + (𝑍𝑋)) + (-(⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)) ∈ 𝐷)
496434, 495eqeltrd 2829 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → ((𝑦 + (𝑍𝑋)) − (𝑍𝑋)) ∈ 𝐷)
497420, 496eqeltrd 2829 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → 𝑦𝐷)
498497ralrimiva 3126 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ∀𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)𝑦𝐷)
499 dfss3 3938 . . . . . . . . . . . 12 ((((𝑄𝑖) − (𝑍𝑋))(,)𝑋) ⊆ 𝐷 ↔ ∀𝑦 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)𝑦𝐷)
500498, 499sylibr 234 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (((𝑄𝑖) − (𝑍𝑋))(,)𝑋) ⊆ 𝐷)
501199recnd 11209 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ ℂ)
502409adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑍𝑋) ∈ ℂ)
503501, 502negsubd 11546 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖) + -(𝑍𝑋)) = ((𝑄𝑖) − (𝑍𝑋)))
504503eqcomd 2736 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖) − (𝑍𝑋)) = ((𝑄𝑖) + -(𝑍𝑋)))
505472oveq1d 7405 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐸𝑋) + -(𝑍𝑋)) = ((𝑋 + (𝑍𝑋)) + -(𝑍𝑋)))
506471recnd 11209 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑋 + (𝑍𝑋)) ∈ ℂ)
507506, 409negsubd 11546 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑋 + (𝑍𝑋)) + -(𝑍𝑋)) = ((𝑋 + (𝑍𝑋)) − (𝑍𝑋)))
50814recnd 11209 . . . . . . . . . . . . . . . . 17 (𝜑𝑋 ∈ ℂ)
509508, 409pncand 11541 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑋 + (𝑍𝑋)) − (𝑍𝑋)) = 𝑋)
510505, 507, 5093eqtrrd 2770 . . . . . . . . . . . . . . 15 (𝜑𝑋 = ((𝐸𝑋) + -(𝑍𝑋)))
511510adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑋 = ((𝐸𝑋) + -(𝑍𝑋)))
512504, 511oveq12d 7408 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → (((𝑄𝑖) − (𝑍𝑋))(,)𝑋) = (((𝑄𝑖) + -(𝑍𝑋))(,)((𝐸𝑋) + -(𝑍𝑋))))
513448renegcld 11612 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → -(𝑍𝑋) ∈ ℝ)
514199, 275, 513iooshift 45527 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → (((𝑄𝑖) + -(𝑍𝑋))(,)((𝐸𝑋) + -(𝑍𝑋))) = {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ ((𝑄𝑖)(,)(𝐸𝑋))𝑧 = (𝑥 + -(𝑍𝑋))})
515512, 514eqtr2d 2766 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ ((𝑄𝑖)(,)(𝐸𝑋))𝑧 = (𝑥 + -(𝑍𝑋))} = (((𝑄𝑖) − (𝑍𝑋))(,)𝑋))
5165153adant3 1132 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ ((𝑄𝑖)(,)(𝐸𝑋))𝑧 = (𝑥 + -(𝑍𝑋))} = (((𝑄𝑖) − (𝑍𝑋))(,)𝑋))
5171813ad2ant1 1133 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → dom 𝐹 = 𝐷)
518500, 516, 5173sstr4d 4005 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ ((𝑄𝑖)(,)(𝐸𝑋))𝑧 = (𝑥 + -(𝑍𝑋))} ⊆ dom 𝐹)
519518adantr 480 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋))) → {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ ((𝑄𝑖)(,)(𝐸𝑋))𝑧 = (𝑥 + -(𝑍𝑋))} ⊆ dom 𝐹)
520407negeqd 11422 . . . . . . . . . . . . . . . 16 (𝜑 → -(𝑍𝑋) = -((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))
521520, 430eqtrd 2765 . . . . . . . . . . . . . . 15 (𝜑 → -(𝑍𝑋) = (-(⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))
522521oveq2d 7406 . . . . . . . . . . . . . 14 (𝜑 → (𝑥 + -(𝑍𝑋)) = (𝑥 + (-(⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)))
523522fveq2d 6865 . . . . . . . . . . . . 13 (𝜑 → (𝐹‘(𝑥 + -(𝑍𝑋))) = (𝐹‘(𝑥 + (-(⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))))
524523adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ((𝑄𝑖)(,)(𝐸𝑋))) → (𝐹‘(𝑥 + -(𝑍𝑋))) = (𝐹‘(𝑥 + (-(⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))))
5255243ad2antl1 1186 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝐸𝑋))) → (𝐹‘(𝑥 + -(𝑍𝑋))) = (𝐹‘(𝑥 + (-(⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))))
526435adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ((𝑄𝑖)(,)(𝐸𝑋))) → -(⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ)
5275263ad2antl1 1186 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝐸𝑋))) → -(⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ)
528 simpl1 1192 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝐸𝑋))) → 𝜑)
529227sselda 3949 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝐸𝑋))) → 𝑥𝐷)
530528, 529, 5273jca 1128 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝐸𝑋))) → (𝜑𝑥𝐷 ∧ -(⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ))
5314803anbi3d 1444 . . . . . . . . . . . . . 14 (𝑘 = -(⌊‘((𝐵𝑋) / 𝑇)) → ((𝜑𝑥𝐷𝑘 ∈ ℤ) ↔ (𝜑𝑥𝐷 ∧ -(⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ)))
532482oveq2d 7406 . . . . . . . . . . . . . . . 16 (𝑘 = -(⌊‘((𝐵𝑋) / 𝑇)) → (𝑥 + (𝑘 · 𝑇)) = (𝑥 + (-(⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)))
533532fveq2d 6865 . . . . . . . . . . . . . . 15 (𝑘 = -(⌊‘((𝐵𝑋) / 𝑇)) → (𝐹‘(𝑥 + (𝑘 · 𝑇))) = (𝐹‘(𝑥 + (-(⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))))
534533eqeq1d 2732 . . . . . . . . . . . . . 14 (𝑘 = -(⌊‘((𝐵𝑋) / 𝑇)) → ((𝐹‘(𝑥 + (𝑘 · 𝑇))) = (𝐹𝑥) ↔ (𝐹‘(𝑥 + (-(⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))) = (𝐹𝑥)))
535531, 534imbi12d 344 . . . . . . . . . . . . 13 (𝑘 = -(⌊‘((𝐵𝑋) / 𝑇)) → (((𝜑𝑥𝐷𝑘 ∈ ℤ) → (𝐹‘(𝑥 + (𝑘 · 𝑇))) = (𝐹𝑥)) ↔ ((𝜑𝑥𝐷 ∧ -(⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ) → (𝐹‘(𝑥 + (-(⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))) = (𝐹𝑥))))
536 fourierdlem49.per . . . . . . . . . . . . 13 ((𝜑𝑥𝐷𝑘 ∈ ℤ) → (𝐹‘(𝑥 + (𝑘 · 𝑇))) = (𝐹𝑥))
537535, 536vtoclg 3523 . . . . . . . . . . . 12 (-(⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ → ((𝜑𝑥𝐷 ∧ -(⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ) → (𝐹‘(𝑥 + (-(⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))) = (𝐹𝑥)))
538527, 530, 537sylc 65 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝐸𝑋))) → (𝐹‘(𝑥 + (-(⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))) = (𝐹𝑥))
539525, 538eqtrd 2765 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝐸𝑋))) → (𝐹‘(𝑥 + -(𝑍𝑋))) = (𝐹𝑥))
540539adantlr 715 . . . . . . . . 9 ((((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋))) ∧ 𝑥 ∈ ((𝑄𝑖)(,)(𝐸𝑋))) → (𝐹‘(𝑥 + -(𝑍𝑋))) = (𝐹𝑥))
541 simpr 484 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋))) → 𝑦 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋)))
542381, 383, 387, 412, 413, 519, 540, 541limcperiod 45633 . . . . . . . 8 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋))) → 𝑦 ∈ ((𝐹 ↾ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ ((𝑄𝑖)(,)(𝐸𝑋))𝑧 = (𝑥 + -(𝑍𝑋))}) lim ((𝐸𝑋) + -(𝑍𝑋))))
543515reseq2d 5953 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ ((𝑄𝑖)(,)(𝐸𝑋))𝑧 = (𝑥 + -(𝑍𝑋))}) = (𝐹 ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)))
544511eqcomd 2736 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐸𝑋) + -(𝑍𝑋)) = 𝑋)
545543, 544oveq12d 7408 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ ((𝑄𝑖)(,)(𝐸𝑋))𝑧 = (𝑥 + -(𝑍𝑋))}) lim ((𝐸𝑋) + -(𝑍𝑋))) = ((𝐹 ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) lim 𝑋))
5465453adant3 1132 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝐹 ↾ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ ((𝑄𝑖)(,)(𝐸𝑋))𝑧 = (𝑥 + -(𝑍𝑋))}) lim ((𝐸𝑋) + -(𝑍𝑋))) = ((𝐹 ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) lim 𝑋))
547546adantr 480 . . . . . . . 8 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋))) → ((𝐹 ↾ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ ((𝑄𝑖)(,)(𝐸𝑋))𝑧 = (𝑥 + -(𝑍𝑋))}) lim ((𝐸𝑋) + -(𝑍𝑋))) = ((𝐹 ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) lim 𝑋))
548542, 547eleqtrd 2831 . . . . . . 7 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋))) → 𝑦 ∈ ((𝐹 ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) lim 𝑋))
549379adantr 480 . . . . . . . . . 10 ((𝜑𝑦 ∈ ((𝐹 ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) lim 𝑋)) → 𝐹:dom 𝐹⟶ℂ)
5505493ad2antl1 1186 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ ((𝐹 ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) lim 𝑋)) → 𝐹:dom 𝐹⟶ℂ)
551414a1i 11 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ ((𝐹 ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) lim 𝑋)) → (((𝑄𝑖) − (𝑍𝑋))(,)𝑋) ⊆ ℂ)
552500, 517sseqtrrd 3987 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (((𝑄𝑖) − (𝑍𝑋))(,)𝑋) ⊆ dom 𝐹)
553552adantr 480 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ ((𝐹 ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) lim 𝑋)) → (((𝑄𝑖) − (𝑍𝑋))(,)𝑋) ⊆ dom 𝐹)
554409adantr 480 . . . . . . . . . 10 ((𝜑𝑦 ∈ ((𝐹 ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) lim 𝑋)) → (𝑍𝑋) ∈ ℂ)
5555543ad2antl1 1186 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ ((𝐹 ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) lim 𝑋)) → (𝑍𝑋) ∈ ℂ)
556 eqid 2730 . . . . . . . . 9 {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)𝑧 = (𝑥 + (𝑍𝑋))} = {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)𝑧 = (𝑥 + (𝑍𝑋))}
557501, 502npcand 11544 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → (((𝑄𝑖) − (𝑍𝑋)) + (𝑍𝑋)) = (𝑄𝑖))
558557eqcomd 2736 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) = (((𝑄𝑖) − (𝑍𝑋)) + (𝑍𝑋)))
559472adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐸𝑋) = (𝑋 + (𝑍𝑋)))
560558, 559oveq12d 7408 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)(,)(𝐸𝑋)) = ((((𝑄𝑖) − (𝑍𝑋)) + (𝑍𝑋))(,)(𝑋 + (𝑍𝑋))))
56114adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑋 ∈ ℝ)
562449, 561, 448iooshift 45527 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → ((((𝑄𝑖) − (𝑍𝑋)) + (𝑍𝑋))(,)(𝑋 + (𝑍𝑋))) = {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)𝑧 = (𝑥 + (𝑍𝑋))})
563560, 562eqtr2d 2766 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)𝑧 = (𝑥 + (𝑍𝑋))} = ((𝑄𝑖)(,)(𝐸𝑋)))
5645633adant3 1132 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)𝑧 = (𝑥 + (𝑍𝑋))} = ((𝑄𝑖)(,)(𝐸𝑋)))
565227, 564, 5173sstr4d 4005 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)𝑧 = (𝑥 + (𝑍𝑋))} ⊆ dom 𝐹)
566565adantr 480 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ ((𝐹 ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) lim 𝑋)) → {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)𝑧 = (𝑥 + (𝑍𝑋))} ⊆ dom 𝐹)
567407oveq2d 7406 . . . . . . . . . . . . . 14 (𝜑 → (𝑥 + (𝑍𝑋)) = (𝑥 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)))
568567fveq2d 6865 . . . . . . . . . . . . 13 (𝜑 → (𝐹‘(𝑥 + (𝑍𝑋))) = (𝐹‘(𝑥 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))))
569568adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → (𝐹‘(𝑥 + (𝑍𝑋))) = (𝐹‘(𝑥 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))))
5705693ad2antl1 1186 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → (𝐹‘(𝑥 + (𝑍𝑋))) = (𝐹‘(𝑥 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))))
571404adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → (⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ)
5725713ad2antl1 1186 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → (⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ)
573 simpl1 1192 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → 𝜑)
574500sselda 3949 . . . . . . . . . . . . 13 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → 𝑥𝐷)
575573, 574, 5723jca 1128 . . . . . . . . . . . 12 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → (𝜑𝑥𝐷 ∧ (⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ))
576 eleq1 2817 . . . . . . . . . . . . . . 15 (𝑘 = (⌊‘((𝐵𝑋) / 𝑇)) → (𝑘 ∈ ℤ ↔ (⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ))
5775763anbi3d 1444 . . . . . . . . . . . . . 14 (𝑘 = (⌊‘((𝐵𝑋) / 𝑇)) → ((𝜑𝑥𝐷𝑘 ∈ ℤ) ↔ (𝜑𝑥𝐷 ∧ (⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ)))
578 oveq1 7397 . . . . . . . . . . . . . . . . 17 (𝑘 = (⌊‘((𝐵𝑋) / 𝑇)) → (𝑘 · 𝑇) = ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))
579578oveq2d 7406 . . . . . . . . . . . . . . . 16 (𝑘 = (⌊‘((𝐵𝑋) / 𝑇)) → (𝑥 + (𝑘 · 𝑇)) = (𝑥 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇)))
580579fveq2d 6865 . . . . . . . . . . . . . . 15 (𝑘 = (⌊‘((𝐵𝑋) / 𝑇)) → (𝐹‘(𝑥 + (𝑘 · 𝑇))) = (𝐹‘(𝑥 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))))
581580eqeq1d 2732 . . . . . . . . . . . . . 14 (𝑘 = (⌊‘((𝐵𝑋) / 𝑇)) → ((𝐹‘(𝑥 + (𝑘 · 𝑇))) = (𝐹𝑥) ↔ (𝐹‘(𝑥 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))) = (𝐹𝑥)))
582577, 581imbi12d 344 . . . . . . . . . . . . 13 (𝑘 = (⌊‘((𝐵𝑋) / 𝑇)) → (((𝜑𝑥𝐷𝑘 ∈ ℤ) → (𝐹‘(𝑥 + (𝑘 · 𝑇))) = (𝐹𝑥)) ↔ ((𝜑𝑥𝐷 ∧ (⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ) → (𝐹‘(𝑥 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))) = (𝐹𝑥))))
583582, 536vtoclg 3523 . . . . . . . . . . . 12 ((⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ → ((𝜑𝑥𝐷 ∧ (⌊‘((𝐵𝑋) / 𝑇)) ∈ ℤ) → (𝐹‘(𝑥 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))) = (𝐹𝑥)))
584572, 575, 583sylc 65 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → (𝐹‘(𝑥 + ((⌊‘((𝐵𝑋) / 𝑇)) · 𝑇))) = (𝐹𝑥))
585570, 584eqtrd 2765 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → (𝐹‘(𝑥 + (𝑍𝑋))) = (𝐹𝑥))
586585adantlr 715 . . . . . . . . 9 ((((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ ((𝐹 ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) lim 𝑋)) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → (𝐹‘(𝑥 + (𝑍𝑋))) = (𝐹𝑥))
587 simpr 484 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ ((𝐹 ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) lim 𝑋)) → 𝑦 ∈ ((𝐹 ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) lim 𝑋))
588550, 551, 553, 555, 556, 566, 586, 587limcperiod 45633 . . . . . . . 8 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ ((𝐹 ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) lim 𝑋)) → 𝑦 ∈ ((𝐹 ↾ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)𝑧 = (𝑥 + (𝑍𝑋))}) lim (𝑋 + (𝑍𝑋))))
589563reseq2d 5953 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)𝑧 = (𝑥 + (𝑍𝑋))}) = (𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))))
590473adantr 480 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑋 + (𝑍𝑋)) = (𝐸𝑋))
591589, 590oveq12d 7408 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)𝑧 = (𝑥 + (𝑍𝑋))}) lim (𝑋 + (𝑍𝑋))) = ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋)))
5925913adant3 1132 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝐹 ↾ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)𝑧 = (𝑥 + (𝑍𝑋))}) lim (𝑋 + (𝑍𝑋))) = ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋)))
593592adantr 480 . . . . . . . 8 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ ((𝐹 ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) lim 𝑋)) → ((𝐹 ↾ {𝑧 ∈ ℂ ∣ ∃𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)𝑧 = (𝑥 + (𝑍𝑋))}) lim (𝑋 + (𝑍𝑋))) = ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋)))
594588, 593eleqtrd 2831 . . . . . . 7 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ ((𝐹 ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) lim 𝑋)) → 𝑦 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋)))
595548, 594impbida 800 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝑦 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋)) ↔ 𝑦 ∈ ((𝐹 ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) lim 𝑋)))
596595eqrdv 2728 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋)) = ((𝐹 ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) lim 𝑋))
597 resindm 6004 . . . . . . . . . . 11 (Rel 𝐹 → (𝐹 ↾ ((-∞(,)𝑋) ∩ dom 𝐹)) = (𝐹 ↾ (-∞(,)𝑋)))
598597eqcomd 2736 . . . . . . . . . 10 (Rel 𝐹 → (𝐹 ↾ (-∞(,)𝑋)) = (𝐹 ↾ ((-∞(,)𝑋) ∩ dom 𝐹)))
599176, 598syl 17 . . . . . . . . 9 (𝜑 → (𝐹 ↾ (-∞(,)𝑋)) = (𝐹 ↾ ((-∞(,)𝑋) ∩ dom 𝐹)))
600181ineq2d 4186 . . . . . . . . . 10 (𝜑 → ((-∞(,)𝑋) ∩ dom 𝐹) = ((-∞(,)𝑋) ∩ 𝐷))
601600reseq2d 5953 . . . . . . . . 9 (𝜑 → (𝐹 ↾ ((-∞(,)𝑋) ∩ dom 𝐹)) = (𝐹 ↾ ((-∞(,)𝑋) ∩ 𝐷)))
602599, 601eqtrd 2765 . . . . . . . 8 (𝜑 → (𝐹 ↾ (-∞(,)𝑋)) = (𝐹 ↾ ((-∞(,)𝑋) ∩ 𝐷)))
603602oveq1d 7405 . . . . . . 7 (𝜑 → ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋) = ((𝐹 ↾ ((-∞(,)𝑋) ∩ 𝐷)) lim 𝑋))
6046033ad2ant1 1133 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋) = ((𝐹 ↾ ((-∞(,)𝑋) ∩ 𝐷)) lim 𝑋))
605 inss2 4204 . . . . . . . . . 10 ((-∞(,)𝑋) ∩ 𝐷) ⊆ 𝐷
606605a1i 11 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((-∞(,)𝑋) ∩ 𝐷) ⊆ 𝐷)
607190, 606fssresd 6730 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝐹 ↾ ((-∞(,)𝑋) ∩ 𝐷)):((-∞(,)𝑋) ∩ 𝐷)⟶ℂ)
608449mnfltd 13091 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → -∞ < ((𝑄𝑖) − (𝑍𝑋)))
609195, 450, 608xrltled 13117 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → -∞ ≤ ((𝑄𝑖) − (𝑍𝑋)))
610 iooss1 13348 . . . . . . . . . . 11 ((-∞ ∈ ℝ* ∧ -∞ ≤ ((𝑄𝑖) − (𝑍𝑋))) → (((𝑄𝑖) − (𝑍𝑋))(,)𝑋) ⊆ (-∞(,)𝑋))
611194, 609, 610sylancr 587 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → (((𝑄𝑖) − (𝑍𝑋))(,)𝑋) ⊆ (-∞(,)𝑋))
6126113adant3 1132 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (((𝑄𝑖) − (𝑍𝑋))(,)𝑋) ⊆ (-∞(,)𝑋))
613612, 500ssind 4207 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (((𝑄𝑖) − (𝑍𝑋))(,)𝑋) ⊆ ((-∞(,)𝑋) ∩ 𝐷))
614605, 231sstrid 3961 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((-∞(,)𝑋) ∩ 𝐷) ⊆ ℂ)
615 eqid 2730 . . . . . . . 8 ((TopOpen‘ℂfld) ↾t (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})) = ((TopOpen‘ℂfld) ↾t (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}))
6164503adant3 1132 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝑄𝑖) − (𝑍𝑋)) ∈ ℝ*)
6174523ad2ant1 1133 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → 𝑋 ∈ ℝ*)
6184723ad2ant1 1133 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝐸𝑋) = (𝑋 + (𝑍𝑋)))
619238, 618breqtrd 5136 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝑄𝑖) < (𝑋 + (𝑍𝑋)))
6204083ad2ant1 1133 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝑍𝑋) ∈ ℝ)
621143ad2ant1 1133 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → 𝑋 ∈ ℝ)
622211, 620, 621ltsubaddd 11781 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (((𝑄𝑖) − (𝑍𝑋)) < 𝑋 ↔ (𝑄𝑖) < (𝑋 + (𝑍𝑋))))
623619, 622mpbird 257 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝑄𝑖) − (𝑍𝑋)) < 𝑋)
62414leidd 11751 . . . . . . . . . . 11 (𝜑𝑋𝑋)
6256243ad2ant1 1133 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → 𝑋𝑋)
626616, 617, 617, 623, 625eliocd 45512 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → 𝑋 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋))
627 ioounsn 13445 . . . . . . . . . . . 12 ((((𝑄𝑖) − (𝑍𝑋)) ∈ ℝ*𝑋 ∈ ℝ* ∧ ((𝑄𝑖) − (𝑍𝑋)) < 𝑋) → ((((𝑄𝑖) − (𝑍𝑋))(,)𝑋) ∪ {𝑋}) = (((𝑄𝑖) − (𝑍𝑋))(,]𝑋))
628616, 617, 623, 627syl3anc 1373 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((((𝑄𝑖) − (𝑍𝑋))(,)𝑋) ∪ {𝑋}) = (((𝑄𝑖) − (𝑍𝑋))(,]𝑋))
629628fveq2d 6865 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((int‘((TopOpen‘ℂfld) ↾t (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})))‘((((𝑄𝑖) − (𝑍𝑋))(,)𝑋) ∪ {𝑋})) = ((int‘((TopOpen‘ℂfld) ↾t (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})))‘(((𝑄𝑖) − (𝑍𝑋))(,]𝑋)))
630 ovex 7423 . . . . . . . . . . . . . 14 (-∞(,)𝑋) ∈ V
631630inex1 5275 . . . . . . . . . . . . 13 ((-∞(,)𝑋) ∩ 𝐷) ∈ V
632 snex 5394 . . . . . . . . . . . . 13 {𝑋} ∈ V
633631, 632unex 7723 . . . . . . . . . . . 12 (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}) ∈ V
634 resttop 23054 . . . . . . . . . . . 12 (((TopOpen‘ℂfld) ∈ Top ∧ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}) ∈ V) → ((TopOpen‘ℂfld) ↾t (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})) ∈ Top)
635244, 633, 634mp2an 692 . . . . . . . . . . 11 ((TopOpen‘ℂfld) ↾t (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})) ∈ Top
636633a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}) ∈ V)
637 iooretop 24660 . . . . . . . . . . . . . 14 (((𝑄𝑖) − (𝑍𝑋))(,)+∞) ∈ (topGen‘ran (,))
638637a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (((𝑄𝑖) − (𝑍𝑋))(,)+∞) ∈ (topGen‘ran (,)))
639 elrestr 17398 . . . . . . . . . . . . 13 (((topGen‘ran (,)) ∈ Top ∧ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}) ∈ V ∧ (((𝑄𝑖) − (𝑍𝑋))(,)+∞) ∈ (topGen‘ran (,))) → ((((𝑄𝑖) − (𝑍𝑋))(,)+∞) ∩ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})) ∈ ((topGen‘ran (,)) ↾t (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})))
640252, 636, 638, 639syl3anc 1373 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((((𝑄𝑖) − (𝑍𝑋))(,)+∞) ∩ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})) ∈ ((topGen‘ran (,)) ↾t (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})))
641450adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) → ((𝑄𝑖) − (𝑍𝑋)) ∈ ℝ*)
642259a1i 11 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) → +∞ ∈ ℝ*)
64314ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) → 𝑋 ∈ ℝ)
644 iocssre 13395 . . . . . . . . . . . . . . . . . . 19 ((((𝑄𝑖) − (𝑍𝑋)) ∈ ℝ*𝑋 ∈ ℝ) → (((𝑄𝑖) − (𝑍𝑋))(,]𝑋) ⊆ ℝ)
645641, 643, 644syl2anc 584 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) → (((𝑄𝑖) − (𝑍𝑋))(,]𝑋) ⊆ ℝ)
646 simpr 484 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) → 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋))
647645, 646sseldd 3950 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) → 𝑥 ∈ ℝ)
648452ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) → 𝑋 ∈ ℝ*)
649 iocgtlb 45507 . . . . . . . . . . . . . . . . . 18 ((((𝑄𝑖) − (𝑍𝑋)) ∈ ℝ*𝑋 ∈ ℝ*𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) → ((𝑄𝑖) − (𝑍𝑋)) < 𝑥)
650641, 648, 646, 649syl3anc 1373 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) → ((𝑄𝑖) − (𝑍𝑋)) < 𝑥)
651647ltpnfd 13088 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) → 𝑥 < +∞)
652641, 642, 647, 650, 651eliood 45503 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) → 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)+∞))
6536523adantl3 1169 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) → 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)+∞))
654 eqvisset 3470 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑋𝑋 ∈ V)
655 snidg 4627 . . . . . . . . . . . . . . . . . . . 20 (𝑋 ∈ V → 𝑋 ∈ {𝑋})
656654, 655syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑋𝑋 ∈ {𝑋})
657467, 656eqeltrd 2829 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑋𝑥 ∈ {𝑋})
658 elun2 4149 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ {𝑋} → 𝑥 ∈ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}))
659657, 658syl 17 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑋𝑥 ∈ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}))
660659adantl 481 . . . . . . . . . . . . . . . 16 ((((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) ∧ 𝑥 = 𝑋) → 𝑥 ∈ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}))
661 simpll 766 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) ∧ ¬ 𝑥 = 𝑋) → (𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))))
662641adantr 480 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) ∧ ¬ 𝑥 = 𝑋) → ((𝑄𝑖) − (𝑍𝑋)) ∈ ℝ*)
663452ad3antrrr 730 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) ∧ ¬ 𝑥 = 𝑋) → 𝑋 ∈ ℝ*)
664647adantr 480 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) ∧ ¬ 𝑥 = 𝑋) → 𝑥 ∈ ℝ)
665650adantr 480 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) ∧ ¬ 𝑥 = 𝑋) → ((𝑄𝑖) − (𝑍𝑋)) < 𝑥)
66614ad3antrrr 730 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) ∧ ¬ 𝑥 = 𝑋) → 𝑋 ∈ ℝ)
667 iocleub 45508 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑄𝑖) − (𝑍𝑋)) ∈ ℝ*𝑋 ∈ ℝ*𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) → 𝑥𝑋)
668641, 648, 646, 667syl3anc 1373 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) → 𝑥𝑋)
669668adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) ∧ ¬ 𝑥 = 𝑋) → 𝑥𝑋)
670467eqcoms 2738 . . . . . . . . . . . . . . . . . . . . . 22 (𝑋 = 𝑥𝑥 = 𝑋)
671670necon3bi 2952 . . . . . . . . . . . . . . . . . . . . 21 𝑥 = 𝑋𝑋𝑥)
672671adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) ∧ ¬ 𝑥 = 𝑋) → 𝑋𝑥)
673664, 666, 669, 672leneltd 11335 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) ∧ ¬ 𝑥 = 𝑋) → 𝑥 < 𝑋)
674662, 663, 664, 665, 673eliood 45503 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) ∧ ¬ 𝑥 = 𝑋) → 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋))
6756743adantll3 45043 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) ∧ ¬ 𝑥 = 𝑋) → 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋))
676613sselda 3949 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → 𝑥 ∈ ((-∞(,)𝑋) ∩ 𝐷))
677 elun1 4148 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ((-∞(,)𝑋) ∩ 𝐷) → 𝑥 ∈ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}))
678676, 677syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) → 𝑥 ∈ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}))
679661, 675, 678syl2anc 584 . . . . . . . . . . . . . . . 16 ((((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) ∧ ¬ 𝑥 = 𝑋) → 𝑥 ∈ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}))
680660, 679pm2.61dan 812 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) → 𝑥 ∈ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}))
681653, 680elind 4166 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) → 𝑥 ∈ ((((𝑄𝑖) − (𝑍𝑋))(,)+∞) ∩ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})))
682616adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((((𝑄𝑖) − (𝑍𝑋))(,)+∞) ∩ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}))) → ((𝑄𝑖) − (𝑍𝑋)) ∈ ℝ*)
683617adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((((𝑄𝑖) − (𝑍𝑋))(,)+∞) ∩ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}))) → 𝑋 ∈ ℝ*)
684 elinel1 4167 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ((((𝑄𝑖) − (𝑍𝑋))(,)+∞) ∩ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})) → 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)+∞))
685 elioore 13343 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)+∞) → 𝑥 ∈ ℝ)
686684, 685syl 17 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ((((𝑄𝑖) − (𝑍𝑋))(,)+∞) ∩ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})) → 𝑥 ∈ ℝ)
687686rexrd 11231 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ((((𝑄𝑖) − (𝑍𝑋))(,)+∞) ∩ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})) → 𝑥 ∈ ℝ*)
688687adantl 481 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((((𝑄𝑖) − (𝑍𝑋))(,)+∞) ∩ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}))) → 𝑥 ∈ ℝ*)
689450adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((((𝑄𝑖) − (𝑍𝑋))(,)+∞) ∩ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}))) → ((𝑄𝑖) − (𝑍𝑋)) ∈ ℝ*)
690259a1i 11 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((((𝑄𝑖) − (𝑍𝑋))(,)+∞) ∩ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}))) → +∞ ∈ ℝ*)
691684adantl 481 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((((𝑄𝑖) − (𝑍𝑋))(,)+∞) ∩ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}))) → 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)+∞))
692 ioogtlb 45500 . . . . . . . . . . . . . . . . 17 ((((𝑄𝑖) − (𝑍𝑋)) ∈ ℝ* ∧ +∞ ∈ ℝ*𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,)+∞)) → ((𝑄𝑖) − (𝑍𝑋)) < 𝑥)
693689, 690, 691, 692syl3anc 1373 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((((𝑄𝑖) − (𝑍𝑋))(,)+∞) ∩ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}))) → ((𝑄𝑖) − (𝑍𝑋)) < 𝑥)
6946933adantl3 1169 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((((𝑄𝑖) − (𝑍𝑋))(,)+∞) ∩ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}))) → ((𝑄𝑖) − (𝑍𝑋)) < 𝑥)
695 elinel2 4168 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ((((𝑄𝑖) − (𝑍𝑋))(,)+∞) ∩ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})) → 𝑥 ∈ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}))
696 elsni 4609 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ {𝑋} → 𝑥 = 𝑋)
697696adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ {𝑋}) → 𝑥 = 𝑋)
698624adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ {𝑋}) → 𝑋𝑋)
699697, 698eqbrtrd 5132 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ {𝑋}) → 𝑥𝑋)
700699adantlr 715 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})) ∧ 𝑥 ∈ {𝑋}) → 𝑥𝑋)
701 simpll 766 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})) ∧ ¬ 𝑥 ∈ {𝑋}) → 𝜑)
702 elunnel2 4121 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}) ∧ ¬ 𝑥 ∈ {𝑋}) → 𝑥 ∈ ((-∞(,)𝑋) ∩ 𝐷))
703702adantll 714 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})) ∧ ¬ 𝑥 ∈ {𝑋}) → 𝑥 ∈ ((-∞(,)𝑋) ∩ 𝐷))
704 elinel1 4167 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ((-∞(,)𝑋) ∩ 𝐷) → 𝑥 ∈ (-∞(,)𝑋))
705703, 704syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})) ∧ ¬ 𝑥 ∈ {𝑋}) → 𝑥 ∈ (-∞(,)𝑋))
706 elioore 13343 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (-∞(,)𝑋) → 𝑥 ∈ ℝ)
707706adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (-∞(,)𝑋)) → 𝑥 ∈ ℝ)
70814adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (-∞(,)𝑋)) → 𝑋 ∈ ℝ)
709194a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (-∞(,)𝑋)) → -∞ ∈ ℝ*)
710452adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (-∞(,)𝑋)) → 𝑋 ∈ ℝ*)
711 simpr 484 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (-∞(,)𝑋)) → 𝑥 ∈ (-∞(,)𝑋))
712 iooltub 45515 . . . . . . . . . . . . . . . . . . . . 21 ((-∞ ∈ ℝ*𝑋 ∈ ℝ*𝑥 ∈ (-∞(,)𝑋)) → 𝑥 < 𝑋)
713709, 710, 711, 712syl3anc 1373 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (-∞(,)𝑋)) → 𝑥 < 𝑋)
714707, 708, 713ltled 11329 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (-∞(,)𝑋)) → 𝑥𝑋)
715701, 705, 714syl2anc 584 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})) ∧ ¬ 𝑥 ∈ {𝑋}) → 𝑥𝑋)
716700, 715pm2.61dan 812 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})) → 𝑥𝑋)
717695, 716sylan2 593 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ((((𝑄𝑖) − (𝑍𝑋))(,)+∞) ∩ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}))) → 𝑥𝑋)
7187173ad2antl1 1186 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((((𝑄𝑖) − (𝑍𝑋))(,)+∞) ∩ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}))) → 𝑥𝑋)
719682, 683, 688, 694, 718eliocd 45512 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑥 ∈ ((((𝑄𝑖) − (𝑍𝑋))(,)+∞) ∩ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}))) → 𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋))
720681, 719impbida 800 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝑥 ∈ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋) ↔ 𝑥 ∈ ((((𝑄𝑖) − (𝑍𝑋))(,)+∞) ∩ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}))))
721720eqrdv 2728 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (((𝑄𝑖) − (𝑍𝑋))(,]𝑋) = ((((𝑄𝑖) − (𝑍𝑋))(,)+∞) ∩ (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})))
722605, 229sstrid 3961 . . . . . . . . . . . . . . 15 (𝜑 → ((-∞(,)𝑋) ∩ 𝐷) ⊆ ℝ)
72314snssd 4776 . . . . . . . . . . . . . . 15 (𝜑 → {𝑋} ⊆ ℝ)
724722, 723unssd 4158 . . . . . . . . . . . . . 14 (𝜑 → (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}) ⊆ ℝ)
7257243ad2ant1 1133 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}) ⊆ ℝ)
726233, 366rerest 24699 . . . . . . . . . . . . 13 ((((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}) ⊆ ℝ → ((TopOpen‘ℂfld) ↾t (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})) = ((topGen‘ran (,)) ↾t (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})))
727725, 726syl 17 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((TopOpen‘ℂfld) ↾t (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})) = ((topGen‘ran (,)) ↾t (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})))
728640, 721, 7273eltr4d 2844 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (((𝑄𝑖) − (𝑍𝑋))(,]𝑋) ∈ ((TopOpen‘ℂfld) ↾t (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})))
729 isopn3i 22976 . . . . . . . . . . 11 ((((TopOpen‘ℂfld) ↾t (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})) ∈ Top ∧ (((𝑄𝑖) − (𝑍𝑋))(,]𝑋) ∈ ((TopOpen‘ℂfld) ↾t (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋}))) → ((int‘((TopOpen‘ℂfld) ↾t (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})))‘(((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) = (((𝑄𝑖) − (𝑍𝑋))(,]𝑋))
730635, 728, 729sylancr 587 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((int‘((TopOpen‘ℂfld) ↾t (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})))‘(((𝑄𝑖) − (𝑍𝑋))(,]𝑋)) = (((𝑄𝑖) − (𝑍𝑋))(,]𝑋))
731629, 730eqtr2d 2766 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (((𝑄𝑖) − (𝑍𝑋))(,]𝑋) = ((int‘((TopOpen‘ℂfld) ↾t (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})))‘((((𝑄𝑖) − (𝑍𝑋))(,)𝑋) ∪ {𝑋})))
732626, 731eleqtrd 2831 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → 𝑋 ∈ ((int‘((TopOpen‘ℂfld) ↾t (((-∞(,)𝑋) ∩ 𝐷) ∪ {𝑋})))‘((((𝑄𝑖) − (𝑍𝑋))(,)𝑋) ∪ {𝑋})))
733607, 613, 614, 233, 615, 732limcres 25794 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (((𝐹 ↾ ((-∞(,)𝑋) ∩ 𝐷)) ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) lim 𝑋) = ((𝐹 ↾ ((-∞(,)𝑋) ∩ 𝐷)) lim 𝑋))
734733eqcomd 2736 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝐹 ↾ ((-∞(,)𝑋) ∩ 𝐷)) lim 𝑋) = (((𝐹 ↾ ((-∞(,)𝑋) ∩ 𝐷)) ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) lim 𝑋))
735613resabs1d 5982 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝐹 ↾ ((-∞(,)𝑋) ∩ 𝐷)) ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) = (𝐹 ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)))
736735oveq1d 7405 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (((𝐹 ↾ ((-∞(,)𝑋) ∩ 𝐷)) ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) lim 𝑋) = ((𝐹 ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) lim 𝑋))
737604, 734, 7363eqtrrd 2770 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝐹 ↾ (((𝑄𝑖) − (𝑍𝑋))(,)𝑋)) lim 𝑋) = ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋))
738377, 596, 7373eqtrrd 2770 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋) = ((𝐹 ↾ (-∞(,)(𝐸𝑋))) lim (𝐸𝑋)))
739738rexlimdv3a 3139 . . 3 (𝜑 → (∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1))) → ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋) = ((𝐹 ↾ (-∞(,)(𝐸𝑋))) lim (𝐸𝑋))))
740173, 739mpd 15 . 2 (𝜑 → ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋) = ((𝐹 ↾ (-∞(,)(𝐸𝑋))) lim (𝐸𝑋)))
7411203adant3 1132 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝑄𝑖) < (𝑄‘(𝑖 + 1)))
7422183adant3 1132 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
743 fourierdlem49.l . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
7447433adant3 1132 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
745 eqid 2730 . . . . . . . 8 if((𝐸𝑋) = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘(𝐸𝑋))) = if((𝐸𝑋) = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘(𝐸𝑋)))
746 eqid 2730 . . . . . . . 8 ((TopOpen‘ℂfld) ↾t (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))})) = ((TopOpen‘ℂfld) ↾t (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∪ {(𝑄‘(𝑖 + 1))}))
747211, 209, 741, 742, 744, 211, 235, 238, 217, 745, 746fourierdlem33 46145 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → if((𝐸𝑋) = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘(𝐸𝑋))) ∈ (((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋)))
748217resabs1d 5982 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ↾ ((𝑄𝑖)(,)(𝐸𝑋))) = (𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))))
749748oveq1d 7405 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → (((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋)) = ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋)))
750747, 749eleqtrd 2831 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → if((𝐸𝑋) = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘(𝐸𝑋))) ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋)))
751 ne0i 4307 . . . . . 6 (if((𝐸𝑋) = (𝑄‘(𝑖 + 1)), 𝐿, ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘(𝐸𝑋))) ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋)) → ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋)) ≠ ∅)
752750, 751syl 17 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝐹 ↾ ((𝑄𝑖)(,)(𝐸𝑋))) lim (𝐸𝑋)) ≠ ∅)
753377, 752eqnetrd 2993 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝐹 ↾ (-∞(,)(𝐸𝑋))) lim (𝐸𝑋)) ≠ ∅)
754753rexlimdv3a 3139 . . 3 (𝜑 → (∃𝑖 ∈ (0..^𝑀)(𝐸𝑋) ∈ ((𝑄𝑖)(,](𝑄‘(𝑖 + 1))) → ((𝐹 ↾ (-∞(,)(𝐸𝑋))) lim (𝐸𝑋)) ≠ ∅))
755173, 754mpd 15 . 2 (𝜑 → ((𝐹 ↾ (-∞(,)(𝐸𝑋))) lim (𝐸𝑋)) ≠ ∅)
756740, 755eqnetrd 2993 1 (𝜑 → ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wral 3045  wrex 3054  {crab 3408  Vcvv 3450  cun 3915  cin 3916  wss 3917  c0 4299  ifcif 4491  {csn 4592   class class class wbr 5110  cmpt 5191  dom cdm 5641  ran crn 5642  cres 5643  Rel wrel 5646   Fn wfn 6509  wf 6510  cfv 6514  (class class class)co 7390  m cmap 8802  supcsup 9398  cc 11073  cr 11074  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080  +∞cpnf 11212  -∞cmnf 11213  *cxr 11214   < clt 11215  cle 11216  cmin 11412  -cneg 11413   / cdiv 11842  cn 12193  0cn0 12449  cz 12536  cuz 12800  (,)cioo 13313  (,]cioc 13314  [,]cicc 13316  ...cfz 13475  ..^cfzo 13622  cfl 13759  t crest 17390  TopOpenctopn 17391  topGenctg 17407  fldccnfld 21271  Topctop 22787  intcnt 22911  cnccncf 24776   lim climc 25770
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fi 9369  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ioc 13318  df-icc 13320  df-fz 13476  df-fzo 13623  df-fl 13761  df-seq 13974  df-exp 14034  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-struct 17124  df-slot 17159  df-ndx 17171  df-base 17187  df-plusg 17240  df-mulr 17241  df-starv 17242  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-rest 17392  df-topn 17393  df-topgen 17413  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-cnfld 21272  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-ntr 22914  df-cn 23121  df-cnp 23122  df-xms 24215  df-ms 24216  df-cncf 24778  df-limc 25774
This theorem is referenced by:  fourierdlem94  46205  fourierdlem113  46224
  Copyright terms: Public domain W3C validator